Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLarge-Scale QA-SRL Parsing
We present a new large-scale corpus of Question-Answer driven Semantic Role Labeling (QA-SRL) annotations, and the first high-quality QA-SRL parser. Our corpus, QA-SRL Bank 2.0, consists of over 250,000 question-answer pairs for over 64,000 sentences across 3 domains and was gathered with a new crowd-sourcing scheme that we show has high precision and good recall at modest cost. We also present neural models for two QA-SRL subtasks: detecting argument spans for a predicate and generating questions to label the semantic relationship. The best models achieve question accuracy of 82.6% and span-level accuracy of 77.6% (under human evaluation) on the full pipelined QA-SRL prediction task. They can also, as we show, be used to gather additional annotations at low cost.
Hypercube-Based Retrieval-Augmented Generation for Scientific Question-Answering
Large language models (LLMs) often need to incorporate external knowledge to solve theme-specific problems. Retrieval-augmented generation (RAG) has shown its high promise, empowering LLMs to generate more qualified responses with retrieved external data and knowledge. However, most RAG methods retrieve relevant documents based on either sparse or dense retrieval methods or their combinations, which overlooks the essential, multi-dimensional, and structured semantic information present in documents. This structured information plays a critical role in finding concise yet highly relevant information for domain knowledge-intensive tasks, such as scientific question-answering (QA). In this work, we introduce a multi-dimensional (cube) structure, Hypercube, which can index and allocate documents in a pre-defined multi-dimensional space. Built on the hypercube, we further propose Hypercube-RAG, a novel RAG framework for precise and efficient retrieval. Given a query, Hypercube-RAG first decomposes it based on its entities, phrases, and topics along with pre-defined hypercube dimensions, and then retrieves relevant documents from cubes by aligning these decomposed components with corresponding dimensions. Experiments on three datasets across different domains demonstrate that our method improves response accuracy by 3.7% and retrieval accuracy by 5.3% over the strongest RAG baseline. It also boosts retrieval efficiency (speed) by one or two magnitudes faster than graph-based RAG. Notably, our Hypercube-RAG inherently offers explainability by revealing those underlying dimensions used for retrieval. The code and data are available at https://github.com/JimengShi/Hypercube-RAG.
Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) has emerged as a promising framework to mitigate hallucinations in Large Language Models (LLMs), yet its overall performance is dependent on the underlying retrieval system. In the finance domain, documents such as 10-K reports pose distinct challenges due to domain-specific vocabulary and multi-hierarchical tabular data. In this work, we introduce an efficient, end-to-end RAG pipeline that enhances retrieval for financial documents through a three-phase approach: pre-retrieval, retrieval, and post-retrieval. In the pre-retrieval phase, various query and corpus preprocessing techniques are employed to enrich input data. During the retrieval phase, we fine-tuned state-of-the-art (SOTA) embedding models with domain-specific knowledge and implemented a hybrid retrieval strategy that combines dense and sparse representations. Finally, the post-retrieval phase leverages Direct Preference Optimization (DPO) training and document selection methods to further refine the results. Evaluations on seven financial question answering datasets-FinDER, FinQABench, FinanceBench, TATQA, FinQA, ConvFinQA, and MultiHiertt-demonstrate substantial improvements in retrieval performance, leading to more accurate and contextually appropriate generation. These findings highlight the critical role of tailored retrieval techniques in advancing the effectiveness of RAG systems for financial applications. A fully replicable pipeline is available on GitHub: https://github.com/seohyunwoo-0407/GAR.
Dynamic Context Adaptation for Consistent Role-Playing Agents with Retrieval-Augmented Generations
We propose AMADEUS, which is composed of Adaptive Context-aware Text Splitter (ACTS), Guided Selection (GS), and Attribute Extractor (AE). ACTS finds an optimal chunk length and hierarchical contexts for each character. AE identifies a character's general attributes from the chunks retrieved by GS and uses these attributes as a final context to maintain robust persona consistency even when answering out of knowledge questions. To facilitate the development and evaluation of RAG-based RPAs, we construct CharacterRAG, a role-playing dataset that consists of persona documents for 15 distinct fictional characters totaling 976K written characters, and 450 question and answer pairs. We find that our framework effectively models not only the knowledge possessed by characters, but also various attributes such as personality.
What is Event Knowledge Graph: A Survey
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many downstream applications, such as search, question-answering, recommendation, financial quantitative investments, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definition, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize prospective directions to facilitate future research on EKG.
DSRAG: A Domain-Specific Retrieval Framework Based on Document-derived Multimodal Knowledge Graph
Current general-purpose large language models (LLMs) commonly exhibit knowledge hallucination and insufficient domain-specific adaptability in domain-specific tasks, limiting their effectiveness in specialized question answering scenarios. Retrieval-augmented generation (RAG) effectively tackles these challenges by integrating external knowledge to enhance accuracy and relevance. However, traditional RAG still faces limitations in domain knowledge accuracy and context modeling.To enhance domain-specific question answering performance, this work focuses on a graph-based RAG framework, emphasizing the critical role of knowledge graph quality during the generation process. We propose DSRAG (Domain-Specific RAG), a multimodal knowledge graph-driven retrieval-augmented generation framework designed for domain-specific applications. Our approach leverages domain-specific documents as the primary knowledge source, integrating heterogeneous information such as text, images, and tables to construct a multimodal knowledge graph covering both conceptual and instance layers. Building on this foundation, we introduce semantic pruning and structured subgraph retrieval mechanisms, combining knowledge graph context and vector retrieval results to guide the language model towards producing more reliable responses. Evaluations using the Langfuse multidimensional scoring mechanism show that our method excels in domain-specific question answering, validating the efficacy of integrating multimodal knowledge graphs with retrieval-augmented generation.
Asking Questions the Human Way: Scalable Question-Answer Generation from Text Corpus
The ability to ask questions is important in both human and machine intelligence. Learning to ask questions helps knowledge acquisition, improves question-answering and machine reading comprehension tasks, and helps a chatbot to keep the conversation flowing with a human. Existing question generation models are ineffective at generating a large amount of high-quality question-answer pairs from unstructured text, since given an answer and an input passage, question generation is inherently a one-to-many mapping. In this paper, we propose Answer-Clue-Style-aware Question Generation (ACS-QG), which aims at automatically generating high-quality and diverse question-answer pairs from unlabeled text corpus at scale by imitating the way a human asks questions. Our system consists of: i) an information extractor, which samples from the text multiple types of assistive information to guide question generation; ii) neural question generators, which generate diverse and controllable questions, leveraging the extracted assistive information; and iii) a neural quality controller, which removes low-quality generated data based on text entailment. We compare our question generation models with existing approaches and resort to voluntary human evaluation to assess the quality of the generated question-answer pairs. The evaluation results suggest that our system dramatically outperforms state-of-the-art neural question generation models in terms of the generation quality, while being scalable in the meantime. With models trained on a relatively smaller amount of data, we can generate 2.8 million quality-assured question-answer pairs from a million sentences found in Wikipedia.
STaR-GATE: Teaching Language Models to Ask Clarifying Questions
When prompting language models to complete a task, users often leave important aspects unsaid. While asking questions could resolve this ambiguity (GATE; Li et al., 2023), models often struggle to ask good questions. We explore a language model's ability to self-improve (STaR; Zelikman et al., 2022) by rewarding the model for generating useful questions-a simple method we dub STaR-GATE. We generate a synthetic dataset of 25,500 unique persona-task prompts to simulate conversations between a pretrained language model-the Questioner-and a Roleplayer whose preferences are unknown to the Questioner. By asking questions, the Questioner elicits preferences from the Roleplayer. The Questioner is iteratively finetuned on questions that increase the probability of high-quality responses to the task, which are generated by an Oracle with access to the Roleplayer's latent preferences. After two iterations of self-improvement, the Questioner asks better questions, allowing it to generate responses that are preferred over responses from the initial model on 72% of tasks. Our results indicate that teaching a language model to ask better questions leads to better personalized responses.
Semantic-Based Self-Critical Training For Question Generation
Question generation is a conditioned language generation task that consists in generating a context-aware question given a context and the targeted answer. Train language modelling with a mere likelihood maximization has been widely used while suffering from exposure bias and the discordance between the training and the test metrics. In the way of addressing this issue, The presented work portrays a fully Transformer-based reinforcement learning generator-evaluation architecture for neural question generation. To edge the flexibility of the generation, a semantic-based reward score was externally infused during the training to drive the training of the language model. The global architecture is laid out in a generator-evaluator fashion optimized directly to n-gram and semantic-based metrics. Evaluation metrics for language modelling only based on n-gram overlapping do not consider semantic relations between reference and candidate sequences. To improve the evaluation step, a two-fold evaluation was carried out. On the one side, an n-gram overlapping evaluation using the BLEU score. On the other side, a semantic-based assessment using BERTScore and NUBIA. The results were corroborated by a binary human evaluation of the semantic relatedness of the generated question and the ground truth. The results obtained showed that use a semantic-based REINFORCE algorithm for the question generation syntactically reshapes the generated questions while preserving their underlying semantic meaning. Many downstream applications can be drawn from a successful question generation including the enlargement of question answering datasets, the improvement of conversational systems, the enhancement of autonomous educational assessment systems, and so forth.
Diversity Enhanced Narrative Question Generation for Storybooks
Question generation (QG) from a given context can enhance comprehension, engagement, assessment, and overall efficacy in learning or conversational environments. Despite recent advancements in QG, the challenge of enhancing or measuring the diversity of generated questions often remains unaddressed. In this paper, we introduce a multi-question generation model (mQG), which is capable of generating multiple, diverse, and answerable questions by focusing on context and questions. To validate the answerability of the generated questions, we employ a SQuAD2.0 fine-tuned question answering model, classifying the questions as answerable or not. We train and evaluate mQG on the FairytaleQA dataset, a well-structured QA dataset based on storybooks, with narrative questions. We further apply a zero-shot adaptation on the TellMeWhy and SQuAD1.1 datasets. mQG shows promising results across various evaluation metrics, among strong baselines.
Neural Question Generation from Text: A Preliminary Study
Automatic question generation aims to generate questions from a text passage where the generated questions can be answered by certain sub-spans of the given passage. Traditional methods mainly use rigid heuristic rules to transform a sentence into related questions. In this work, we propose to apply the neural encoder-decoder model to generate meaningful and diverse questions from natural language sentences. The encoder reads the input text and the answer position, to produce an answer-aware input representation, which is fed to the decoder to generate an answer focused question. We conduct a preliminary study on neural question generation from text with the SQuAD dataset, and the experiment results show that our method can produce fluent and diverse questions.
Self-Prompt Tuning: Enable Autonomous Role-Playing in LLMs
Recent advancements in LLMs have showcased their remarkable role-playing capabilities, able to accurately simulate the dialogue styles and cognitive processes of various roles based on different instructions and contexts. Studies indicate that assigning LLMs the roles of experts, a strategy known as role-play prompting, can enhance their performance in the corresponding domains. However, the prompt needs to be manually designed for the given problem, requiring certain expertise and iterative modifications. To this end, we propose self-prompt tuning, making LLMs themselves generate role-play prompts through fine-tuning. Leveraging the LIMA dataset as our foundational corpus, we employ GPT-4 to annotate role-play prompts for each data points, resulting in the creation of the LIMA-Role dataset. We then fine-tune LLMs like Llama-2-7B and Mistral-7B on LIMA-Role. Consequently, the self-prompt tuned LLMs can automatically generate expert role prompts for any given question. We extensively evaluate self-prompt tuned LLMs on widely used NLP benchmarks and open-ended question test. Our empirical results illustrate that self-prompt tuned LLMs outperform standard instruction tuned baselines across most datasets. This highlights the great potential of utilizing fine-tuning to enable LLMs to self-prompt, thereby automating complex prompting strategies. We release the dataset, models, and code at this https://anonymous.4open.science/r/Self-Prompt-Tuning-739E/{url}.
Consecutive Question Generation via Dynamic Multitask Learning
In this paper, we propose the task of consecutive question generation (CQG), which generates a set of logically related question-answer pairs to understand a whole passage, with a comprehensive consideration of the aspects including accuracy, coverage, and informativeness. To achieve this, we first examine the four key elements of CQG, i.e., question, answer, rationale, and context history, and propose a novel dynamic multitask framework with one main task generating a question-answer pair, and four auxiliary tasks generating other elements. It directly helps the model generate good questions through both joint training and self-reranking. At the same time, to fully explore the worth-asking information in a given passage, we make use of the reranking losses to sample the rationales and search for the best question series globally. Finally, we measure our strategy by QA data augmentation and manual evaluation, as well as a novel application of generated question-answer pairs on DocNLI. We prove that our strategy can improve question generation significantly and benefit multiple related NLP tasks.
Benchmarking Critical Questions Generation: A Challenging Reasoning Task for Large Language Models
The task of Critical Questions Generation (CQs-Gen) aims to foster critical thinking by enabling systems to generate questions that expose underlying assumptions and challenge the validity of argumentative reasoning structures. Despite growing interest in this area, progress has been hindered by the lack of suitable datasets and automatic evaluation standards. This paper presents a comprehensive approach to support the development and benchmarking of systems for this task. We construct the first large-scale dataset including ~5K manually annotated questions. We also investigate automatic evaluation methods and propose reference-based techniques as the strategy that best correlates with human judgments. Our zero-shot evaluation of 11 LLMs establishes a strong baseline while showcasing the difficulty of the task. Data and code plus a public leaderboard are provided to encourage further research, not only in terms of model performance, but also to explore the practical benefits of CQs-Gen for both automated reasoning and human critical thinking.
Learning to Ask: Neural Question Generation for Reading Comprehension
We study automatic question generation for sentences from text passages in reading comprehension. We introduce an attention-based sequence learning model for the task and investigate the effect of encoding sentence- vs. paragraph-level information. In contrast to all previous work, our model does not rely on hand-crafted rules or a sophisticated NLP pipeline; it is instead trainable end-to-end via sequence-to-sequence learning. Automatic evaluation results show that our system significantly outperforms the state-of-the-art rule-based system. In human evaluations, questions generated by our system are also rated as being more natural (i.e., grammaticality, fluency) and as more difficult to answer (in terms of syntactic and lexical divergence from the original text and reasoning needed to answer).
Simplifying Paragraph-level Question Generation via Transformer Language Models
Question generation (QG) is a natural language generation task where a model is trained to ask questions corresponding to some input text. Most recent approaches frame QG as a sequence-to-sequence problem and rely on additional features and mechanisms to increase performance; however, these often increase model complexity, and can rely on auxiliary data unavailable in practical use. A single Transformer-based unidirectional language model leveraging transfer learning can be used to produce high quality questions while disposing of additional task-specific complexity. Our QG model, finetuned from GPT-2 Small, outperforms several paragraph-level QG baselines on the SQuAD dataset by 0.95 METEOR points. Human evaluators rated questions as easy to answer, relevant to their context paragraph, and corresponding well to natural human speech. Also introduced is a new set of baseline scores on the RACE dataset, which has not previously been used for QG tasks. Further experimentation with varying model capacities and datasets with non-identification type questions is recommended in order to further verify the robustness of pretrained Transformer-based LMs as question generators.
A Feasibility Study of Answer-Agnostic Question Generation for Education
We conduct a feasibility study into the applicability of answer-agnostic question generation models to textbook passages. We show that a significant portion of errors in such systems arise from asking irrelevant or uninterpretable questions and that such errors can be ameliorated by providing summarized input. We find that giving these models human-written summaries instead of the original text results in a significant increase in acceptability of generated questions (33% rightarrow 83%) as determined by expert annotators. We also find that, in the absence of human-written summaries, automatic summarization can serve as a good middle ground.
Generating Self-Contained and Summary-Centric Question Answer Pairs via Differentiable Reward Imitation Learning
Motivated by suggested question generation in conversational news recommendation systems, we propose a model for generating question-answer pairs (QA pairs) with self-contained, summary-centric questions and length-constrained, article-summarizing answers. We begin by collecting a new dataset of news articles with questions as titles and pairing them with summaries of varying length. This dataset is used to learn a QA pair generation model producing summaries as answers that balance brevity with sufficiency jointly with their corresponding questions. We then reinforce the QA pair generation process with a differentiable reward function to mitigate exposure bias, a common problem in natural language generation. Both automatic metrics and human evaluation demonstrate these QA pairs successfully capture the central gists of the articles and achieve high answer accuracy.
Question Generation for Reading Comprehension Assessment by Modeling How and What to Ask
Reading is integral to everyday life, and yet learning to read is a struggle for many young learners. During lessons, teachers can use comprehension questions to increase engagement, test reading skills, and improve retention. Historically such questions were written by skilled teachers, but recently language models have been used to generate comprehension questions. However, many existing Question Generation (QG) systems focus on generating literal questions from the text, and have no way to control the type of the generated question. In this paper, we study QG for reading comprehension where inferential questions are critical and extractive techniques cannot be used. We propose a two-step model (HTA-WTA) that takes advantage of previous datasets, and can generate questions for a specific targeted comprehension skill. We propose a new reading comprehension dataset that contains questions annotated with story-based reading comprehension skills (SBRCS), allowing for a more complete reader assessment. Across several experiments, our results show that HTA-WTA outperforms multiple strong baselines on this new dataset. We show that the HTA-WTA model tests for strong SCRS by asking deep inferential questions.
Educational Question Generation of Children Storybooks via Question Type Distribution Learning and Event-Centric Summarization
Generating educational questions of fairytales or storybooks is vital for improving children's literacy ability. However, it is challenging to generate questions that capture the interesting aspects of a fairytale story with educational meaningfulness. In this paper, we propose a novel question generation method that first learns the question type distribution of an input story paragraph, and then summarizes salient events which can be used to generate high-cognitive-demand questions. To train the event-centric summarizer, we finetune a pre-trained transformer-based sequence-to-sequence model using silver samples composed by educational question-answer pairs. On a newly proposed educational question answering dataset FairytaleQA, we show good performance of our method on both automatic and human evaluation metrics. Our work indicates the necessity of decomposing question type distribution learning and event-centric summary generation for educational question generation.
Cross-lingual Transfer for Automatic Question Generation by Learning Interrogative Structures in Target Languages
Automatic question generation (QG) serves a wide range of purposes, such as augmenting question-answering (QA) corpora, enhancing chatbot systems, and developing educational materials. Despite its importance, most existing datasets predominantly focus on English, resulting in a considerable gap in data availability for other languages. Cross-lingual transfer for QG (XLT-QG) addresses this limitation by allowing models trained on high-resource language datasets to generate questions in low-resource languages. In this paper, we propose a simple and efficient XLT-QG method that operates without the need for monolingual, parallel, or labeled data in the target language, utilizing a small language model. Our model, trained solely on English QA datasets, learns interrogative structures from a limited set of question exemplars, which are then applied to generate questions in the target language. Experimental results show that our method outperforms several XLT-QG baselines and achieves performance comparable to GPT-3.5-turbo across different languages. Additionally, the synthetic data generated by our model proves beneficial for training multilingual QA models. With significantly fewer parameters than large language models and without requiring additional training for target languages, our approach offers an effective solution for QG and QA tasks across various languages.
Weakly Supervised Visual Question Answer Generation
Growing interest in conversational agents promote twoway human-computer communications involving asking and answering visual questions have become an active area of research in AI. Thus, generation of visual questionanswer pair(s) becomes an important and challenging task. To address this issue, we propose a weakly-supervised visual question answer generation method that generates a relevant question-answer pairs for a given input image and associated caption. Most of the prior works are supervised and depend on the annotated question-answer datasets. In our work, we present a weakly supervised method that synthetically generates question-answer pairs procedurally from visual information and captions. The proposed method initially extracts list of answer words, then does nearest question generation that uses the caption and answer word to generate synthetic question. Next, the relevant question generator converts the nearest question to relevant language question by dependency parsing and in-order tree traversal, finally, fine-tune a ViLBERT model with the question-answer pair(s) generated at end. We perform an exhaustive experimental analysis on VQA dataset and see that our model significantly outperform SOTA methods on BLEU scores. We also show the results wrt baseline models and ablation study.
Harnessing the Power of Prompt-based Techniques for Generating School-Level Questions using Large Language Models
Designing high-quality educational questions is a challenging and time-consuming task. In this work, we propose a novel approach that utilizes prompt-based techniques to generate descriptive and reasoning-based questions. However, current question-answering (QA) datasets are inadequate for conducting our experiments on prompt-based question generation (QG) in an educational setting. Therefore, we curate a new QG dataset called EduProbe for school-level subjects, by leveraging the rich content of NCERT textbooks. We carefully annotate this dataset as quadruples of 1) Context: a segment upon which the question is formed; 2) Long Prompt: a long textual cue for the question (i.e., a longer sequence of words or phrases, covering the main theme of the context); 3) Short Prompt: a short textual cue for the question (i.e., a condensed representation of the key information or focus of the context); 4) Question: a deep question that aligns with the context and is coherent with the prompts. We investigate several prompt-based QG methods by fine-tuning pre-trained transformer-based large language models (LLMs), namely PEGASUS, T5, MBART, and BART. Moreover, we explore the performance of two general-purpose pre-trained LLMs such as Text-Davinci-003 and GPT-3.5-Turbo without any further training. By performing automatic evaluation, we show that T5 (with long prompt) outperforms all other models, but still falls short of the human baseline. Under human evaluation criteria, TextDavinci-003 usually shows better results than other models under various prompt settings. Even in the case of human evaluation criteria, QG models mostly fall short of the human baseline. Our code and dataset are available at: https://github.com/my625/PromptQG
PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable
Pre-training models have been proved effective for a wide range of natural language processing tasks. Inspired by this, we propose a novel dialogue generation pre-training framework to support various kinds of conversations, including chit-chat, knowledge grounded dialogues, and conversational question answering. In this framework, we adopt flexible attention mechanisms to fully leverage the bi-directional context and the uni-directional characteristic of language generation. We also introduce discrete latent variables to tackle the inherent one-to-many mapping problem in response generation. Two reciprocal tasks of response generation and latent act recognition are designed and carried out simultaneously within a shared network. Comprehensive experiments on three publicly available datasets verify the effectiveness and superiority of the proposed framework.
We are what we repeatedly do: Inducing and deploying habitual schemas in persona-based responses
Many practical applications of dialogue technology require the generation of responses according to a particular developer-specified persona. While a variety of personas can be elicited from recent large language models, the opaqueness and unpredictability of these models make it desirable to be able to specify personas in an explicit form. In previous work, personas have typically been represented as sets of one-off pieces of self-knowledge that are retrieved by the dialogue system for use in generation. However, in realistic human conversations, personas are often revealed through story-like narratives that involve rich habitual knowledge -- knowledge about kinds of events that an agent often participates in (e.g., work activities, hobbies, sporting activities, favorite entertainments, etc.), including typical goals, sub-events, preconditions, and postconditions of those events. We capture such habitual knowledge using an explicit schema representation, and propose an approach to dialogue generation that retrieves relevant schemas to condition a large language model to generate persona-based responses. Furthermore, we demonstrate a method for bootstrapping the creation of such schemas by first generating generic passages from a set of simple facts, and then inducing schemas from the generated passages.
Artificial Human Intelligence: The role of Humans in the Development of Next Generation AI
Human intelligence, the most evident and accessible form of source of reasoning, hosted by biological hardware, has evolved and been refined over thousands of years, positioning itself today to create new artificial forms and preparing to self--design their evolutionary path forward. Beginning with the advent of foundation models, the rate at which human and artificial intelligence interact with each other has surpassed any anticipated quantitative figures. The close engagement led to both bits of intelligence to be impacted in various ways, which naturally resulted in complex confluences that warrant close scrutiny. In the sequel, we shall explore the interplay between human and machine intelligence, focusing on the crucial role humans play in developing ethical, responsible, and robust intelligent systems. We slightly delve into interesting aspects of implementation inspired by the mechanisms underlying neuroscience and human cognition. Additionally, we propose future perspectives, capitalizing on the advantages of symbiotic designs to suggest a human-centered direction for next-generation AI development. We finalize this evolving document with a few thoughts and open questions yet to be addressed by the broader community.
Improving Question Generation with Multi-level Content Planning
This paper addresses the problem of generating questions from a given context and an answer, specifically focusing on questions that require multi-hop reasoning across an extended context. Previous studies have suggested that key phrase selection is essential for question generation (QG), yet it is still challenging to connect such disjointed phrases into meaningful questions, particularly for long context. To mitigate this issue, we propose MultiFactor, a novel QG framework based on multi-level content planning. Specifically, MultiFactor includes two components: FA-model, which simultaneously selects key phrases and generates full answers, and Q-model which takes the generated full answer as an additional input to generate questions. Here, full answer generation is introduced to connect the short answer with the selected key phrases, thus forming an answer-aware summary to facilitate QG. Both FA-model and Q-model are formalized as simple-yet-effective Phrase-Enhanced Transformers, our joint model for phrase selection and text generation. Experimental results show that our method outperforms strong baselines on two popular QG datasets. Our code is available at https://github.com/zeaver/MultiFactor.
Language Models Show Stable Value Orientations Across Diverse Role-Plays
We demonstrate that large language models (LLMs) exhibit consistent value orientations despite adopting diverse personas, revealing a persistent inertia in their responses that remains stable across the variety of roles they are prompted to assume. To systematically explore this phenomenon, we introduce the role-play-at-scale methodology, which involves prompting LLMs with randomized, diverse personas and analyzing the macroscopic trend of their responses. Unlike previous works that simply feed these questions to LLMs as if testing human subjects, our role-play-at-scale methodology diagnoses inherent tendencies in a systematic and scalable manner by: (1) prompting the model to act in different random personas and (2) asking the same question multiple times for each random persona. This approach reveals consistent patterns in LLM responses across diverse role-play scenarios, indicating deeply encoded inherent tendencies. Our findings contribute to the discourse on value alignment in foundation models and demonstrate the efficacy of role-play-at-scale as a diagnostic tool for uncovering encoded biases in LLMs.
MixQG: Neural Question Generation with Mixed Answer Types
Asking good questions is an essential ability for both human and machine intelligence. However, existing neural question generation approaches mainly focus on the short factoid type of answers. In this paper, we propose a neural question generator, MixQG, to bridge this gap. We combine 9 question answering datasets with diverse answer types, including yes/no, multiple-choice, extractive, and abstractive answers, to train a single generative model. We show with empirical results that our model outperforms existing work in both seen and unseen domains and can generate questions with different cognitive levels when conditioned on different answer types. Our code is released and well-integrated with the Huggingface library to facilitate various downstream applications.
TARGA: Targeted Synthetic Data Generation for Practical Reasoning over Structured Data
Semantic parsing, which converts natural language questions into logic forms, plays a crucial role in reasoning within structured environments. However, existing methods encounter two significant challenges: reliance on extensive manually annotated datasets and limited generalization capability to unseen examples. To tackle these issues, we propose Targeted Synthetic Data Generation (TARGA), a practical framework that dynamically generates high-relevance synthetic data without manual annotation. Starting from the pertinent entities and relations of a given question, we probe for the potential relevant queries through layer-wise expansion and cross-layer combination. Then we generate corresponding natural language questions for these constructed queries to jointly serve as the synthetic demonstrations for in-context learning. Experiments on multiple knowledge base question answering (KBQA) datasets demonstrate that TARGA, using only a 7B-parameter model, substantially outperforms existing non-fine-tuned methods that utilize close-sourced model, achieving notable improvements in F1 scores on GrailQA(+7.7) and KBQA-Agent(+12.2). Furthermore, TARGA also exhibits superior sample efficiency, robustness, and generalization capabilities under non-I.I.D. settings.
Prompting Large Language Models with Chain-of-Thought for Few-Shot Knowledge Base Question Generation
The task of Question Generation over Knowledge Bases (KBQG) aims to convert a logical form into a natural language question. For the sake of expensive cost of large-scale question annotation, the methods of KBQG under low-resource scenarios urgently need to be developed. However, current methods heavily rely on annotated data for fine-tuning, which is not well-suited for few-shot question generation. The emergence of Large Language Models (LLMs) has shown their impressive generalization ability in few-shot tasks. Inspired by Chain-of-Thought (CoT) prompting, which is an in-context learning strategy for reasoning, we formulate KBQG task as a reasoning problem, where the generation of a complete question is splitted into a series of sub-question generation. Our proposed prompting method KQG-CoT first retrieves supportive logical forms from the unlabeled data pool taking account of the characteristics of the logical form. Then, we write a prompt to explicit the reasoning chain of generating complicated questions based on the selected demonstrations. To further ensure prompt quality, we extend KQG-CoT into KQG-CoT+ via sorting the logical forms by their complexity. We conduct extensive experiments over three public KBQG datasets. The results demonstrate that our prompting method consistently outperforms other prompting baselines on the evaluated datasets. Remarkably, our KQG-CoT+ method could surpass existing few-shot SoTA results of the PathQuestions dataset by 18.25, 10.72, and 10.18 absolute points on BLEU-4, METEOR, and ROUGE-L, respectively.
Automatic Generation of Socratic Subquestions for Teaching Math Word Problems
Socratic questioning is an educational method that allows students to discover answers to complex problems by asking them a series of thoughtful questions. Generation of didactically sound questions is challenging, requiring understanding of the reasoning process involved in the problem. We hypothesize that such questioning strategy can not only enhance the human performance, but also assist the math word problem (MWP) solvers. In this work, we explore the ability of large language models (LMs) in generating sequential questions for guiding math word problem-solving. We propose various guided question generation schemes based on input conditioning and reinforcement learning. On both automatic and human quality evaluations, we find that LMs constrained with desirable question properties generate superior questions and improve the overall performance of a math word problem solver. We conduct a preliminary user study to examine the potential value of such question generation models in the education domain. Results suggest that the difficulty level of problems plays an important role in determining whether questioning improves or hinders human performance. We discuss the future of using such questioning strategies in education.
Automated Utterance Generation
Conversational AI assistants are becoming popular and question-answering is an important part of any conversational assistant. Using relevant utterances as features in question-answering has shown to improve both the precision and recall for retrieving the right answer by a conversational assistant. Hence, utterance generation has become an important problem with the goal of generating relevant utterances (sentences or phrases) from a knowledge base article that consists of a title and a description. However, generating good utterances usually requires a lot of manual effort, creating the need for an automated utterance generation. In this paper, we propose an utterance generation system which 1) uses extractive summarization to extract important sentences from the description, 2) uses multiple paraphrasing techniques to generate a diverse set of paraphrases of the title and summary sentences, and 3) selects good candidate paraphrases with the help of a novel candidate selection algorithm.
Varifocal Question Generation for Fact-checking
Fact-checking requires retrieving evidence related to a claim under investigation. The task can be formulated as question generation based on a claim, followed by question answering. However, recent question generation approaches assume that the answer is known and typically contained in a passage given as input, whereas such passages are what is being sought when verifying a claim. In this paper, we present {\it Varifocal}, a method that generates questions based on different focal points within a given claim, i.e.\ different spans of the claim and its metadata, such as its source and date. Our method outperforms previous work on a fact-checking question generation dataset on a wide range of automatic evaluation metrics. These results are corroborated by our manual evaluation, which indicates that our method generates more relevant and informative questions. We further demonstrate the potential of focal points in generating sets of clarification questions for product descriptions.
DisGeM: Distractor Generation for Multiple Choice Questions with Span Masking
Recent advancements in Natural Language Processing (NLP) have impacted numerous sub-fields such as natural language generation, natural language inference, question answering, and more. However, in the field of question generation, the creation of distractors for multiple-choice questions (MCQ) remains a challenging task. In this work, we present a simple, generic framework for distractor generation using readily available Pre-trained Language Models (PLMs). Unlike previous methods, our framework relies solely on pre-trained language models and does not require additional training on specific datasets. Building upon previous research, we introduce a two-stage framework consisting of candidate generation and candidate selection. Our proposed distractor generation framework outperforms previous methods without the need for training or fine-tuning. Human evaluations confirm that our approach produces more effective and engaging distractors. The related codebase is publicly available at https://github.com/obss/disgem.
Crowdsourcing Multiple Choice Science Questions
We present a novel method for obtaining high-quality, domain-targeted multiple choice questions from crowd workers. Generating these questions can be difficult without trading away originality, relevance or diversity in the answer options. Our method addresses these problems by leveraging a large corpus of domain-specific text and a small set of existing questions. It produces model suggestions for document selection and answer distractor choice which aid the human question generation process. With this method we have assembled SciQ, a dataset of 13.7K multiple choice science exam questions (Dataset available at http://allenai.org/data.html). We demonstrate that the method produces in-domain questions by providing an analysis of this new dataset and by showing that humans cannot distinguish the crowdsourced questions from original questions. When using SciQ as additional training data to existing questions, we observe accuracy improvements on real science exams.
Open-Vocabulary Argument Role Prediction for Event Extraction
The argument role in event extraction refers to the relation between an event and an argument participating in it. Despite the great progress in event extraction, existing studies still depend on roles pre-defined by domain experts. These studies expose obvious weakness when extending to emerging event types or new domains without available roles. Therefore, more attention and effort needs to be devoted to automatically customizing argument roles. In this paper, we define this essential but under-explored task: open-vocabulary argument role prediction. The goal of this task is to infer a set of argument roles for a given event type. We propose a novel unsupervised framework, RolePred for this task. Specifically, we formulate the role prediction problem as an in-filling task and construct prompts for a pre-trained language model to generate candidate roles. By extracting and analyzing the candidate arguments, the event-specific roles are further merged and selected. To standardize the research of this task, we collect a new event extraction dataset from WikiPpedia including 142 customized argument roles with rich semantics. On this dataset, RolePred outperforms the existing methods by a large margin. Source code and dataset are available on our GitHub repository: https://github.com/yzjiao/RolePred
KGConv, a Conversational Corpus grounded in Wikidata
We present KGConv, a large, conversational corpus of 71k conversations where each question-answer pair is grounded in a Wikidata fact. Conversations contain on average 8.6 questions and for each Wikidata fact, we provide multiple variants (12 on average) of the corresponding question using templates, human annotations, hand-crafted rules and a question rewriting neural model. We provide baselines for the task of Knowledge-Based, Conversational Question Generation. KGConv can further be used for other generation and analysis tasks such as single-turn question generation from Wikidata triples, question rewriting, question answering from conversation or from knowledge graphs and quiz generation.
TeleQnA: A Benchmark Dataset to Assess Large Language Models Telecommunications Knowledge
We introduce TeleQnA, the first benchmark dataset designed to evaluate the knowledge of Large Language Models (LLMs) in telecommunications. Comprising 10,000 questions and answers, this dataset draws from diverse sources, including standards and research articles. This paper outlines the automated question generation framework responsible for creating this dataset, along with how human input was integrated at various stages to ensure the quality of the questions. Afterwards, using the provided dataset, an evaluation is conducted to assess the capabilities of LLMs, including GPT-3.5 and GPT-4. The results highlight that these models struggle with complex standards related questions but exhibit proficiency in addressing general telecom-related inquiries. Additionally, our results showcase how incorporating telecom knowledge context significantly enhances their performance, thus shedding light on the need for a specialized telecom foundation model. Finally, the dataset is shared with active telecom professionals, whose performance is subsequently benchmarked against that of the LLMs. The findings illustrate that LLMs can rival the performance of active professionals in telecom knowledge, thanks to their capacity to process vast amounts of information, underscoring the potential of LLMs within this domain. The dataset has been made publicly accessible on GitHub.
Generative Language Models for Paragraph-Level Question Generation
Powerful generative models have led to recent progress in question generation (QG). However, it is difficult to measure advances in QG research since there are no standardized resources that allow a uniform comparison among approaches. In this paper, we introduce QG-Bench, a multilingual and multidomain benchmark for QG that unifies existing question answering datasets by converting them to a standard QG setting. It includes general-purpose datasets such as SQuAD for English, datasets from ten domains and two styles, as well as datasets in eight different languages. Using QG-Bench as a reference, we perform an extensive analysis of the capabilities of language models for the task. First, we propose robust QG baselines based on fine-tuning generative language models. Then, we complement automatic evaluation based on standard metrics with an extensive manual evaluation, which in turn sheds light on the difficulty of evaluating QG models. Finally, we analyse both the domain adaptability of these models as well as the effectiveness of multilingual models in languages other than English. QG-Bench is released along with the fine-tuned models presented in the paper https://github.com/asahi417/lm-question-generation, which are also available as a demo https://autoqg.net/.
Saying No is An Art: Contextualized Fallback Responses for Unanswerable Dialogue Queries
Despite end-to-end neural systems making significant progress in the last decade for task-oriented as well as chit-chat based dialogue systems, most dialogue systems rely on hybrid approaches which use a combination of rule-based, retrieval and generative approaches for generating a set of ranked responses. Such dialogue systems need to rely on a fallback mechanism to respond to out-of-domain or novel user queries which are not answerable within the scope of the dialog system. While, dialog systems today rely on static and unnatural responses like "I don't know the answer to that question" or "I'm not sure about that", we design a neural approach which generates responses which are contextually aware with the user query as well as say no to the user. Such customized responses provide paraphrasing ability and contextualization as well as improve the interaction with the user and reduce dialogue monotonicity. Our simple approach makes use of rules over dependency parses and a text-to-text transformer fine-tuned on synthetic data of question-response pairs generating highly relevant, grammatical as well as diverse questions. We perform automatic and manual evaluations to demonstrate the efficacy of the system.
Synthetic QA Corpora Generation with Roundtrip Consistency
We introduce a novel method of generating synthetic question answering corpora by combining models of question generation and answer extraction, and by filtering the results to ensure roundtrip consistency. By pretraining on the resulting corpora we obtain significant improvements on SQuAD2 and NQ, establishing a new state-of-the-art on the latter. Our synthetic data generation models, for both question generation and answer extraction, can be fully reproduced by finetuning a publicly available BERT model on the extractive subsets of SQuAD2 and NQ. We also describe a more powerful variant that does full sequence-to-sequence pretraining for question generation, obtaining exact match and F1 at less than 0.1% and 0.4% from human performance on SQuAD2.
EduQG: A Multi-format Multiple Choice Dataset for the Educational Domain
We introduce a high-quality dataset that contains 3,397 samples comprising (i) multiple choice questions, (ii) answers (including distractors), and (iii) their source documents, from the educational domain. Each question is phrased in two forms, normal and close. Correct answers are linked to source documents with sentence-level annotations. Thus, our versatile dataset can be used for both question and distractor generation, as well as to explore new challenges such as question format conversion. Furthermore, 903 questions are accompanied by their cognitive complexity level as per Bloom's taxonomy. All questions have been generated by educational experts rather than crowd workers to ensure they are maintaining educational and learning standards. Our analysis and experiments suggest distinguishable differences between our dataset and commonly used ones for question generation for educational purposes. We believe this new dataset can serve as a valuable resource for research and evaluation in the educational domain. The dataset and baselines will be released to support further research in question generation.
PAXQA: Generating Cross-lingual Question Answering Examples at Training Scale
Existing question answering (QA) systems owe much of their success to large, high-quality training data. Such annotation efforts are costly, and the difficulty compounds in the cross-lingual setting. Therefore, prior cross-lingual QA work has focused on releasing evaluation datasets, and then applying zero-shot methods as baselines. This work proposes a synthetic data generation method for cross-lingual QA which leverages indirect supervision from existing parallel corpora. Our method termed PAXQA (Projecting annotations for cross-lingual (x) QA) decomposes cross-lingual QA into two stages. First, we apply a question generation (QG) model to the English side. Second, we apply annotation projection to translate both the questions and answers. To better translate questions, we propose a novel use of lexically-constrained machine translation, in which constrained entities are extracted from the parallel bitexts. We apply PAXQA to generate cross-lingual QA examples in 4 languages (662K examples total), and perform human evaluation on a subset to create validation and test splits. We then show that models fine-tuned on these datasets outperform prior synthetic data generation models over several extractive QA datasets. The largest performance gains are for directions with non-English questions and English contexts. Ablation studies show that our dataset generation method is relatively robust to noise from automatic word alignments, showing the sufficient quality of our generations. To facilitate follow-up work, we release our code and datasets at https://github.com/manestay/paxqa .
TSGP: Two-Stage Generative Prompting for Unsupervised Commonsense Question Answering
Unsupervised commonsense question answering requires mining effective commonsense knowledge without the rely on the labeled task data. Previous methods typically retrieved from traditional knowledge bases or used pre-trained language models (PrLMs) to generate fixed types of knowledge, which have poor generalization ability. In this paper, we aim to address the above limitation by leveraging the implicit knowledge stored in PrLMs and propose a two-stage prompt-based unsupervised commonsense question answering framework (TSGP). Specifically, we first use knowledge generation prompts to generate the knowledge required for questions with unlimited types and possible candidate answers independent of specified choices. Then, we further utilize answer generation prompts to generate possible candidate answers independent of specified choices. Experimental results and analysis on three different commonsense reasoning tasks, CommonsenseQA, OpenBookQA, and SocialIQA, demonstrate that TSGP significantly improves the reasoning ability of language models in unsupervised settings. Our code is available at: https://github.com/Yueqing-Sun/TSGP.
Personalized LLM for Generating Customized Responses to the Same Query from Different Users
Existing work on large language model (LLM) personalization assigned different responding roles to LLM, but overlooked the diversity of questioners. In this work, we propose a new form of questioner-aware LLM personalization, generating different responses even for the same query from different questioners. We design a dual-tower model architecture with a cross-questioner general encoder and a questioner-specific encoder. We further apply contrastive learning with multi-view augmentation, pulling close the dialogue representations of the same questioner, while pulling apart those of different questioners. To mitigate the impact of question diversity on questioner-contrastive learning, we cluster the dialogues based on question similarity and restrict the scope of contrastive learning within each cluster. We also build a multi-questioner dataset from English and Chinese scripts and WeChat records, called MQDialog, containing 173 questioners and 12 responders. Extensive evaluation with different metrics shows a significant improvement in the quality of personalized response generation.
ProtoQA: A Question Answering Dataset for Prototypical Common-Sense Reasoning
Given questions regarding some prototypical situation such as Name something that people usually do before they leave the house for work? a human can easily answer them via acquired experiences. There can be multiple right answers for such questions, with some more common for a situation than others. This paper introduces a new question answering dataset for training and evaluating common sense reasoning capabilities of artificial intelligence systems in such prototypical situations. The training set is gathered from an existing set of questions played in a long-running international game show FAMILY- FEUD. The hidden evaluation set is created by gathering answers for each question from 100 crowd-workers. We also propose a generative evaluation task where a model has to output a ranked list of answers, ideally covering all prototypical answers for a question. After presenting multiple competitive baseline models, we find that human performance still exceeds model scores on all evaluation metrics with a meaningful gap, supporting the challenging nature of the task.
Generator-Retriever-Generator Approach for Open-Domain Question Answering
Open-domain question answering (QA) tasks usually require the retrieval of relevant information from a large corpus to generate accurate answers. We propose a novel approach called Generator-Retriever-Generator (GRG) that combines document retrieval techniques with a large language model (LLM), by first prompting the model to generate contextual documents based on a given question. In parallel, a dual-encoder network retrieves documents that are relevant to the question from an external corpus. The generated and retrieved documents are then passed to the second LLM, which generates the final answer. By combining document retrieval and LLM generation, our approach addresses the challenges of open-domain QA, such as generating informative and contextually relevant answers. GRG outperforms the state-of-the-art generate-then-read and retrieve-then-read pipelines (GENREAD and RFiD) improving their performance by at least by +5.2, +4.2, and +1.6 on TriviaQA, NQ, and WebQ datasets, respectively. We provide code, datasets, and checkpoints at https://github.com/abdoelsayed2016/GRG.
Exploring the Integration Strategies of Retriever and Large Language Models
The integration of retrieved passages and large language models (LLMs), such as ChatGPTs, has significantly contributed to improving open-domain question answering. However, there is still a lack of exploration regarding the optimal approach for incorporating retrieved passages into the answer generation process. This paper aims to fill this gap by investigating different methods of combining retrieved passages with LLMs to enhance answer generation. We begin by examining the limitations of a commonly-used concatenation approach. Surprisingly, this approach often results in generating "unknown" outputs, even when the correct document is among the top-k retrieved passages. To address this issue, we explore four alternative strategies for integrating the retrieved passages with the LLMs. These strategies include two single-round methods that utilize chain-of-thought reasoning and two multi-round strategies that incorporate feedback loops. Through comprehensive analyses and experiments, we provide insightful observations on how to effectively leverage retrieved passages to enhance the answer generation capability of LLMs.
Multi-Domain Dialogue Acts and Response Co-Generation
Generating fluent and informative responses is of critical importance for task-oriented dialogue systems. Existing pipeline approaches generally predict multiple dialogue acts first and use them to assist response generation. There are at least two shortcomings with such approaches. First, the inherent structures of multi-domain dialogue acts are neglected. Second, the semantic associations between acts and responses are not taken into account for response generation. To address these issues, we propose a neural co-generation model that generates dialogue acts and responses concurrently. Unlike those pipeline approaches, our act generation module preserves the semantic structures of multi-domain dialogue acts and our response generation module dynamically attends to different acts as needed. We train the two modules jointly using an uncertainty loss to adjust their task weights adaptively. Extensive experiments are conducted on the large-scale MultiWOZ dataset and the results show that our model achieves very favorable improvement over several state-of-the-art models in both automatic and human evaluations.
Retrieve-Plan-Generation: An Iterative Planning and Answering Framework for Knowledge-Intensive LLM Generation
Despite the significant progress of large language models (LLMs) in various tasks, they often produce factual errors due to their limited internal knowledge. Retrieval-Augmented Generation (RAG), which enhances LLMs with external knowledge sources, offers a promising solution. However, these methods can be misled by irrelevant paragraphs in retrieved documents. Due to the inherent uncertainty in LLM generation, inputting the entire document may introduce off-topic information, causing the model to deviate from the central topic and affecting the relevance of the generated content. To address these issues, we propose the Retrieve-Plan-Generation (RPG) framework. RPG generates plan tokens to guide subsequent generation in the plan stage. In the answer stage, the model selects relevant fine-grained paragraphs based on the plan and uses them for further answer generation. This plan-answer process is repeated iteratively until completion, enhancing generation relevance by focusing on specific topics. To implement this framework efficiently, we utilize a simple but effective multi-task prompt-tuning method, enabling the existing LLMs to handle both planning and answering. We comprehensively compare RPG with baselines across 5 knowledge-intensive generation tasks, demonstrating the effectiveness of our approach.
Call for Customized Conversation: Customized Conversation Grounding Persona and Knowledge
Humans usually have conversations by making use of prior knowledge about a topic and background information of the people whom they are talking to. However, existing conversational agents and datasets do not consider such comprehensive information, and thus they have a limitation in generating the utterances where the knowledge and persona are fused properly. To address this issue, we introduce a call For Customized conversation (FoCus) dataset where the customized answers are built with the user's persona and Wikipedia knowledge. To evaluate the abilities to make informative and customized utterances of pre-trained language models, we utilize BART and GPT-2 as well as transformer-based models. We assess their generation abilities with automatic scores and conduct human evaluations for qualitative results. We examine whether the model reflects adequate persona and knowledge with our proposed two sub-tasks, persona grounding (PG) and knowledge grounding (KG). Moreover, we show that the utterances of our data are constructed with the proper knowledge and persona through grounding quality assessment.
Investigating Answerability of LLMs for Long-Form Question Answering
As we embark on a new era of LLMs, it becomes increasingly crucial to understand their capabilities, limitations, and differences. Toward making further progress in this direction, we strive to build a deeper understanding of the gaps between massive LLMs (e.g., ChatGPT) and smaller yet effective open-source LLMs and their distilled counterparts. To this end, we specifically focus on long-form question answering (LFQA) because it has several practical and impactful applications (e.g., troubleshooting, customer service, etc.) yet is still understudied and challenging for LLMs. We propose a question-generation method from abstractive summaries and show that generating follow-up questions from summaries of long documents can create a challenging setting for LLMs to reason and infer from long contexts. Our experimental results confirm that: (1) our proposed method of generating questions from abstractive summaries pose a challenging setup for LLMs and shows performance gaps between LLMs like ChatGPT and open-source LLMs (Alpaca, Llama) (2) open-source LLMs exhibit decreased reliance on context for generated questions from the original document, but their generation capabilities drop significantly on generated questions from summaries -- especially for longer contexts (>1024 tokens)
RoleMRC: A Fine-Grained Composite Benchmark for Role-Playing and Instruction-Following
Role-playing is important for Large Language Models (LLMs) to follow diverse instructions while maintaining role identity and the role's pre-defined ability limits. Existing role-playing datasets mostly contribute to controlling role style and knowledge boundaries, but overlook role-playing in instruction-following scenarios. We introduce a fine-grained role-playing and instruction-following composite benchmark, named RoleMRC, including: (1) Multi-turn dialogues between ideal roles and humans, including free chats or discussions upon given passages; (2) Role-playing machine reading comprehension, involving response, refusal, and attempts according to passage answerability and role ability; (3) More complex scenarios with nested, multi-turn and prioritized instructions. The final RoleMRC features a 10.2k role profile meta-pool, 37.9k well-synthesized role-playing instructions, and 1.4k testing samples. We develop a pipeline to quantitatively evaluate the fine-grained role-playing and instruction-following capabilities of several mainstream LLMs, as well as models that are fine-tuned on our data. Moreover, cross-evaluation on external role-playing datasets confirms that models fine-tuned on RoleMRC enhances instruction-following without compromising general role-playing and reasoning capabilities. We also probe the neural-level activation maps of different capabilities over post-tuned LLMs. Access to our RoleMRC, RoleMRC-mix and Codes: https://github.com/LuJunru/RoleMRC.
Learning to Answer Visual Questions from Web Videos
Recent methods for visual question answering rely on large-scale annotated datasets. Manual annotation of questions and answers for videos, however, is tedious, expensive and prevents scalability. In this work, we propose to avoid manual annotation and generate a large-scale training dataset for video question answering making use of automatic cross-modal supervision. We leverage a question generation transformer trained on text data and use it to generate question-answer pairs from transcribed video narrations. Given narrated videos, we then automatically generate the HowToVQA69M dataset with 69M video-question-answer triplets. To handle the open vocabulary of diverse answers in this dataset, we propose a training procedure based on a contrastive loss between a video-question multi-modal transformer and an answer transformer. We introduce the zero-shot VideoQA task and the VideoQA feature probe evaluation setting and show excellent results, in particular for rare answers. Furthermore, our method achieves competitive results on MSRVTT-QA, ActivityNet-QA, MSVD-QA and How2QA datasets. We also show that our VideoQA dataset generation approach generalizes to another source of web video and text data. We use our method to generate the WebVidVQA3M dataset from the WebVid dataset, i.e., videos with alt-text annotations, and show its benefits for training VideoQA models. Finally, for a detailed evaluation we introduce iVQA, a new VideoQA dataset with reduced language bias and high-quality manual annotations. Code, datasets and trained models are available at https://antoyang.github.io/just-ask.html
CoQAR: Question Rewriting on CoQA
Questions asked by humans during a conversation often contain contextual dependencies, i.e., explicit or implicit references to previous dialogue turns. These dependencies take the form of coreferences (e.g., via pronoun use) or ellipses, and can make the understanding difficult for automated systems. One way to facilitate the understanding and subsequent treatments of a question is to rewrite it into an out-of-context form, i.e., a form that can be understood without the conversational context. We propose CoQAR, a corpus containing 4.5K conversations from the Conversational Question-Answering dataset CoQA, for a total of 53K follow-up question-answer pairs. Each original question was manually annotated with at least 2 at most 3 out-of-context rewritings. CoQAR can be used in the supervised learning of three tasks: question paraphrasing, question rewriting and conversational question answering. In order to assess the quality of CoQAR's rewritings, we conduct several experiments consisting in training and evaluating models for these three tasks. Our results support the idea that question rewriting can be used as a preprocessing step for question answering models, thereby increasing their performances.
Can LLMs Design Good Questions Based on Context?
This paper evaluates questions generated by LLMs from context, comparing them to human-generated questions across six dimensions. We introduce an automated LLM-based evaluation method, focusing on aspects like question length, type, context coverage, and answerability. Our findings highlight unique characteristics of LLM-generated questions, contributing insights that can support further research in question quality and downstream applications.
How Do We Answer Complex Questions: Discourse Structure of Long-form Answers
Long-form answers, consisting of multiple sentences, can provide nuanced and comprehensive answers to a broader set of questions. To better understand this complex and understudied task, we study the functional structure of long-form answers collected from three datasets, ELI5, WebGPT and Natural Questions. Our main goal is to understand how humans organize information to craft complex answers. We develop an ontology of six sentence-level functional roles for long-form answers, and annotate 3.9k sentences in 640 answer paragraphs. Different answer collection methods manifest in different discourse structures. We further analyze model-generated answers -- finding that annotators agree less with each other when annotating model-generated answers compared to annotating human-written answers. Our annotated data enables training a strong classifier that can be used for automatic analysis. We hope our work can inspire future research on discourse-level modeling and evaluation of long-form QA systems.
GenSco: Can Question Decomposition based Passage Alignment improve Question Answering?
Retrieval augmented generation (RAG) with large language models (LLMs) for Question Answering (QA) entails furnishing relevant context within the prompt to facilitate the LLM in answer generation. During the generation, inaccuracies or hallucinations frequently occur due to two primary factors: inadequate or distracting context in the prompts, and the inability of LLMs to effectively reason through the facts. In this paper, we investigate whether providing aligned context via a carefully selected passage sequence leads to better answer generation by the LLM for multi-hop QA. We introduce, "GenSco", a novel approach of selecting passages based on the predicted decomposition of the multi-hop questions}. The framework consists of two distinct LLMs: (i) Generator LLM, which is used for question decomposition and final answer generation; (ii) an auxiliary open-sourced LLM, used as the scorer, to semantically guide the Generator for passage selection. The generator is invoked only once for the answer generation, resulting in a cost-effective and efficient approach. We evaluate on three broadly established multi-hop question answering datasets: 2WikiMultiHop, Adversarial HotPotQA and MuSiQue and achieve an absolute gain of 15.1 and 5.9 points in Exact Match score with respect to the best performing baselines over MuSiQue and 2WikiMultiHop respectively.
Policy-Driven Neural Response Generation for Knowledge-Grounded Dialogue Systems
Open-domain dialogue systems aim to generate relevant, informative and engaging responses. Seq2seq neural response generation approaches do not have explicit mechanisms to control the content or style of the generated response, and frequently result in uninformative utterances. In this paper, we propose using a dialogue policy to plan the content and style of target responses in the form of an action plan, which includes knowledge sentences related to the dialogue context, targeted dialogue acts, topic information, etc. The attributes within the action plan are obtained by automatically annotating the publicly released Topical-Chat dataset. We condition neural response generators on the action plan which is then realized as target utterances at the turn and sentence levels. We also investigate different dialogue policy models to predict an action plan given the dialogue context. Through automated and human evaluation, we measure the appropriateness of the generated responses and check if the generation models indeed learn to realize the given action plans. We demonstrate that a basic dialogue policy that operates at the sentence level generates better responses in comparison to turn level generation as well as baseline models with no action plan. Additionally the basic dialogue policy has the added effect of controllability.
Evaluating, Synthesizing, and Enhancing for Customer Support Conversation
Effective customer support requires not only accurate problem solving but also structured and empathetic communication aligned with professional standards. However, existing dialogue datasets often lack strategic guidance, and real-world service data is difficult to access and annotate. To address this, we introduce the task of Customer Support Conversation (CSC), aimed at training customer service agents to respond using well-defined support strategies. We propose a structured CSC framework grounded in COPC guidelines, defining five conversational stages and twelve strategies to guide high-quality interactions. Based on this, we construct CSConv, an evaluation dataset of 1,855 real-world customer-agent conversations rewritten using LLMs to reflect deliberate strategy use, and annotated accordingly. Additionally, we develop a role-playing approach that simulates strategy-rich conversations using LLM-powered roles aligned with the CSC framework, resulting in the training dataset RoleCS. Experiments show that fine-tuning strong LLMs on RoleCS significantly improves their ability to generate high-quality, strategy-aligned responses on CSConv. Human evaluations further confirm gains in problem resolution. All code and data will be made publicly available at https://github.com/aliyun/qwen-dianjin.
Synthetic Data Generation with Large Language Models for Personalized Community Question Answering
Personalization in Information Retrieval (IR) is a topic studied by the research community since a long time. However, there is still a lack of datasets to conduct large-scale evaluations of personalized IR; this is mainly due to the fact that collecting and curating high-quality user-related information requires significant costs and time investment. Furthermore, the creation of datasets for Personalized IR (PIR) tasks is affected by both privacy concerns and the need for accurate user-related data, which are often not publicly available. Recently, researchers have started to explore the use of Large Language Models (LLMs) to generate synthetic datasets, which is a possible solution to generate data for low-resource tasks. In this paper, we investigate the potential of Large Language Models (LLMs) for generating synthetic documents to train an IR system for a Personalized Community Question Answering task. To study the effectiveness of IR models fine-tuned on LLM-generated data, we introduce a new dataset, named Sy-SE-PQA. We build Sy-SE-PQA based on an existing dataset, SE-PQA, which consists of questions and answers posted on the popular StackExchange communities. Starting from questions in SE-PQA, we generate synthetic answers using different prompt techniques and LLMs. Our findings suggest that LLMs have high potential in generating data tailored to users' needs. The synthetic data can replace human-written training data, even if the generated data may contain incorrect information.
Improving Knowledge-aware Dialogue Generation via Knowledge Base Question Answering
Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at https://github.com/siat-nlp/TransDG.
Talk Less, Call Right: Enhancing Role-Play LLM Agents with Automatic Prompt Optimization and Role Prompting
This report investigates approaches for prompting a tool-augmented large language model (LLM) to act as a role-playing dialogue agent in the API track of the Commonsense Persona-grounded Dialogue Challenge (CPDC) 2025. In this setting, dialogue agents often produce overly long in-character responses (over-speaking) while failing to use tools effectively according to the persona (under-acting), such as generating function calls that do not exist or making unnecessary tool calls before answering. We explore four prompting approaches to address these issues: 1) basic role prompting, 2) human-crafted role prompting, 3) automatic prompt optimization (APO), and 4) rule-based role prompting. The rule-based role prompting (RRP) approach achieved the best performance through two novel techniques--character-card/scene-contract design and strict enforcement of function calling--which led to an overall score of 0.571, improving on the zero-shot baseline score of 0.519. These findings demonstrate that RRP design can substantially improve the effectiveness and reliability of role-playing dialogue agents compared with more elaborate methods such as APO. To support future efforts in developing persona prompts, we are open-sourcing all of our best-performing prompts and the APO tool. Source code is available at https://github.com/scb-10x/apo.
RoleEval: A Bilingual Role Evaluation Benchmark for Large Language Models
The rapid evolution of large language models (LLMs) necessitates effective benchmarks for evaluating their role knowledge, which is essential for establishing connections with the real world and providing more immersive interactions. This paper introduces RoleEval, a bilingual benchmark designed to assess the memorization, utilization, and reasoning capabilities of role knowledge. RoleEval comprises RoleEval-Global (including internationally recognized characters) and RoleEval-Chinese (including characters popular in China), with 6,000 Chinese-English parallel multiple-choice questions focusing on 300 influential people and fictional characters drawn from a variety of domains including celebrities, anime, comics, movies, TV series, games, and fiction. These questions cover basic knowledge and multi-hop reasoning abilities, aiming to systematically probe various aspects such as personal information, relationships, abilities, and experiences of the characters. To maintain high standards, we perform a hybrid quality check process combining automatic and human verification, ensuring that the questions are diverse, challenging, and discriminative. Our extensive evaluations of RoleEval across various open-source and proprietary large language models, under both the zero- and few-shot settings, reveal insightful findings. Notably, while GPT-4 outperforms other models on RoleEval-Global, Chinese LLMs excel on RoleEval-Chinese, highlighting significant knowledge distribution differences. We expect that RoleEval will highlight the significance of assessing role knowledge for foundation models across various languages and cultural settings.
Retrieval-Generation Alignment for End-to-End Task-Oriented Dialogue System
Developing an efficient retriever to retrieve knowledge from a large-scale knowledge base (KB) is critical for task-oriented dialogue systems to effectively handle localized and specialized tasks. However, widely used generative models such as T5 and ChatGPT often struggle to differentiate subtle differences among the retrieved KB records when generating responses, resulting in suboptimal quality of generated responses. In this paper, we propose the application of maximal marginal likelihood to train a perceptive retriever by utilizing signals from response generation for supervision. In addition, our approach goes beyond considering solely retrieved entities and incorporates various meta knowledge to guide the generator, thus improving the utilization of knowledge. We evaluate our approach on three task-oriented dialogue datasets using T5 and ChatGPT as the backbone models. The results demonstrate that when combined with meta knowledge, the response generator can effectively leverage high-quality knowledge records from the retriever and enhance the quality of generated responses. The codes and models of this paper are available at https://github.com/shenwzh3/MK-TOD.
RAG-RL: Advancing Retrieval-Augmented Generation via RL and Curriculum Learning
Recent research highlights the challenges retrieval models face in retrieving useful contexts and the limitations of generation models in effectively utilizing those contexts in retrieval-augmented generation (RAG) settings. To address these challenges, we introduce RAG-RL, the first reasoning language model (RLM) specifically trained for RAG. RAG-RL demonstrates that stronger answer generation models can identify relevant contexts within larger sets of retrieved information -- thereby alleviating the burden on retrievers -- while also being able to utilize those contexts more effectively. Moreover, we show that curriculum design in the reinforcement learning (RL) post-training process is a powerful approach to enhancing model performance. We benchmark our method on two open-domain question-answering datasets and achieve state-of-the-art results, surpassing previous SOTA generative reader models. In addition, we offers empirical insights into various curriculum learning strategies, providing a deeper understanding of their impact on model performance.
Likelihood as a Performance Gauge for Retrieval-Augmented Generation
Recent work finds that retrieval-augmented generation with large language models is prone to be influenced by the order of retrieved documents in the context. However, the lack of in-depth analysis limits the use of this phenomenon for prompt engineering in practice. In this study, we posit that likelihoods serve as an effective gauge for language model performance. Through experiments on two question-answering datasets with a variety of state-of-the-art language models, we reveal correlations between answer accuracy and the likelihood of the question at both the corpus level and the instance level. In addition, we find that question likelihood can also indicate the position of the task-relevant information in the context. Based on these findings, we propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance. We demonstrate their effectiveness with experiments. In addition, our likelihood-based methods are efficient, as they only need to compute the likelihood of the input, requiring much fewer language model passes than heuristic prompt engineering methods that require generating responses. Our analysis deepens our understanding of how input prompts affect model performance and provides a promising direction for efficient prompt optimization.
Zero-shot Neural Passage Retrieval via Domain-targeted Synthetic Question Generation
A major obstacle to the wide-spread adoption of neural retrieval models is that they require large supervised training sets to surpass traditional term-based techniques, which are constructed from raw corpora. In this paper, we propose an approach to zero-shot learning for passage retrieval that uses synthetic question generation to close this gap. The question generation system is trained on general domain data, but is applied to documents in the targeted domain. This allows us to create arbitrarily large, yet noisy, question-passage relevance pairs that are domain specific. Furthermore, when this is coupled with a simple hybrid term-neural model, first-stage retrieval performance can be improved further. Empirically, we show that this is an effective strategy for building neural passage retrieval models in the absence of large training corpora. Depending on the domain, this technique can even approach the accuracy of supervised models.
ELOQ: Resources for Enhancing LLM Detection of Out-of-Scope Questions
Retrieval-augmented generation (RAG) has become integral to large language models (LLMs), particularly for conversational AI systems where user questions may reference knowledge beyond the LLMs' training cutoff. However, many natural user questions lack well-defined answers, either due to limited domain knowledge or because the retrieval system returns documents that are relevant in appearance but uninformative in content. In such cases, LLMs often produce hallucinated answers without flagging them. While recent work has largely focused on questions with false premises, we study out-of-scope questions, where the retrieved document appears semantically similar to the question but lacks the necessary information to answer it. In this paper, we propose a guided hallucination-based approach ELOQ to automatically generate a diverse set of out-of-scope questions from post-cutoff documents, followed by human verification to ensure quality. We use this dataset to evaluate several LLMs on their ability to detect out-of-scope questions and generate appropriate responses. Finally, we introduce an improved detection method that enhances the reliability of LLM-based question-answering systems in handling out-of-scope questions.
Target-Guided Dialogue Response Generation Using Commonsense and Data Augmentation
Target-guided response generation enables dialogue systems to smoothly transition a conversation from a dialogue context toward a target sentence. Such control is useful for designing dialogue systems that direct a conversation toward specific goals, such as creating non-obtrusive recommendations or introducing new topics in the conversation. In this paper, we introduce a new technique for target-guided response generation, which first finds a bridging path of commonsense knowledge concepts between the source and the target, and then uses the identified bridging path to generate transition responses. Additionally, we propose techniques to re-purpose existing dialogue datasets for target-guided generation. Experiments reveal that the proposed techniques outperform various baselines on this task. Finally, we observe that the existing automated metrics for this task correlate poorly with human judgement ratings. We propose a novel evaluation metric that we demonstrate is more reliable for target-guided response evaluation. Our work generally enables dialogue system designers to exercise more control over the conversations that their systems produce.
Let Me Know What to Ask: Interrogative-Word-Aware Question Generation
Question Generation (QG) is a Natural Language Processing (NLP) task that aids advances in Question Answering (QA) and conversational assistants. Existing models focus on generating a question based on a text and possibly the answer to the generated question. They need to determine the type of interrogative word to be generated while having to pay attention to the grammar and vocabulary of the question. In this work, we propose Interrogative-Word-Aware Question Generation (IWAQG), a pipelined system composed of two modules: an interrogative word classifier and a QG model. The first module predicts the interrogative word that is provided to the second module to create the question. Owing to an increased recall of deciding the interrogative words to be used for the generated questions, the proposed model achieves new state-of-the-art results on the task of QG in SQuAD, improving from 46.58 to 47.69 in BLEU-1, 17.55 to 18.53 in BLEU-4, 21.24 to 22.33 in METEOR, and from 44.53 to 46.94 in ROUGE-L.
Adapting Pre-trained Generative Models for Extractive Question Answering
Pre-trained Generative models such as BART, T5, etc. have gained prominence as a preferred method for text generation in various natural language processing tasks, including abstractive long-form question answering (QA) and summarization. However, the potential of generative models in extractive QA tasks, where discriminative models are commonly employed, remains largely unexplored. Discriminative models often encounter challenges associated with label sparsity, particularly when only a small portion of the context contains the answer. The challenge is more pronounced for multi-span answers. In this work, we introduce a novel approach that uses the power of pre-trained generative models to address extractive QA tasks by generating indexes corresponding to context tokens or sentences that form part of the answer. Through comprehensive evaluations on multiple extractive QA datasets, including MultiSpanQA, BioASQ, MASHQA, and WikiQA, we demonstrate the superior performance of our proposed approach compared to existing state-of-the-art models.
RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large Language Models
The advent of Large Language Models (LLMs) has paved the way for complex tasks such as role-playing, which enhances user interactions by enabling models to imitate various characters. However, the closed-source nature of state-of-the-art LLMs and their general-purpose training limit role-playing optimization. In this paper, we introduce RoleLLM, a framework to benchmark, elicit, and enhance role-playing abilities in LLMs. RoleLLM comprises four stages: (1) Role Profile Construction for 100 roles; (2) Context-Based Instruction Generation (Context-Instruct) for role-specific knowledge extraction; (3) Role Prompting using GPT (RoleGPT) for speaking style imitation; and (4) Role-Conditioned Instruction Tuning (RoCIT) for fine-tuning open-source models along with role customization. By Context-Instruct and RoleGPT, we create RoleBench, the first systematic and fine-grained character-level benchmark dataset for role-playing with 168,093 samples. Moreover, RoCIT on RoleBench yields RoleLLaMA (English) and RoleGLM (Chinese), significantly enhancing role-playing abilities and even achieving comparable results with RoleGPT (using GPT-4).
Efficient Deployment of Conversational Natural Language Interfaces over Databases
Many users communicate with chatbots and AI assistants in order to help them with various tasks. A key component of the assistant is the ability to understand and answer a user's natural language questions for question-answering (QA). Because data can be usually stored in a structured manner, an essential step involves turning a natural language question into its corresponding query language. However, in order to train most natural language-to-query-language state-of-the-art models, a large amount of training data is needed first. In most domains, this data is not available and collecting such datasets for various domains can be tedious and time-consuming. In this work, we propose a novel method for accelerating the training dataset collection for developing the natural language-to-query-language machine learning models. Our system allows one to generate conversational multi-term data, where multiple turns define a dialogue session, enabling one to better utilize chatbot interfaces. We train two current state-of-the-art NL-to-QL models, on both an SQL and SPARQL-based datasets in order to showcase the adaptability and efficacy of our created data.
K-VQG: Knowledge-aware Visual Question Generation for Common-sense Acquisition
Visual Question Generation (VQG) is a task to generate questions from images. When humans ask questions about an image, their goal is often to acquire some new knowledge. However, existing studies on VQG have mainly addressed question generation from answers or question categories, overlooking the objectives of knowledge acquisition. To introduce a knowledge acquisition perspective into VQG, we constructed a novel knowledge-aware VQG dataset called K-VQG. This is the first large, humanly annotated dataset in which questions regarding images are tied to structured knowledge. We also developed a new VQG model that can encode and use knowledge as the target for a question. The experiment results show that our model outperforms existing models on the K-VQG dataset.
Just Ask: Learning to Answer Questions from Millions of Narrated Videos
Recent methods for visual question answering rely on large-scale annotated datasets. Manual annotation of questions and answers for videos, however, is tedious, expensive and prevents scalability. In this work, we propose to avoid manual annotation and generate a large-scale training dataset for video question answering making use of automatic cross-modal supervision. We leverage a question generation transformer trained on text data and use it to generate question-answer pairs from transcribed video narrations. Given narrated videos, we then automatically generate the HowToVQA69M dataset with 69M video-question-answer triplets. To handle the open vocabulary of diverse answers in this dataset, we propose a training procedure based on a contrastive loss between a video-question multi-modal transformer and an answer transformer. We introduce the zero-shot VideoQA task and show excellent results, in particular for rare answers. Furthermore, we demonstrate our method to significantly outperform the state of the art on MSRVTT-QA, MSVD-QA, ActivityNet-QA and How2QA. Finally, for a detailed evaluation we introduce iVQA, a new VideoQA dataset with reduced language biases and high-quality redundant manual annotations. Our code, datasets and trained models are available at https://antoyang.github.io/just-ask.html.
PCoQA: Persian Conversational Question Answering Dataset
Humans seek information regarding a specific topic through performing a conversation containing a series of questions and answers. In the pursuit of conversational question answering research, we introduce the PCoQA, the first Persian Conversational Question Answering dataset, a resource comprising information-seeking dialogs encompassing a total of 9,026 contextually-driven questions. Each dialog involves a questioner, a responder, and a document from the Wikipedia; The questioner asks several inter-connected questions from the text and the responder provides a span of the document as the answer for each question. PCoQA is designed to present novel challenges compared to previous question answering datasets including having more open-ended non-factual answers, longer answers, and fewer lexical overlaps. This paper not only presents the comprehensive PCoQA dataset but also reports the performance of various benchmark models. Our models include baseline models and pre-trained models, which are leveraged to boost the performance of the model. The dataset and benchmarks are available at our Github page.
Synthetic Context Generation for Question Generation
Despite rapid advancements in large language models (LLMs), QG remains a challenging problem due to its complicated process, open-ended nature, and the diverse settings in which question generation occurs. A common approach to address these challenges involves fine-tuning smaller, custom models using datasets containing background context, question, and answer. However, obtaining suitable domain-specific datasets with appropriate context is often more difficult than acquiring question-answer pairs. In this paper, we investigate training QG models using synthetic contexts generated by LLMs from readily available question-answer pairs. We conduct a comprehensive study to answer critical research questions related to the performance of models trained on synthetic contexts and their potential impact on QG research and applications. Our empirical results reveal: 1) contexts are essential for QG tasks, even if they are synthetic; 2) fine-tuning smaller language models has the capability of achieving better performances as compared to prompting larger language models; and 3) synthetic context and real context could achieve comparable performances. These findings highlight the effectiveness of synthetic contexts in QG and paves the way for future advancements in the field.
Multi-Stage Prompting for Knowledgeable Dialogue Generation
Existing knowledge-grounded dialogue systems typically use finetuned versions of a pretrained language model (LM) and large-scale knowledge bases. These models typically fail to generalize on topics outside of the knowledge base, and require maintaining separate potentially large checkpoints each time finetuning is needed. In this paper, we aim to address these limitations by leveraging the inherent knowledge stored in the pretrained LM as well as its powerful generation ability. We propose a multi-stage prompting approach to generate knowledgeable responses from a single pretrained LM. We first prompt the LM to generate knowledge based on the dialogue context. Then, we further prompt it to generate responses based on the dialogue context and the previously generated knowledge. Results show that our knowledge generator outperforms the state-of-the-art retrieval-based model by 5.8% when combining knowledge relevance and correctness. In addition, our multi-stage prompting outperforms the finetuning-based dialogue model in terms of response knowledgeability and engagement by up to 10% and 5%, respectively. Furthermore, we scale our model up to 530 billion parameters and show that larger LMs improve the generation correctness score by up to 10%, and response relevance, knowledgeability and engagement by up to 10%. Our code is available at: https://github.com/NVIDIA/Megatron-LM.
Efficient Retrieval Augmented Generation from Unstructured Knowledge for Task-Oriented Dialog
This paper summarizes our work on the first track of the ninth Dialog System Technology Challenge (DSTC 9), "Beyond Domain APIs: Task-oriented Conversational Modeling with Unstructured Knowledge Access". The goal of the task is to generate responses to user turns in a task-oriented dialog that require knowledge from unstructured documents. The task is divided into three subtasks: detection, selection and generation. In order to be compute efficient, we formulate the selection problem in terms of hierarchical classification steps. We achieve our best results with this model. Alternatively, we employ siamese sequence embedding models, referred to as Dense Knowledge Retrieval, to retrieve relevant documents. This method further reduces the computation time by a factor of more than 100x at the cost of degradation in R@1 of 5-6% compared to the first model. Then for either approach, we use Retrieval Augmented Generation to generate responses based on multiple selected snippets and we show how the method can be used to fine-tune trained embeddings.
Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves
Misunderstandings arise not only in interpersonal communication but also between humans and Large Language Models (LLMs). Such discrepancies can make LLMs interpret seemingly unambiguous questions in unexpected ways, yielding incorrect responses. While it is widely acknowledged that the quality of a prompt, such as a question, significantly impacts the quality of the response provided by LLMs, a systematic method for crafting questions that LLMs can better comprehend is still underdeveloped. In this paper, we present a method named `Rephrase and Respond' (RaR), which allows LLMs to rephrase and expand questions posed by humans and provide responses in a single prompt. This approach serves as a simple yet effective prompting method for improving performance. We also introduce a two-step variant of RaR, where a rephrasing LLM first rephrases the question and then passes the original and rephrased questions together to a different responding LLM. This facilitates the effective utilization of rephrased questions generated by one LLM with another. Our experiments demonstrate that our methods significantly improve the performance of different models across a wide range to tasks. We further provide a comprehensive comparison between RaR and the popular Chain-of-Thought (CoT) methods, both theoretically and empirically. We show that RaR is complementary to CoT and can be combined with CoT to achieve even better performance. Our work not only contributes to enhancing LLM performance efficiently and effectively but also sheds light on a fair evaluation of LLM capabilities. Data and codes are available at https://github.com/uclaml/Rephrase-and-Respond.
Automated question generation and question answering from Turkish texts
While exam-style questions are a fundamental educational tool serving a variety of purposes, manual construction of questions is a complex process that requires training, experience and resources. Automatic question generation (QG) techniques can be utilized to satisfy the need for a continuous supply of new questions by streamlining their generation. However, compared to automatic question answering (QA), QG is a more challenging task. In this work, we fine-tune a multilingual T5 (mT5) transformer in a multi-task setting for QA, QG and answer extraction tasks using Turkish QA datasets. To the best of our knowledge, this is the first academic work that performs automated text-to-text question generation from Turkish texts. Experimental evaluations show that the proposed multi-task setting achieves state-of-the-art Turkish question answering and question generation performance on TQuADv1, TQuADv2 datasets and XQuAD Turkish split. The source code and the pre-trained models are available at https://github.com/obss/turkish-question-generation.
Natural Answer Generation: From Factoid Answer to Full-length Answer using Grammar Correction
Question Answering systems these days typically use template-based language generation. Though adequate for a domain-specific task, these systems are too restrictive and predefined for domain-independent systems. This paper proposes a system that outputs a full-length answer given a question and the extracted factoid answer (short spans such as named entities) as the input. Our system uses constituency and dependency parse trees of questions. A transformer-based Grammar Error Correction model GECToR (2020), is used as a post-processing step for better fluency. We compare our system with (i) Modified Pointer Generator (SOTA) and (ii) Fine-tuned DialoGPT for factoid questions. We also test our approach on existential (yes-no) questions with better results. Our model generates accurate and fluent answers than the state-of-the-art (SOTA) approaches. The evaluation is done on NewsQA and SqUAD datasets with an increment of 0.4 and 0.9 percentage points in ROUGE-1 score respectively. Also the inference time is reduced by 85\% as compared to the SOTA. The improved datasets used for our evaluation will be released as part of the research contribution.
LIQUID: A Framework for List Question Answering Dataset Generation
Question answering (QA) models often rely on large-scale training datasets, which necessitates the development of a data generation framework to reduce the cost of manual annotations. Although several recent studies have aimed to generate synthetic questions with single-span answers, no study has been conducted on the creation of list questions with multiple, non-contiguous spans as answers. To address this gap, we propose LIQUID, an automated framework for generating list QA datasets from unlabeled corpora. We first convert a passage from Wikipedia or PubMed into a summary and extract named entities from the summarized text as candidate answers. This allows us to select answers that are semantically correlated in context and is, therefore, suitable for constructing list questions. We then create questions using an off-the-shelf question generator with the extracted entities and original passage. Finally, iterative filtering and answer expansion are performed to ensure the accuracy and completeness of the answers. Using our synthetic data, we significantly improve the performance of the previous best list QA models by exact-match F1 scores of 5.0 on MultiSpanQA, 1.9 on Quoref, and 2.8 averaged across three BioASQ benchmarks.
PaRaDe: Passage Ranking using Demonstrations with Large Language Models
Recent studies show that large language models (LLMs) can be instructed to effectively perform zero-shot passage re-ranking, in which the results of a first stage retrieval method, such as BM25, are rated and reordered to improve relevance. In this work, we improve LLM-based re-ranking by algorithmically selecting few-shot demonstrations to include in the prompt. Our analysis investigates the conditions where demonstrations are most helpful, and shows that adding even one demonstration is significantly beneficial. We propose a novel demonstration selection strategy based on difficulty rather than the commonly used semantic similarity. Furthermore, we find that demonstrations helpful for ranking are also effective at question generation. We hope our work will spur more principled research into question generation and passage ranking.
Won't Get Fooled Again: Answering Questions with False Premises
Pre-trained language models (PLMs) have shown unprecedented potential in various fields, especially as the backbones for question-answering (QA) systems. However, they tend to be easily deceived by tricky questions such as "How many eyes does the sun have?". Such frailties of PLMs often allude to the lack of knowledge within them. In this paper, we find that the PLMs already possess the knowledge required to rebut such questions, and the key is how to activate the knowledge. To systematize this observation, we investigate the PLMs' responses to one kind of tricky questions, i.e., the false premises questions (FPQs). We annotate a FalseQA dataset containing 2365 human-written FPQs, with the corresponding explanations for the false premises and the revised true premise questions. Using FalseQA, we discover that PLMs are capable of discriminating FPQs by fine-tuning on moderate numbers (e.g., 256) of examples. PLMs also generate reasonable explanations for the false premise, which serve as rebuttals. Further replaying a few general questions during training allows PLMs to excel on FPQs and general questions simultaneously. Our work suggests that once the rebuttal ability is stimulated, knowledge inside the PLMs can be effectively utilized to handle FPQs, which incentivizes the research on PLM-based QA systems.
Question rewriting? Assessing its importance for conversational question answering
In conversational question answering, systems must correctly interpret the interconnected interactions and generate knowledgeable answers, which may require the retrieval of relevant information from a background repository. Recent approaches to this problem leverage neural language models, although different alternatives can be considered in terms of modules for (a) representing user questions in context, (b) retrieving the relevant background information, and (c) generating the answer. This work presents a conversational question answering system designed specifically for the Search-Oriented Conversational AI (SCAI) shared task, and reports on a detailed analysis of its question rewriting module. In particular, we considered different variations of the question rewriting module to evaluate the influence on the subsequent components, and performed a careful analysis of the results obtained with the best system configuration. Our system achieved the best performance in the shared task and our analysis emphasizes the importance of the conversation context representation for the overall system performance.
Neural Machine Translation for Query Construction and Composition
Research on question answering with knowledge base has recently seen an increasing use of deep architectures. In this extended abstract, we study the application of the neural machine translation paradigm for question parsing. We employ a sequence-to-sequence model to learn graph patterns in the SPARQL graph query language and their compositions. Instead of inducing the programs through question-answer pairs, we expect a semi-supervised approach, where alignments between questions and queries are built through templates. We argue that the coverage of language utterances can be expanded using late notable works in natural language generation.
ScIRGen: Synthesize Realistic and Large-Scale RAG Dataset for Scientific Research
Scientific researchers need intensive information about datasets to effectively evaluate and develop theories and methodologies. The information needs regarding datasets are implicitly embedded in particular research tasks, rather than explicitly expressed in search queries. However, existing scientific retrieval and question-answering (QA) datasets typically address straightforward questions, which do not align with the distribution of real-world research inquiries. To bridge this gap, we developed ScIRGen, a dataset generation framework for scientific QA \& retrieval that more accurately reflects the information needs of professional science researchers, and uses it to create a large-scale scientific retrieval-augmented generation (RAG) dataset with realistic queries, datasets and papers. Technically, we designed a dataset-oriented information extraction method that leverages academic papers to augment the dataset representation. We then proposed a question generation framework by employing cognitive taxonomy to ensure the quality of synthesized questions. We also design a method to automatically filter synthetic answers based on the perplexity shift of LLMs, which is highly aligned with human judgment of answers' validity. Collectively, these methodologies culminated in the creation of the 61k QA dataset, ScIRGen-Geo. We benchmarked representative methods on the ScIRGen-Geo dataset for their question-answering and retrieval capabilities, finding out that current methods still suffer from reasoning from complex questions. This work advances the development of more sophisticated tools to support the intricate information needs of the scientific community.
QOG:Question and Options Generation based on Language Model
Question-Options Generation (QOG) is a task that involves generating a set of question-options pairs given context. This task has various applications, including fine-tuning large models, information retrieval, and automated multiple-choice question generation for education. In this paper, we develop QOG models using three different methods based on fine-tuning sequence-to-sequence language models (LMs). Experiments demonstrate that the end-to-end QOG model is computationally efficient and stable during both training and inference, outperforming other methods. Furthermore, our analysis indicates that our QOG models are competitive on the QOG task compared to the large language model Llama 3-8B.
Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4
This paper introduces 26 guiding principles designed to streamline the process of querying and prompting large language models. Our goal is to simplify the underlying concepts of formulating questions for various scales of large language models, examining their abilities, and enhancing user comprehension on the behaviors of different scales of large language models when feeding into different prompts. Extensive experiments are conducted on LLaMA-1/2 (7B, 13B and 70B), GPT-3.5/4 to verify the effectiveness of the proposed principles on instructions and prompts design. We hope that this work can provide a better guide for researchers working on the prompting of large language models. Project page is available at https://github.com/VILA-Lab/ATLAS.
Prompt Framework for Role-playing: Generation and Evaluation
Large language models (LLM) have demonstrated remarkable abilities in generating natural language, understanding user instruction, and mimicking human language use. These capabilities have garnered considerable interest in applications such as role-playing. However, the process of collecting individual role scripts (or profiles) data and manually evaluating the performance can be costly. We introduce a framework that uses prompts to leverage the state-of-the-art (SOTA) LLMs to construct role-playing dialogue datasets and evaluate the role-playing performance. Additionally, we employ recall-oriented evaluation Rouge-L metric to support the result of the LLM evaluator.
Towards Exploiting Background Knowledge for Building Conversation Systems
Existing dialog datasets contain a sequence of utterances and responses without any explicit background knowledge associated with them. This has resulted in the development of models which treat conversation as a sequence-to-sequence generation task i.e, given a sequence of utterances generate the response sequence). This is not only an overly simplistic view of conversation but it is also emphatically different from the way humans converse by heavily relying on their background knowledge about the topic (as opposed to simply relying on the previous sequence of utterances). For example, it is common for humans to (involuntarily) produce utterances which are copied or suitably modified from background articles they have read about the topic. To facilitate the development of such natural conversation models which mimic the human process of conversing, we create a new dataset containing movie chats wherein each response is explicitly generated by copying and/or modifying sentences from unstructured background knowledge such as plots, comments and reviews about the movie. We establish baseline results on this dataset (90K utterances from 9K conversations) using three different models: (i) pure generation based models which ignore the background knowledge (ii) generation based models which learn to copy information from the background knowledge when required and (iii) span prediction based models which predict the appropriate response span in the background knowledge.
Evaluating Large Language Models in Semantic Parsing for Conversational Question Answering over Knowledge Graphs
Conversational question answering systems often rely on semantic parsing to enable interactive information retrieval, which involves the generation of structured database queries from a natural language input. For information-seeking conversations about facts stored within a knowledge graph, dialogue utterances are transformed into graph queries in a process that is called knowledge-based conversational question answering. This paper evaluates the performance of large language models that have not been explicitly pre-trained on this task. Through a series of experiments on an extensive benchmark dataset, we compare models of varying sizes with different prompting techniques and identify common issue types in the generated output. Our results demonstrate that large language models are capable of generating graph queries from dialogues, with significant improvements achievable through few-shot prompting and fine-tuning techniques, especially for smaller models that exhibit lower zero-shot performance.
You Truly Understand What I Need: Intellectual and Friendly Dialogue Agents grounding Knowledge and Persona
To build a conversational agent that interacts fluently with humans, previous studies blend knowledge or personal profile into the pre-trained language model. However, the model that considers knowledge and persona at the same time is still limited, leading to hallucination and a passive way of using personas. We propose an effective dialogue agent that grounds external knowledge and persona simultaneously. The agent selects the proper knowledge and persona to use for generating the answers with our candidate scoring implemented with a poly-encoder. Then, our model generates the utterance with lesser hallucination and more engagingness utilizing retrieval augmented generation with knowledge-persona enhanced query. We conduct experiments on the persona-knowledge chat and achieve state-of-the-art performance in grounding and generation tasks on the automatic metrics. Moreover, we validate the answers from the models regarding hallucination and engagingness through human evaluation and qualitative results. We show our retriever's effectiveness in extracting relevant documents compared to the other previous retrievers, along with the comparison of multiple candidate scoring methods. Code is available at https://github.com/dlawjddn803/INFO
A Novel Multi-Stage Prompting Approach for Language Agnostic MCQ Generation using GPT
We introduce a multi-stage prompting approach (MSP) for the generation of multiple choice questions (MCQs), harnessing the capabilities of GPT models such as text-davinci-003 and GPT-4, renowned for their excellence across various NLP tasks. Our approach incorporates the innovative concept of chain-of-thought prompting, a progressive technique in which the GPT model is provided with a series of interconnected cues to guide the MCQ generation process. Automated evaluations consistently demonstrate the superiority of our proposed MSP method over the traditional single-stage prompting (SSP) baseline, resulting in the production of high-quality distractors. Furthermore, the one-shot MSP technique enhances automatic evaluation results, contributing to improved distractor generation in multiple languages, including English, German, Bengali, and Hindi. In human evaluations, questions generated using our approach exhibit superior levels of grammaticality, answerability, and difficulty, highlighting its efficacy in various languages.
Give me Some Hard Questions: Synthetic Data Generation for Clinical QA
Clinical Question Answering (QA) systems enable doctors to quickly access patient information from electronic health records (EHRs). However, training these systems requires significant annotated data, which is limited due to the expertise needed and the privacy concerns associated with clinical data. This paper explores generating Clinical QA data using large language models (LLMs) in a zero-shot setting. We find that naive prompting often results in easy questions that do not reflect the complexity of clinical scenarios. To address this, we propose two prompting strategies: 1) instructing the model to generate questions that do not overlap with the input context, and 2) summarizing the input record using a predefined schema to scaffold question generation. Experiments on two Clinical QA datasets demonstrate that our method generates more challenging questions, significantly improving fine-tuning performance over baselines. We compare synthetic and gold data and find a gap between their training efficacy resulting from the quality of synthetically generated answers.
Training Generative Question-Answering on Synthetic Data Obtained from an Instruct-tuned Model
This paper presents a simple and cost-effective method for synthesizing data to train question-answering systems. For training, fine-tuning GPT models is a common practice in resource-rich languages like English, however, it becomes challenging for non-English languages due to the scarcity of sufficient question-answer (QA) pairs. Existing approaches use question and answer generators trained on human-authored QA pairs, which involves substantial human expenses. In contrast, we use an instruct-tuned model to generate QA pairs in a zero-shot or few-shot manner. We conduct experiments to compare various strategies for obtaining QA pairs from the instruct-tuned model. The results demonstrate that a model trained on our proposed synthetic data achieves comparable performance to a model trained on manually curated datasets, without incurring human costs.
BEYOND DIALOGUE: A Profile-Dialogue Alignment Framework Towards General Role-Playing Language Model
The rapid advancement of large language models (LLMs) has revolutionized role-playing, enabling the development of general role-playing models. However, current role-playing training has two significant issues: (I) Using a predefined role profile to prompt dialogue training for specific scenarios usually leads to inconsistencies and even conflicts between the dialogue and the profile, resulting in training biases. (II) The model learns to imitate the role based solely on the profile, neglecting profile-dialogue alignment at the sentence level. In this work, we propose a simple yet effective framework called BEYOND DIALOGUE, designed to overcome these hurdles. This framework innovatively introduces "beyond dialogue" tasks to align dialogue with profile traits based on each specific scenario, thereby eliminating biases during training. Furthermore, by adopting an innovative prompting mechanism that generates reasoning outcomes for training, the framework allows the model to achieve fine-grained alignment between profile and dialogue at the sentence level. The aforementioned methods are fully automated and low-cost. Additionally, the integration of automated dialogue and objective evaluation methods forms a comprehensive framework, paving the way for general role-playing. Experimental results demonstrate that our model excels in adhering to and reflecting various dimensions of role profiles, outperforming most proprietary general and specialized role-playing baselines. All code and datasets are available at https://github.com/yuyouyu32/BeyondDialogue.
Synthesizing Agentic Data for Web Agents with Progressive Difficulty Enhancement Mechanisms
Web-based 'deep research' agents aim to solve complex question - answering tasks through long-horizon interactions with online tools. These tasks remain challenging, as the underlying language models are often not optimized for long-horizon reasoning and exploration. Prior work has proposed workflows for constructing instruction-tuning datasets, often leveraging knowledge graphs. However, such methods typically lack fine-grained control over difficulty and quality, yielding synthetic data that falls short of capturing the complexity required for long-horizon reasoning. Furthermore, many studies conflate data and training effects by comparing models trained under different optimization recipes, making it difficult to isolate and evaluate the effectiveness of the data itself. We introduce a two-pronged data synthesis pipeline that generates question - answer pairs by progressively increasing task complexity until a frontier baseline web agent fails. The baseline agent plays multiple roles in this process: attempting the questions, validating factuality, checking for alternative answers, and enforcing filtering. To evaluate the effectiveness of our synthesis methods, we adopt a controlled training setup based on distillation from strong web agents. Experiments across multiple web-based benchmarks show that our dataset - despite being smaller - enables the training of more effective web agents than existing datasets. In particular, our data exhibits twice the diversity in tool-use actions, allowing models trained on it to achieve stronger performance while avoiding repetitive tool-calling behaviors.
Automated Educational Question Generation at Different Bloom's Skill Levels using Large Language Models: Strategies and Evaluation
Developing questions that are pedagogically sound, relevant, and promote learning is a challenging and time-consuming task for educators. Modern-day large language models (LLMs) generate high-quality content across multiple domains, potentially helping educators to develop high-quality questions. Automated educational question generation (AEQG) is important in scaling online education catering to a diverse student population. Past attempts at AEQG have shown limited abilities to generate questions at higher cognitive levels. In this study, we examine the ability of five state-of-the-art LLMs of different sizes to generate diverse and high-quality questions of different cognitive levels, as defined by Bloom's taxonomy. We use advanced prompting techniques with varying complexity for AEQG. We conducted expert and LLM-based evaluations to assess the linguistic and pedagogical relevance and quality of the questions. Our findings suggest that LLms can generate relevant and high-quality educational questions of different cognitive levels when prompted with adequate information, although there is a significant variance in the performance of the five LLms considered. We also show that automated evaluation is not on par with human evaluation.
MP2D: An Automated Topic Shift Dialogue Generation Framework Leveraging Knowledge Graphs
Despite advancements in on-topic dialogue systems, effectively managing topic shifts within dialogues remains a persistent challenge, largely attributed to the limited availability of training datasets. To address this issue, we propose Multi-Passage to Dialogue (MP2D), a data generation framework that automatically creates conversational question-answering datasets with natural topic transitions. By leveraging the relationships between entities in a knowledge graph, MP2D maps the flow of topics within a dialogue, effectively mirroring the dynamics of human conversation. It retrieves relevant passages corresponding to the topics and transforms them into dialogues through the passage-to-dialogue method. Through quantitative and qualitative experiments, we demonstrate MP2D's efficacy in generating dialogue with natural topic shifts. Furthermore, this study introduces a novel benchmark for topic shift dialogues, TS-WikiDialog. Utilizing the dataset, we demonstrate that even Large Language Models (LLMs) struggle to handle topic shifts in dialogue effectively, and we showcase the performance improvements of models trained on datasets generated by MP2D across diverse topic shift dialogue tasks.
Putting People in LLMs' Shoes: Generating Better Answers via Question Rewriter
Large Language Models (LLMs) have demonstrated significant capabilities, particularly in the domain of question answering (QA). However, their effectiveness in QA is often undermined by the vagueness of user questions. To address this issue, we introduce single-round instance-level prompt optimization, referred to as question rewriter. By enhancing the intelligibility of human questions for black-box LLMs, our question rewriter improves the quality of generated answers. The rewriter is optimized using direct preference optimization based on feedback collected from automatic criteria for evaluating generated answers; therefore, its training does not require costly human annotations. The experiments across multiple black-box LLMs and long-form question answering (LFQA) datasets demonstrate the efficacy of our method. This paper provides a practical framework for training question rewriters and sets a precedent for future explorations in prompt optimization within LFQA tasks. Code is available at https://github.com/3244we/Question-Rewriter.
SPELL: Self-Play Reinforcement Learning for evolving Long-Context Language Models
Progress in long-context reasoning for large language models (LLMs) has lagged behind other recent advances. This gap arises not only from the intrinsic difficulty of processing long texts, but also from the scarcity of reliable human annotations and programmatically verifiable reward signals. In this paper, we propose SPELL, a multi-role self-play reinforcement learning framework that enables scalable, label-free optimization for long-context reasoning. SPELL integrates three cyclical roles-questioner, responder, and verifier-within a single model to enable continual self-improvement. The questioner generates questions from raw documents paired with reference answers; the responder learns to solve these questions based on the documents; and the verifier evaluates semantic equivalence between the responder's output and the questioner's reference answer, producing reward signals to guide continual training. To stabilize training, we introduce an automated curriculum that gradually increases document length and a reward function that adapts question difficulty to the model's evolving capabilities. Extensive experiments on six long-context benchmarks show that SPELL consistently improves performance across diverse LLMs and outperforms equally sized models fine-tuned on large-scale annotated data. Notably, SPELL achieves an average 7.6-point gain in pass@8 on the strong reasoning model Qwen3-30B-A3B-Thinking, raising its performance ceiling and showing promise for scaling to even more capable models.
Learning When to Retrieve, What to Rewrite, and How to Respond in Conversational QA
Augmenting Large Language Models (LLMs) with information retrieval capabilities (i.e., Retrieval-Augmented Generation (RAG)) has proven beneficial for knowledge-intensive tasks. However, understanding users' contextual search intent when generating responses is an understudied topic for conversational question answering (QA). This conversational extension leads to additional concerns when compared to single-turn QA as it is more challenging for systems to comprehend conversational context and manage retrieved passages over multiple turns. In this work, we propose a method for enabling LLMs to decide when to retrieve in RAG settings given a conversational context. When retrieval is deemed necessary, the LLM then rewrites the conversation for passage retrieval and judges the relevance of returned passages before response generation. Operationally, we build on the single-turn SELF-RAG framework (Asai et al., 2023) and propose SELF-multi-RAG for conversational settings. SELF-multi-RAG demonstrates improved capabilities over single-turn variants with respect to retrieving relevant passages (by using summarized conversational context) and assessing the quality of generated responses. Experiments on three conversational QA datasets validate the enhanced response generation capabilities of SELF-multi-RAG, with improvements of ~13% measured by human annotation.
Generated Knowledge Prompting for Commonsense Reasoning
It remains an open question whether incorporating external knowledge benefits commonsense reasoning while maintaining the flexibility of pretrained sequence models. To investigate this question, we develop generated knowledge prompting, which consists of generating knowledge from a language model, then providing the knowledge as additional input when answering a question. Our method does not require task-specific supervision for knowledge integration, or access to a structured knowledge base, yet it improves performance of large-scale, state-of-the-art models on four commonsense reasoning tasks, achieving state-of-the-art results on numerical commonsense (NumerSense), general commonsense (CommonsenseQA 2.0), and scientific commonsense (QASC) benchmarks. Generated knowledge prompting highlights large-scale language models as flexible sources of external knowledge for improving commonsense reasoning. Our code is available at https://github.com/liujch1998/GKP
RMIT-ADM+S at the SIGIR 2025 LiveRAG Challenge
This paper presents the RMIT--ADM+S participation in the SIGIR 2025 LiveRAG Challenge. Our Generation-Retrieval-Augmented Generation (GRAG) approach relies on generating a hypothetical answer that is used in the retrieval phase, alongside the original question. GRAG also incorporates a pointwise large language model (LLM)-based re-ranking step prior to final answer generation. We describe the system architecture and the rationale behind our design choices. In particular, a systematic evaluation using the Grid of Points (GoP) framework and N-way ANOVA enabled comparison across multiple configurations, including query variant generation, question decomposition, rank fusion strategies, and prompting techniques for answer generation. Our system achieved a Relevance score of 1.199 and a Faithfulness score of 0.477 on the private leaderboard, placing among the top four finalists in the LiveRAG 2025 Challenge.
LLM Discussion: Enhancing the Creativity of Large Language Models via Discussion Framework and Role-Play
Large language models (LLMs) have shown exceptional proficiency in natural language processing but often fall short of generating creative and original responses to open-ended questions. To enhance LLM creativity, our key insight is to emulate the human process of inducing collective creativity through engaging discussions with participants from diverse backgrounds and perspectives. To this end, we propose LLM Discussion, a three-phase discussion framework that facilitates vigorous and diverging idea exchanges and ensures convergence to creative answers. Moreover, we adopt a role-playing technique by assigning distinct roles to LLMs to combat the homogeneity of LLMs. We evaluate the efficacy of the proposed framework with the Alternative Uses Test, Similarities Test, Instances Test, and Scientific Creativity Test through both LLM evaluation and human study. Our proposed framework outperforms single-LLM approaches and existing multi-LLM frameworks across various creativity metrics.
Identifying Well-formed Natural Language Questions
Understanding search queries is a hard problem as it involves dealing with "word salad" text ubiquitously issued by users. However, if a query resembles a well-formed question, a natural language processing pipeline is able to perform more accurate interpretation, thus reducing downstream compounding errors. Hence, identifying whether or not a query is well formed can enhance query understanding. Here, we introduce a new task of identifying a well-formed natural language question. We construct and release a dataset of 25,100 publicly available questions classified into well-formed and non-wellformed categories and report an accuracy of 70.7% on the test set. We also show that our classifier can be used to improve the performance of neural sequence-to-sequence models for generating questions for reading comprehension.
Better Zero-Shot Reasoning with Role-Play Prompting
Modern large language models (LLMs), such as ChatGPT, exhibit a remarkable capacity for role-playing, enabling them to embody not only human characters but also non-human entities like a Linux terminal. This versatility allows them to simulate complex human-like interactions and behaviors within various contexts, as well as to emulate specific objects or systems. While these capabilities have enhanced user engagement and introduced novel modes of interaction, the influence of role-playing on LLMs' reasoning abilities remains underexplored. In this study, we introduce a strategically designed role-play prompting methodology and assess its performance under the zero-shot setting across twelve diverse reasoning benchmarks, encompassing arithmetic, commonsense reasoning, symbolic reasoning, and more. Leveraging models such as ChatGPT and Llama 2, our empirical results illustrate that role-play prompting consistently surpasses the standard zero-shot approach across most datasets. Notably, accuracy on AQuA rises from 53.5% to 63.8%, and on Last Letter from 23.8% to 84.2%. Beyond enhancing contextual understanding, we posit that role-play prompting serves as an implicit Chain-of-Thought (CoT) trigger, thereby improving the quality of reasoning. By comparing our approach with the Zero-Shot-CoT technique, which prompts the model to "think step by step", we further demonstrate that role-play prompting can generate a more effective CoT. This highlights its potential to augment the reasoning capabilities of LLMs.
From Local to Global: A Graph RAG Approach to Query-Focused Summarization
The use of retrieval-augmented generation (RAG) to retrieve relevant information from an external knowledge source enables large language models (LLMs) to answer questions over private and/or previously unseen document collections. However, RAG fails on global questions directed at an entire text corpus, such as "What are the main themes in the dataset?", since this is inherently a query-focused summarization (QFS) task, rather than an explicit retrieval task. Prior QFS methods, meanwhile, fail to scale to the quantities of text indexed by typical RAG systems. To combine the strengths of these contrasting methods, we propose a Graph RAG approach to question answering over private text corpora that scales with both the generality of user questions and the quantity of source text to be indexed. Our approach uses an LLM to build a graph-based text index in two stages: first to derive an entity knowledge graph from the source documents, then to pregenerate community summaries for all groups of closely-related entities. Given a question, each community summary is used to generate a partial response, before all partial responses are again summarized in a final response to the user. For a class of global sensemaking questions over datasets in the 1 million token range, we show that Graph RAG leads to substantial improvements over a na\"ive RAG baseline for both the comprehensiveness and diversity of generated answers. An open-source, Python-based implementation of both global and local Graph RAG approaches is forthcoming at https://aka.ms/graphrag.
Doc2Bot: Accessing Heterogeneous Documents via Conversational Bots
This paper introduces Doc2Bot, a novel dataset for building machines that help users seek information via conversations. This is of particular interest for companies and organizations that own a large number of manuals or instruction books. Despite its potential, the nature of our task poses several challenges: (1) documents contain various structures that hinder the ability of machines to comprehend, and (2) user information needs are often underspecified. Compared to prior datasets that either focus on a single structural type or overlook the role of questioning to uncover user needs, the Doc2Bot dataset is developed to target such challenges systematically. Our dataset contains over 100,000 turns based on Chinese documents from five domains, larger than any prior document-grounded dialog dataset for information seeking. We propose three tasks in Doc2Bot: (1) dialog state tracking to track user intentions, (2) dialog policy learning to plan system actions and contents, and (3) response generation which generates responses based on the outputs of the dialog policy. Baseline methods based on the latest deep learning models are presented, indicating that our proposed tasks are challenging and worthy of further research.
Diverse and Faithful Knowledge-Grounded Dialogue Generation via Sequential Posterior Inference
The capability to generate responses with diversity and faithfulness using factual knowledge is paramount for creating a human-like, trustworthy dialogue system. Common strategies either adopt a two-step paradigm, which optimizes knowledge selection and response generation separately, and may overlook the inherent correlation between these two tasks, or leverage conditional variational method to jointly optimize knowledge selection and response generation by employing an inference network. In this paper, we present an end-to-end learning framework, termed Sequential Posterior Inference (SPI), capable of selecting knowledge and generating dialogues by approximately sampling from the posterior distribution. Unlike other methods, SPI does not require the inference network or assume a simple geometry of the posterior distribution. This straightforward and intuitive inference procedure of SPI directly queries the response generation model, allowing for accurate knowledge selection and generation of faithful responses. In addition to modeling contributions, our experimental results on two common dialogue datasets (Wizard of Wikipedia and Holl-E) demonstrate that SPI outperforms previous strong baselines according to both automatic and human evaluation metrics.
How to Ask Better Questions? A Large-Scale Multi-Domain Dataset for Rewriting Ill-Formed Questions
We present a large-scale dataset for the task of rewriting an ill-formed natural language question to a well-formed one. Our multi-domain question rewriting MQR dataset is constructed from human contributed Stack Exchange question edit histories. The dataset contains 427,719 question pairs which come from 303 domains. We provide human annotations for a subset of the dataset as a quality estimate. When moving from ill-formed to well-formed questions, the question quality improves by an average of 45 points across three aspects. We train sequence-to-sequence neural models on the constructed dataset and obtain an improvement of 13.2% in BLEU-4 over baseline methods built from other data resources. We release the MQR dataset to encourage research on the problem of question rewriting.
Generating Synthetic Documents for Cross-Encoder Re-Rankers: A Comparative Study of ChatGPT and Human Experts
We investigate the usefulness of generative Large Language Models (LLMs) in generating training data for cross-encoder re-rankers in a novel direction: generating synthetic documents instead of synthetic queries. We introduce a new dataset, ChatGPT-RetrievalQA, and compare the effectiveness of models fine-tuned on LLM-generated and human-generated data. Data generated with generative LLMs can be used to augment training data, especially in domains with smaller amounts of labeled data. We build ChatGPT-RetrievalQA based on an existing dataset, human ChatGPT Comparison Corpus (HC3), consisting of public question collections with human responses and answers from ChatGPT. We fine-tune a range of cross-encoder re-rankers on either human-generated or ChatGPT-generated data. Our evaluation on MS MARCO DEV, TREC DL'19, and TREC DL'20 demonstrates that cross-encoder re-ranking models trained on ChatGPT responses are statistically significantly more effective zero-shot re-rankers than those trained on human responses. In a supervised setting, the human-trained re-rankers outperform the LLM-trained re-rankers. Our novel findings suggest that generative LLMs have high potential in generating training data for neural retrieval models. Further work is needed to determine the effect of factually wrong information in the generated responses and test our findings' generalizability with open-source LLMs. We release our data, code, and cross-encoders checkpoints for future work.
QGEval: A Benchmark for Question Generation Evaluation
Automatically generated questions often suffer from problems such as unclear expression or factual inaccuracies, requiring a reliable and comprehensive evaluation of their quality. Human evaluation is frequently used in the field of question generation (QG) and is one of the most accurate evaluation methods. It also serves as the standard for automatic metrics. However, there is a lack of unified evaluation criteria, which hampers the development of both QG technologies and automatic evaluation methods. To address this, we propose QGEval, a multi-dimensional Evaluation benchmark for Question Generation, which evaluates both generated questions and existing automatic metrics across 7 dimensions: fluency, clarity, conciseness, relevance, consistency, answerability, and answer consistency. We demonstrate the appropriateness of these dimensions by examining their correlations and distinctions. Analysis with QGEval reveals that 1) most QG models perform unsatisfactorily in terms of answerability and answer consistency, and 2) existing metrics fail to align well with human assessments when evaluating generated questions across the 7 dimensions. We expect this work to foster the development of both QG technologies and automatic metrics for QG.
Genie: Achieving Human Parity in Content-Grounded Datasets Generation
The lack of high-quality data for content-grounded generation tasks has been identified as a major obstacle to advancing these tasks. To address this gap, we propose Genie, a novel method for automatically generating high-quality content-grounded data. It consists of three stages: (a) Content Preparation, (b) Generation: creating task-specific examples from the content (e.g., question-answer pairs or summaries). (c) Filtering mechanism aiming to ensure the quality and faithfulness of the generated data. We showcase this methodology by generating three large-scale synthetic data, making wishes, for Long-Form Question-Answering (LFQA), summarization, and information extraction. In a human evaluation, our generated data was found to be natural and of high quality. Furthermore, we compare models trained on our data with models trained on human-written data -- ELI5 and ASQA for LFQA and CNN-DailyMail for Summarization. We show that our models are on par with or outperforming models trained on human-generated data and consistently outperforming them in faithfulness. Finally, we applied our method to create LFQA data within the medical domain and compared a model trained on it with models trained on other domains.
The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents
We introduce the StatCan Dialogue Dataset consisting of 19,379 conversation turns between agents working at Statistics Canada and online users looking for published data tables. The conversations stem from genuine intents, are held in English or French, and lead to agents retrieving one of over 5000 complex data tables. Based on this dataset, we propose two tasks: (1) automatic retrieval of relevant tables based on a on-going conversation, and (2) automatic generation of appropriate agent responses at each turn. We investigate the difficulty of each task by establishing strong baselines. Our experiments on a temporal data split reveal that all models struggle to generalize to future conversations, as we observe a significant drop in performance across both tasks when we move from the validation to the test set. In addition, we find that response generation models struggle to decide when to return a table. Considering that the tasks pose significant challenges to existing models, we encourage the community to develop models for our task, which can be directly used to help knowledge workers find relevant tables for live chat users.
ChatGPT Asks, BLIP-2 Answers: Automatic Questioning Towards Enriched Visual Descriptions
Asking insightful questions is crucial for acquiring knowledge and expanding our understanding of the world. However, the importance of questioning has been largely overlooked in AI research, where models have been primarily developed to answer questions. With the recent advancements of large language models (LLMs) like ChatGPT, we discover their capability to ask high-quality questions when provided with a suitable prompt. This discovery presents a new opportunity to develop an automatic questioning system. In this paper, we introduce ChatCaptioner, a novel automatic-questioning method deployed in image captioning. Here, ChatGPT is prompted to ask a series of informative questions about images to BLIP-2, a strong vision question-answering model. By keeping acquiring new visual information from BLIP-2's answers, ChatCaptioner is able to generate more enriched image descriptions. We conduct human-subject evaluations on common image caption datasets such as COCO, Conceptual Caption, and WikiArt, and compare ChatCaptioner with BLIP-2 as well as ground truth. Our results demonstrate that ChatCaptioner's captions are significantly more informative, receiving three times as many votes from human evaluators for providing the most image information. Besides, ChatCaptioner identifies 53% more objects within the image than BLIP-2 alone measured by WordNet synset matching. Code is available at https://github.com/Vision-CAIR/ChatCaptioner
Synthetic Dialogue Dataset Generation using LLM Agents
Linear programming (LP) problems are pervasive in real-life applications. However, despite their apparent simplicity, an untrained user may find it difficult to determine the linear model of their specific problem. We envisage the creation of a goal-oriented conversational agent that will engage in conversation with the user to elicit all information required so that a subsequent agent can generate the linear model. In this paper, we present an approach for the generation of sample dialogues that can be used to develop and train such a conversational agent. Using prompt engineering, we develop two agents that "talk" to each other, one acting as the conversational agent, and the other acting as the user. Using a set of text descriptions of linear problems from NL4Opt available to the user only, the agent and the user engage in conversation until the agent has retrieved all key information from the original problem description. We also propose an extrinsic evaluation of the dialogues by assessing how well the summaries generated by the dialogues match the original problem descriptions. We conduct human and automatic evaluations, including an evaluation approach that uses GPT-4 to mimic the human evaluation metrics. The evaluation results show an overall good quality of the dialogues, though research is still needed to improve the quality of the GPT-4 evaluation metrics. The resulting dialogues, including the human annotations of a subset, are available to the research community. The conversational agent used for the generation of the dialogues can be used as a baseline.
Interview: A Large-Scale Open-Source Corpus of Media Dialog
Existing conversational datasets consist either of written proxies for dialog or small-scale transcriptions of natural speech. We introduce 'Interview': a large-scale (105K conversations) media dialog dataset collected from news interview transcripts. Compared to existing large-scale proxies for conversational data, language models trained on our dataset exhibit better zero-shot out-of-domain performance on existing spoken dialog datasets, demonstrating its usefulness in modeling real-world conversations. 'Interview' contains speaker role annotations for each turn, facilitating the development of engaging, responsive dialog systems. In fact, experiments on two dialog tasks show that leveraging such labels improves performance over strong speaker-agnostic baselines, and enabling models to generate more specific and inquisitive responses in interview-style conversations.
Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering
Knowledge underpins reasoning. Recent research demonstrates that when relevant knowledge is provided as additional context to commonsense question answering (QA), it can substantially enhance the performance even on top of state-of-the-art. The fundamental challenge is where and how to find such knowledge that is high quality and on point with respect to the question; knowledge retrieved from knowledge bases are incomplete and knowledge generated from language models are inconsistent. We present Rainier, or Reinforced Knowledge Introspector, that learns to generate contextually relevant knowledge in response to given questions. Our approach starts by imitating knowledge generated by GPT-3, then learns to generate its own knowledge via reinforcement learning where rewards are shaped based on the increased performance on the resulting question answering. Rainier demonstrates substantial and consistent performance gains when tested over 9 different commonsense benchmarks: including 5 datasets that are seen during model training, as well as 4 datasets that are kept unseen. Our work is the first to report that knowledge generated by models that are orders of magnitude smaller than GPT-3, even without direct supervision on the knowledge itself, can exceed the quality of commonsense knowledge elicited from GPT-3.
Introspective Growth: Automatically Advancing LLM Expertise in Technology Judgment
Large language models (LLMs) increasingly demonstrate signs of conceptual understanding, yet much of their internal knowledge remains latent, loosely structured, and difficult to access or evaluate. We propose self-questioning as a lightweight and scalable strategy to improve LLMs' understanding, particularly in domains where success depends on fine-grained semantic distinctions. To evaluate this approach, we introduce a challenging new benchmark of 1.3 million post-2015 computer science patent pairs, characterized by dense technical jargon and strategically complex writing. The benchmark centers on a pairwise differentiation task: can a model distinguish between closely related but substantively different inventions? We show that prompting LLMs to generate and answer their own questions - targeting the background knowledge required for the task - significantly improves performance. These self-generated questions and answers activate otherwise underutilized internal knowledge. Allowing LLMs to retrieve answers from external scientific texts further enhances performance, suggesting that model knowledge is compressed and lacks the full richness of the training data. We also find that chain-of-thought prompting and self-questioning converge, though self-questioning remains more effective for improving understanding of technical concepts. Notably, we uncover an asymmetry in prompting: smaller models often generate more fundamental, more open-ended, better-aligned questions for mid-sized models than large models with better understanding do, revealing a new strategy for cross-model collaboration. Altogether, our findings establish self-questioning as both a practical mechanism for automatically improving LLM comprehension, especially in domains with sparse and underrepresented knowledge, and a diagnostic probe of how internal and external knowledge are organized.
Automatic Chain of Thought Prompting in Large Language Models
Large language models (LLMs) can perform complex reasoning by generating intermediate reasoning steps. Providing these steps for prompting demonstrations is called chain-of-thought (CoT) prompting. CoT prompting has two major paradigms. One leverages a simple prompt like "Let's think step by step" to facilitate step-by-step thinking before answering a question. The other uses a few manual demonstrations one by one, each composed of a question and a reasoning chain that leads to an answer. The superior performance of the second paradigm hinges on the hand-crafting of task-specific demonstrations one by one. We show that such manual efforts may be eliminated by leveraging LLMs with the "Let's think step by step" prompt to generate reasoning chains for demonstrations one by one, i.e., let's think not just step by step, but also one by one. However, these generated chains often come with mistakes. To mitigate the effect of such mistakes, we find that diversity matters for automatically constructing demonstrations. We propose an automatic CoT prompting method: Auto-CoT. It samples questions with diversity and generates reasoning chains to construct demonstrations. On ten public benchmark reasoning tasks with GPT-3, Auto-CoT consistently matches or exceeds the performance of the CoT paradigm that requires manual designs of demonstrations. Code is available at https://github.com/amazon-research/auto-cot
TPE: Towards Better Compositional Reasoning over Conceptual Tools with Multi-persona Collaboration
Large language models (LLMs) have demonstrated exceptional performance in planning the use of various functional tools, such as calculators and retrievers, particularly in question-answering tasks. In this paper, we expand the definition of these tools, centering on conceptual tools within the context of dialogue systems. A conceptual tool specifies a cognitive concept that aids systematic or investigative thought. These conceptual tools play important roles in practice, such as multiple psychological or tutoring strategies being dynamically applied in a single turn to compose helpful responses. To further enhance the reasoning and planning capability of LLMs with these conceptual tools, we introduce a multi-persona collaboration framework: Think-Plan-Execute (TPE). This framework decouples the response generation process into three distinct roles: Thinker, Planner, and Executor. Specifically, the Thinker analyzes the internal status exhibited in the dialogue context, such as user emotions and preferences, to formulate a global guideline. The Planner then generates executable plans to call different conceptual tools (e.g., sources or strategies), while the Executor compiles all intermediate results into a coherent response. This structured approach not only enhances the explainability and controllability of responses but also reduces token redundancy. We demonstrate the effectiveness of TPE across various dialogue response generation tasks, including multi-source (FoCus) and multi-strategy interactions (CIMA and PsyQA). This reveals its potential to handle real-world dialogue interactions that require more complicated tool learning beyond just functional tools. The full code and data will be released for reproduction.
VANiLLa : Verbalized Answers in Natural Language at Large Scale
In the last years, there have been significant developments in the area of Question Answering over Knowledge Graphs (KGQA). Despite all the notable advancements, current KGQA datasets only provide the answers as the direct output result of the formal query, rather than full sentences incorporating question context. For achieving coherent answers sentence with the question's vocabulary, template-based verbalization so are usually employed for a better representation of answers, which in turn require extensive expert intervention. Thus, making way for machine learning approaches; however, there is a scarcity of datasets that empower machine learning models in this area. Hence, we provide the VANiLLa dataset which aims at reducing this gap by offering answers in natural language sentences. The answer sentences in this dataset are syntactically and semantically closer to the question than to the triple fact. Our dataset consists of over 100k simple questions adapted from the CSQA and SimpleQuestionsWikidata datasets and generated using a semi-automatic framework. We also present results of training our dataset on multiple baseline models adapted from current state-of-the-art Natural Language Generation (NLG) architectures. We believe that this dataset will allow researchers to focus on finding suitable methodologies and architectures for answer verbalization.
CAMEL: Communicative Agents for "Mind" Exploration of Large Scale Language Model Society
The rapid advancement of conversational and chat-based language models has led to remarkable progress in complex task-solving. However, their success heavily relies on human input to guide the conversation, which can be challenging and time-consuming. This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents and provide insight into their "cognitive" processes. To address the challenges of achieving autonomous cooperation, we propose a novel communicative agent framework named role-playing. Our approach involves using inception prompting to guide chat agents toward task completion while maintaining consistency with human intentions. We showcase how role-playing can be used to generate conversational data for studying the behaviors and capabilities of chat agents, providing a valuable resource for investigating conversational language models. Our contributions include introducing a novel communicative agent framework, offering a scalable approach for studying the cooperative behaviors and capabilities of multi-agent systems, and open-sourcing our library to support research on communicative agents and beyond. The GitHub repository of this project is made publicly available on: https://github.com/lightaime/camel.
Generate rather than Retrieve: Large Language Models are Strong Context Generators
Knowledge-intensive tasks, such as open-domain question answering (QA), require access to a large amount of world or domain knowledge. A common approach for knowledge-intensive tasks is to employ a retrieve-then-read pipeline that first retrieves a handful of relevant contextual documents from an external corpus such as Wikipedia and then predicts an answer conditioned on the retrieved documents. In this paper, we present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators. We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer. Furthermore, we propose a novel clustering-based prompting method that selects distinct prompts, resulting in the generated documents that cover different perspectives, leading to better recall over acceptable answers. We conduct extensive experiments on three different knowledge-intensive tasks, including open-domain QA, fact checking, and dialogue system. Notably, GenRead achieves 71.6 and 54.4 exact match scores on TriviaQA and WebQ, significantly outperforming the state-of-the-art retrieve-then-read pipeline DPR-FiD by +4.0 and +3.9, without retrieving any documents from any external knowledge source. Lastly, we demonstrate the model performance can be further improved by combining retrieval and generation. Our code and generated documents can be found at https://github.com/wyu97/GenRead.
Are LLMs Aware that Some Questions are not Open-ended?
Large Language Models (LLMs) have shown the impressive capability of answering questions in a wide range of scenarios. However, when LLMs face different types of questions, it is worth exploring whether LLMs are aware that some questions have limited answers and need to respond more deterministically but some do not. We refer to this as question awareness of LLMs. The lack of question awareness in LLMs leads to two phenomena that LLMs are: (1) too casual to answer non-open-ended questions or (2) too boring to answer open-ended questions. In this paper, we first evaluate the question awareness in LLMs. The experimental results show that LLMs have the issues of lacking awareness of questions in certain domains, e.g. factual knowledge, resulting in hallucinations during the generation. To mitigate these, we propose a method called Question Awareness Temperature Sampling (QuATS). This method enhances the question awareness of LLMs by adaptively adjusting the output distributions based on question features. The automatic adjustment in QuATS eliminates the need for manual temperature tuning in text generation and consistently improves model performance in various benchmarks.
Question Answering Survey: Directions, Challenges, Datasets, Evaluation Matrices
The usage and amount of information available on the internet increase over the past decade. This digitization leads to the need for automated answering system to extract fruitful information from redundant and transitional knowledge sources. Such systems are designed to cater the most prominent answer from this giant knowledge source to the user query using natural language understanding (NLU) and thus eminently depends on the Question-answering(QA) field. Question answering involves but not limited to the steps like mapping of user question to pertinent query, retrieval of relevant information, finding the best suitable answer from the retrieved information etc. The current improvement of deep learning models evince compelling performance improvement in all these tasks. In this review work, the research directions of QA field are analyzed based on the type of question, answer type, source of evidence-answer, and modeling approach. This detailing followed by open challenges of the field like automatic question generation, similarity detection and, low resource availability for a language. In the end, a survey of available datasets and evaluation measures is presented.
Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering
Generative models for open domain question answering have proven to be competitive, without resorting to external knowledge. While promising, this approach requires to use models with billions of parameters, which are expensive to train and query. In this paper, we investigate how much these models can benefit from retrieving text passages, potentially containing evidence. We obtain state-of-the-art results on the Natural Questions and TriviaQA open benchmarks. Interestingly, we observe that the performance of this method significantly improves when increasing the number of retrieved passages. This is evidence that generative models are good at aggregating and combining evidence from multiple passages.
UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems
Large Language Models (LLMs) has shown exceptional capabilities in many natual language understanding and generation tasks. However, the personalization issue still remains a much-coveted property, especially when it comes to the multiple sources involved in the dialogue system. To better plan and incorporate the use of multiple sources in generating personalized response, we firstly decompose it into three sub-tasks: Knowledge Source Selection, Knowledge Retrieval, and Response Generation. We then propose a novel Unified Multi-Source Retrieval-Augmented Generation system (UniMS-RAG) Specifically, we unify these three sub-tasks with different formulations into the same sequence-to-sequence paradigm during the training, to adaptively retrieve evidences and evaluate the relevance on-demand using special tokens, called acting tokens and evaluation tokens. Enabling language models to generate acting tokens facilitates interaction with various knowledge sources, allowing them to adapt their behavior to diverse task requirements. Meanwhile, evaluation tokens gauge the relevance score between the dialogue context and the retrieved evidence. In addition, we carefully design a self-refinement mechanism to iteratively refine the generated response considering 1) the consistency scores between the generated response and retrieved evidence; and 2) the relevance scores. Experiments on two personalized datasets (DuLeMon and KBP) show that UniMS-RAG achieves state-of-the-art performance on the knowledge source selection and response generation task with itself as a retriever in a unified manner. Extensive analyses and discussions are provided for shedding some new perspectives for personalized dialogue systems.
Dialogizer: Context-aware Conversational-QA Dataset Generation from Textual Sources
To address the data scarcity issue in Conversational question answering (ConvQA), a dialog inpainting method, which utilizes documents to generate ConvQA datasets, has been proposed. However, the original dialog inpainting model is trained solely on the dialog reconstruction task, resulting in the generation of questions with low contextual relevance due to insufficient learning of question-answer alignment. To overcome this limitation, we propose a novel framework called Dialogizer, which has the capability to automatically generate ConvQA datasets with high contextual relevance from textual sources. The framework incorporates two training tasks: question-answer matching (QAM) and topic-aware dialog generation (TDG). Moreover, re-ranking is conducted during the inference phase based on the contextual relevance of the generated questions. Using our framework, we produce four ConvQA datasets by utilizing documents from multiple domains as the primary source. Through automatic evaluation using diverse metrics, as well as human evaluation, we validate that our proposed framework exhibits the ability to generate datasets of higher quality compared to the baseline dialog inpainting model.
PROXYQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models
Large Language Models (LLMs) have exhibited remarkable success in long-form context comprehension tasks. However, their capacity to generate long contents, such as reports and articles, remains insufficiently explored. Current benchmarks do not adequately assess LLMs' ability to produce informative and comprehensive content, necessitating a more rigorous evaluation approach. In this study, we introduce ProxyQA, a framework for evaluating long-form text generation, comprising in-depth human-curated meta-questions spanning various domains. Each meta-question contains corresponding proxy-questions with annotated answers. LLMs are prompted to generate extensive content in response to these meta-questions. Utilizing an evaluator and incorporating generated content as background context, ProxyQA evaluates the quality of generated content based on the evaluator's performance in answering the proxy-questions. We examine multiple LLMs, emphasizing ProxyQA's demanding nature as a high-quality assessment tool. Human evaluation demonstrates that evaluating through proxy-questions is a highly self-consistent and human-criteria-correlated validation method. The dataset and leaderboard will be available at https://github.com/Namco0816/ProxyQA.
Joint Reasoning on Hybrid-knowledge sources for Task-Oriented Dialog
Traditional systems designed for task oriented dialog utilize knowledge present only in structured knowledge sources to generate responses. However, relevant information required to generate responses may also reside in unstructured sources, such as documents. Recent state of the art models such as HyKnow and SeKnow aimed at overcoming these challenges make limiting assumptions about the knowledge sources. For instance, these systems assume that certain types of information, such as a phone number, is always present in a structured knowledge base (KB) while information about aspects such as entrance ticket prices, would always be available in documents. In this paper, we create a modified version of the MutliWOZ-based dataset prepared by SeKnow to demonstrate how current methods have significant degradation in performance when strict assumptions about the source of information are removed. Then, in line with recent work exploiting pre-trained language models, we fine-tune a BART based model using prompts for the tasks of querying knowledge sources, as well as, for response generation, without making assumptions about the information present in each knowledge source. Through a series of experiments, we demonstrate that our model is robust to perturbations to knowledge modality (source of information), and that it can fuse information from structured as well as unstructured knowledge to generate responses.
Multi-Document Grounded Multi-Turn Synthetic Dialog Generation
We introduce a technique for multi-document grounded multi-turn synthetic dialog generation that incorporates three main ideas. First, we control the overall dialog flow using taxonomy-driven user queries that are generated with Chain-of-Thought (CoT) prompting. Second, we support the generation of multi-document grounded dialogs by mimicking real-world use of retrievers to update the grounding documents after every user-turn in the dialog. Third, we apply LLM-as-a-Judge to filter out queries with incorrect answers. Human evaluation of the synthetic dialog data suggests that the data is diverse, coherent, and includes mostly correct answers. Both human and automatic evaluations of answerable queries indicate that models fine-tuned on synthetic dialogs consistently out-perform those fine-tuned on existing human generated training data across four publicly available multi-turn document grounded benchmark test sets.
Helpful assistant or fruitful facilitator? Investigating how personas affect language model behavior
One way to personalize and steer generations from large language models (LLM) is to assign a persona: a role that describes how the user expects the LLM to behave (e.g., a helpful assistant, a teacher, a woman). This paper investigates how personas affect diverse aspects of model behavior. We assign to seven LLMs 162 personas from 12 categories spanning variables like gender, sexual orientation, and occupation. We prompt them to answer questions from five datasets covering objective (e.g., questions about math and history) and subjective tasks (e.g., questions about beliefs and values). We also compare persona's generations to two baseline settings: a control persona setting with 30 paraphrases of "a helpful assistant" to control for models' prompt sensitivity, and an empty persona setting where no persona is assigned. We find that for all models and datasets, personas show greater variability than the control setting and that some measures of persona behavior generalize across models.
Large Language Models are Superpositions of All Characters: Attaining Arbitrary Role-play via Self-Alignment
Considerable efforts have been invested in augmenting the role-playing proficiency of open-source large language models (LLMs) by emulating proprietary counterparts. Nevertheless, we posit that LLMs inherently harbor role-play capabilities, owing to the extensive knowledge of characters and potential dialogues ingrained in their vast training corpora. Thus, in this study, we introduce Ditto, a self-alignment method for role-play. Ditto capitalizes on character knowledge, encouraging an instruction-following LLM to simulate role-play dialogues as a variant of reading comprehension. This method creates a role-play training set comprising 4,000 characters, surpassing the scale of currently available datasets by tenfold regarding the number of roles. Subsequently, we fine-tune the LLM using this self-generated dataset to augment its role-playing capabilities. Upon evaluating our meticulously constructed and reproducible role-play benchmark and the roleplay subset of MT-Bench, Ditto, in various parameter scales, consistently maintains a consistent role identity and provides accurate role-specific knowledge in multi-turn role-play conversations. Notably, it outperforms all open-source role-play baselines, showcasing performance levels comparable to advanced proprietary chatbots. Furthermore, we present the first comprehensive cross-supervision alignment experiment in the role-play domain, revealing that the intrinsic capabilities of LLMs confine the knowledge within role-play. Meanwhile, the role-play styles can be easily acquired with the guidance of smaller models. We open-source related resources at https://github.com/OFA-Sys/Ditto.
Unlocking Anticipatory Text Generation: A Constrained Approach for Faithful Decoding with Large Language Models
Large Language Models (LLMs) have demonstrated a powerful ability for text generation. However, achieving optimal results with a given prompt or instruction can be challenging, especially for billion-sized models. Additionally, undesired behaviors such as toxicity or hallucinations can manifest. While much larger models (e.g., ChatGPT) may demonstrate strength in mitigating these issues, there is still no guarantee of complete prevention. In this work, we propose formalizing text generation as a future-constrained generation problem to minimize undesirable behaviors and enforce faithfulness to instructions. The estimation of future constraint satisfaction, accomplished using LLMs, guides the text generation process. Our extensive experiments demonstrate the effectiveness of the proposed approach across three distinct text generation tasks: keyword-constrained generation (Lin et al., 2020), toxicity reduction (Gehman et al., 2020), and factual correctness in question-answering (Gao et al., 2023).
GenDec: A robust generative Question-decomposition method for Multi-hop reasoning
Multi-hop QA (MHQA) involves step-by-step reasoning to answer complex questions and find multiple relevant supporting facts. However, Existing large language models'(LLMs) reasoning ability in multi-hop question answering remains exploration, which is inadequate in answering multi-hop questions. Moreover, it is unclear whether LLMs follow a desired reasoning chain to reach the right final answer. In this paper, we propose a generative question decomposition method (GenDec) from the perspective of explainable QA by generating independent and complete sub-questions based on incorporating additional extracted evidence for enhancing LLMs' reasoning ability in RAG. To demonstrate the impact, generalization, and robustness of Gendec, we conduct two experiments, the first is combining GenDec with small QA systems on paragraph retrieval and QA tasks. We secondly examine the reasoning capabilities of various state-of-the-art LLMs including GPT-4 and GPT-3.5 combined with GenDec. We experiment on the HotpotQA, 2WikihopMultiHopQA, MuSiQue, and PokeMQA datasets.
LLMs Can Generate a Better Answer by Aggregating Their Own Responses
Large Language Models (LLMs) have shown remarkable capabilities across tasks, yet they often require additional prompting techniques when facing complex problems. While approaches like self-correction and response selection have emerged as popular solutions, recent studies have shown these methods perform poorly when relying on the LLM itself to provide feedback or selection criteria. We argue this limitation stems from the fact that common LLM post-training procedures lack explicit supervision for discriminative judgment tasks. In this paper, we propose Generative Self-Aggregation (GSA), a novel prompting method that improves answer quality without requiring the model's discriminative capabilities. GSA first samples multiple diverse responses from the LLM, then aggregates them to obtain an improved solution. Unlike previous approaches, our method does not require the LLM to correct errors or compare response quality; instead, it leverages the model's generative abilities to synthesize a new response based on the context of multiple samples. While GSA shares similarities with the self-consistency (SC) approach for response aggregation, SC requires specific verifiable tokens to enable majority voting. In contrast, our approach is more general and can be applied to open-ended tasks. Empirical evaluation demonstrates that GSA effectively improves response quality across various tasks, including mathematical reasoning, knowledge-based problems, and open-ended generation tasks such as code synthesis and conversational responses.
Generating Quizzes to Support Training on Quality Management and Assurance in Space Science and Engineering
Quality management and assurance is key for space agencies to guarantee the success of space missions, which are high-risk and extremely costly. In this paper, we present a system to generate quizzes, a common resource to evaluate the effectiveness of training sessions, from documents about quality assurance procedures in the Space domain. Our system leverages state of the art auto-regressive models like T5 and BART to generate questions, and a RoBERTa model to extract answers for such questions, thus verifying their suitability.
Follow-up Question Generation For Enhanced Patient-Provider Conversations
Follow-up question generation is an essential feature of dialogue systems as it can reduce conversational ambiguity and enhance modeling complex interactions. Conversational contexts often pose core NLP challenges such as (i) extracting relevant information buried in fragmented data sources, and (ii) modeling parallel thought processes. These two challenges occur frequently in medical dialogue as a doctor asks questions based not only on patient utterances but also their prior EHR data and current diagnostic hypotheses. Asking medical questions in asynchronous conversations compounds these issues as doctors can only rely on static EHR information to motivate follow-up questions. To address these challenges, we introduce FollowupQ, a novel framework for enhancing asynchronous medical conversation. FollowupQ is a multi-agent framework that processes patient messages and EHR data to generate personalized follow-up questions, clarifying patient-reported medical conditions. FollowupQ reduces requisite provider follow-up communications by 34%. It also improves performance by 17% and 5% on real and synthetic data, respectively. We also release the first public dataset of asynchronous medical messages with linked EHR data alongside 2,300 follow-up questions written by clinical experts for the wider NLP research community.
MMAT-1M: A Large Reasoning Dataset for Multimodal Agent Tuning
Large Language Models (LLMs), enhanced through agent tuning, have demonstrated remarkable capabilities in Chain-of-Thought (CoT) and tool utilization, significantly surpassing the performance of standalone models. However, the multimodal domain still lacks a large-scale, high-quality agent tuning dataset to unlock the full potential of multimodal large language models. To bridge this gap, we introduce MMAT-1M, the first million-scale multimodal agent tuning dataset designed to support CoT, reflection, and dynamic tool usage. Our dataset is constructed through a novel four-stage data engine: 1) We first curate publicly available multimodal datasets containing question-answer pairs; 2) Then, leveraging GPT-4o, we generate rationales for the original question-answer pairs and dynamically integrate API calls and Retrieval Augmented Generation (RAG) information through a multi-turn paradigm; 3) Furthermore, we refine the rationales through reflection to ensure logical consistency and accuracy, creating a multi-turn dialogue dataset with both Rationale and Reflection (RR); 4) Finally, to enhance efficiency, we optionally compress multi-turn dialogues into a One-turn Rationale and Reflection (ORR) format. By fine-tuning open-source multimodal models on the MMAT-1M, we observe significant performance gains. For instance, the InternVL2.5-8B-RR model achieves an average improvement of 2.7% across eight public benchmarks and 8.8% on the RAG benchmark Dyn-VQA, demonstrating the dataset's effectiveness in enhancing multimodal reasoning and tool-based capabilities. The dataset is publicly available at https://github.com/VIS-MPU-Agent/MMAT-1M.
P5: Plug-and-Play Persona Prompting for Personalized Response Selection
The use of persona-grounded retrieval-based chatbots is crucial for personalized conversations, but there are several challenges that need to be addressed. 1) In general, collecting persona-grounded corpus is very expensive. 2) The chatbot system does not always respond in consideration of persona at real applications. To address these challenges, we propose a plug-and-play persona prompting method. Our system can function as a standard open-domain chatbot if persona information is not available. We demonstrate that this approach performs well in the zero-shot setting, which reduces the dependence on persona-ground training data. This makes it easier to expand the system to other languages without the need to build a persona-grounded corpus. Additionally, our model can be fine-tuned for even better performance. In our experiments, the zero-shot model improved the standard model by 7.71 and 1.04 points in the original persona and revised persona, respectively. The fine-tuned model improved the previous state-of-the-art system by 1.95 and 3.39 points in the original persona and revised persona, respectively. To the best of our knowledge, this is the first attempt to solve the problem of personalized response selection using prompt sequences. Our code is available on github~https://github.com/rungjoo/plug-and-play-prompt-persona.
ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation
Current pre-training works in natural language generation pay little attention to the problem of exposure bias on downstream tasks. To address this issue, we propose an enhanced multi-flow sequence to sequence pre-training and fine-tuning framework named ERNIE-GEN, which bridges the discrepancy between training and inference with an infilling generation mechanism and a noise-aware generation method. To make generation closer to human writing patterns, this framework introduces a span-by-span generation flow that trains the model to predict semantically-complete spans consecutively rather than predicting word by word. Unlike existing pre-training methods, ERNIE-GEN incorporates multi-granularity target sampling to construct pre-training data, which enhances the correlation between encoder and decoder. Experimental results demonstrate that ERNIE-GEN achieves state-of-the-art results with a much smaller amount of pre-training data and parameters on a range of language generation tasks, including abstractive summarization (Gigaword and CNN/DailyMail), question generation (SQuAD), dialogue generation (Persona-Chat) and generative question answering (CoQA).
Learning to Explore and Select for Coverage-Conditioned Retrieval-Augmented Generation
Interactions with large language models (LLMs) often yield long and detailed responses, leveraging both parametric knowledge and retrieval-augmented generation (RAG). While these responses can provide rich insights, they often include redundant or less engaging content not aligned with user interests. This issue becomes apparent when users specify particular subtopics to include or exclude -- termed coverage-conditioned (C^2) queries -- as LLMs often struggle to provide tailored responses. To address this challenge, we investigate the role of query outlines, sequences of subqueries designed to guide LLMs in generating responses that meet specific user requirements. To systematically create and evaluate these outlines, we introduce QTree, a dataset of 10K hierarchical sets of information-seeking subqueries that define structured boundaries for outline creation and evaluation in C^2 scenarios. Additionally, we develop QPlanner, a 7B language model trained to generate customized outlines within boundaries of QTree. We evaluate the effectiveness of the generated outlines through automatic and human judgements, focusing on their impact within retrieval-augmented generation (RAG) systems. Experimental results demonstrate that QPlanner, especially when trained with alignment techniques like DPO, generates higher-quality outlines that better fulfill diverse user needs.
Know More about Each Other: Evolving Dialogue Strategy via Compound Assessment
In this paper, a novel Generation-Evaluation framework is developed for multi-turn conversations with the objective of letting both participants know more about each other. For the sake of rational knowledge utilization and coherent conversation flow, a dialogue strategy which controls knowledge selection is instantiated and continuously adapted via reinforcement learning. Under the deployed strategy, knowledge grounded conversations are conducted with two dialogue agents. The generated dialogues are comprehensively evaluated on aspects like informativeness and coherence, which are aligned with our objective and human instinct. These assessments are integrated as a compound reward to guide the evolution of dialogue strategy via policy gradient. Comprehensive experiments have been carried out on the publicly available dataset, demonstrating that the proposed method outperforms the other state-of-the-art approaches significantly.
Variational Learning for Unsupervised Knowledge Grounded Dialogs
Recent methods for knowledge grounded dialogs generate responses by incorporating information from an external textual document. These methods do not require the exact document to be known during training and rely on the use of a retrieval system to fetch relevant documents from a large index. The documents used to generate the responses are modeled as latent variables whose prior probabilities need to be estimated. Models such as RAG and REALM, marginalize the document probabilities over the documents retrieved from the index to define the log likelihood loss function which is optimized end-to-end. In this paper, we develop a variational approach to the above technique wherein, we instead maximize the Evidence Lower bound (ELBO). Using a collection of three publicly available open-conversation datasets, we demonstrate how the posterior distribution, that has information from the ground-truth response, allows for a better approximation of the objective function during training. To overcome the challenges associated with sampling over a large knowledge collection, we develop an efficient approach to approximate the ELBO. To the best of our knowledge we are the first to apply variational training for open-scale unsupervised knowledge grounded dialog systems.
OpenCharacter: Training Customizable Role-Playing LLMs with Large-Scale Synthetic Personas
Customizable role-playing in large language models (LLMs), also known as character generalization, is gaining increasing attention for its versatility and cost-efficiency in developing and deploying role-playing dialogue agents. This study explores a large-scale data synthesis approach to equip LLMs with character generalization capabilities. We begin by synthesizing large-scale character profiles using personas from Persona Hub and then explore two strategies: response rewriting and response generation, to create character-aligned instructional responses. To validate the effectiveness of our synthetic instruction tuning data for character generalization, we perform supervised fine-tuning (SFT) using the LLaMA-3 8B model. Our best-performing model strengthens the original LLaMA-3 8B Instruct model and achieves performance comparable to GPT-4o models on role-playing dialogue. We release our synthetic characters and instruction-tuning dialogues to support public research.
Balancing Cost and Effectiveness of Synthetic Data Generation Strategies for LLMs
As large language models (LLMs) are applied to more use cases, creating high quality, task-specific datasets for fine-tuning becomes a bottleneck for model improvement. Using high quality human data has been the most common approach to unlock model performance, but is prohibitively expensive in many scenarios. Several alternative methods have also emerged, such as generating synthetic or hybrid data, but the effectiveness of these approaches remain unclear, especially in resource-constrained scenarios and tasks that are not easily verified. To investigate this, we group various synthetic data generation strategies into three representative categories -- Answer Augmentation, Question Rephrase and New Question -- and study the performance of student LLMs trained under various constraints, namely seed instruction set size and query budget. We demonstrate that these strategies are not equally effective across settings. Notably, the optimal data generation strategy depends strongly on the ratio between the available teacher query budget and the size of the seed instruction set. When this ratio is low, generating new answers to existing questions proves most effective, but as this ratio increases, generating new questions becomes optimal. Across all tasks, we find that choice of augmentation method and other design choices matter substantially more in low to mid data regimes than in high data regimes. We provide a practical framework for selecting the appropriate augmentation method across settings, taking into account additional factors such as the scalability of each method, the importance of verifying synthetic data, and the use of different LLMs for synthetic data generation.
Transforming Question Answering Datasets Into Natural Language Inference Datasets
Existing datasets for natural language inference (NLI) have propelled research on language understanding. We propose a new method for automatically deriving NLI datasets from the growing abundance of large-scale question answering datasets. Our approach hinges on learning a sentence transformation model which converts question-answer pairs into their declarative forms. Despite being primarily trained on a single QA dataset, we show that it can be successfully applied to a variety of other QA resources. Using this system, we automatically derive a new freely available dataset of over 500k NLI examples (QA-NLI), and show that it exhibits a wide range of inference phenomena rarely seen in previous NLI datasets.
Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books. Previous efforts to construct such datasets relied on crowd-sourcing, but the emergence of transformers with a context size of 1 million or more tokens now enables entirely automatic approaches. Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text, such as questions involving character arcs, broader themes, or the consequences of early actions later in the story. We propose a holistic pipeline for automatic data generation including question generation, answering, and model scoring using an ``Evaluator''. We find that a relative approach, comparing answers between models in a pairwise fashion and ranking with a Bradley-Terry model, provides a more consistent and differentiating scoring mechanism than an absolute scorer that rates answers individually. We also show that LLMs from different model families produce moderate agreement in their ratings. We ground our approach using the manually curated NarrativeQA dataset, where our evaluator shows excellent agreement with human judgement and even finds errors in the dataset. Using our automatic evaluation approach, we show that using an entire book as context produces superior reading comprehension performance compared to baseline no-context (parametric knowledge only) and retrieval-based approaches.
Dual Semantic Knowledge Composed Multimodal Dialog Systems
Textual response generation is an essential task for multimodal task-oriented dialog systems.Although existing studies have achieved fruitful progress, they still suffer from two critical limitations: 1) focusing on the attribute knowledge but ignoring the relation knowledge that can reveal the correlations between different entities and hence promote the response generation}, and 2) only conducting the cross-entropy loss based output-level supervision but lacking the representation-level regularization. To address these limitations, we devise a novel multimodal task-oriented dialog system (named MDS-S2). Specifically, MDS-S2 first simultaneously acquires the context related attribute and relation knowledge from the knowledge base, whereby the non-intuitive relation knowledge is extracted by the n-hop graph walk. Thereafter, considering that the attribute knowledge and relation knowledge can benefit the responding to different levels of questions, we design a multi-level knowledge composition module in MDS-S2 to obtain the latent composed response representation. Moreover, we devise a set of latent query variables to distill the semantic information from the composed response representation and the ground truth response representation, respectively, and thus conduct the representation-level semantic regularization. Extensive experiments on a public dataset have verified the superiority of our proposed MDS-S2. We have released the codes and parameters to facilitate the research community.
Persona is a Double-edged Sword: Enhancing the Zero-shot Reasoning by Ensembling the Role-playing and Neutral Prompts
Recent studies demonstrate that prompting an appropriate role-playing persona to an LLM improves its reasoning capability. However, assigning a proper persona is difficult since an LLM's performance is extremely sensitive to assigned prompts; therefore, personas sometimes hinder LLMs and degrade their reasoning capabilities. In this paper, we propose a novel framework, Jekyll \& Hyde, which ensembles the results of role-playing and neutral prompts to eradicate performance degradation via unilateral use of role-playing prompted LLM and enhance the robustness of an LLM's reasoning ability. Specifically, Jekyll \& Hyde collects two potential solutions from both role-playing and neutral prompts and selects a better solution after cross-checking via an LLM evaluator. However, LLM-based evaluators tend to be affected by the order of those potential solutions within the prompt when selecting the proper solution; thus, we also propose a robust LLM evaluator to mitigate the position bias. The experimental analysis demonstrates that role-playing prompts distract LLMs and degrade their reasoning abilities in 4 out of 12 datasets, even when using GPT-4. In addition, we reveal that Jekyll \& Hyde improves reasoning capabilities by selecting better choices among the potential solutions on twelve widely-used reasoning datasets. We further show that our proposed LLM evaluator outperforms other baselines, proving the LLMs' position bias is successfully mitigated.
Commonsense-augmented Memory Construction and Management in Long-term Conversations via Context-aware Persona Refinement
Memorizing and utilizing speakers' personas is a common practice for response generation in long-term conversations. Yet, human-authored datasets often provide uninformative persona sentences that hinder response quality. This paper presents a novel framework that leverages commonsense-based persona expansion to address such issues in long-term conversation. While prior work focuses on not producing personas that contradict others, we focus on transforming contradictory personas into sentences that contain rich speaker information, by refining them based on their contextual backgrounds with designed strategies. As the pioneer of persona expansion in multi-session settings, our framework facilitates better response generation via human-like persona refinement. The supplementary video of our work is available at https://caffeine-15bbf.web.app/.
Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts
Question-answering datasets require a broad set of reasoning skills. We show how to use question decompositions to teach language models these broad reasoning skills in a robust fashion. Specifically, we use widely available QDMR representations to programmatically create hard-to-cheat synthetic contexts for real questions in six multi-step reasoning datasets. These contexts are carefully designed to avoid reasoning shortcuts prevalent in real contexts that prevent models from learning the right skills. This results in a pretraining dataset, named TeaBReaC, containing 525K multi-step questions (with associated formal programs) covering about 900 reasoning patterns. We show that pretraining standard language models (LMs) on TeaBReaC before fine-tuning them on target datasets improves their performance by up to 13 F1 points across 4 multi-step QA datasets, with up to 21 point gain on more complex questions. The resulting models also demonstrate higher robustness, with a 5-8 F1 point improvement on two contrast sets. Furthermore, TeaBReaC pretraining substantially improves model performance and robustness even when starting with numerate LMs pretrained using recent methods (e.g., PReasM, POET). Our work thus shows how to effectively use decomposition-guided contexts to robustly teach multi-step reasoning.
Sequencing Matters: A Generate-Retrieve-Generate Model for Building Conversational Agents
This paper contains what the Georgetown InfoSense group has done in regard to solving the challenges presented by TREC iKAT 2023. Our submitted runs outperform the median runs by a significant margin, exhibiting superior performance in nDCG across various cut numbers and in overall success rate. Our approach uses a Generate-Retrieve-Generate method, which we've found to greatly outpace Retrieve-Then-Generate approaches for the purposes of iKAT. Our solution involves the use of Large Language Models (LLMs) for initial answers, answer grounding by BM25, passage quality filtering by logistic regression, and answer generation by LLMs again. We leverage several purpose-built Language Models, including BERT, Chat-based, and text-to-transfer-based models, for text understanding, classification, generation, and summarization. The official results of the TREC evaluation contradict our initial self-evaluation, which may suggest that a decrease in the reliance on our retrieval and classification methods is better. Nonetheless, our findings suggest that the sequence of involving these different components matters, where we see an essentiality of using LLMs before using search engines.
CoQA: A Conversational Question Answering Challenge
Humans gather information by engaging in conversations involving a series of interconnected questions and answers. For machines to assist in information gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets, e.g., coreference and pragmatic reasoning. We evaluate strong conversational and reading comprehension models on CoQA. The best system obtains an F1 score of 65.4%, which is 23.4 points behind human performance (88.8%), indicating there is ample room for improvement. We launch CoQA as a challenge to the community at http://stanfordnlp.github.io/coqa/
Self-Questioning Language Models
Can large language models improve without external data -- by generating their own questions and answers? We hypothesize that a pre-trained language model can improve its reasoning skills given only a single prompt specifying the topic (e.g., algebra word problems) and asking the model to generate its own questions. To do this, we propose Self-Questioning Language Models (SQLM): an asymmetric self-play framework where a proposer is given the topic and generates a question for a solver, who tries to answer it. Both the proposer and solver are trained via reinforcement learning. The proposer receives a reward if the problem is not too easy or too difficult, and the solver receives a reward based on majority voting, a proxy for correctness in the absence of ground-truth answers. For coding, the proposer can instead generate unit tests which are used for verification. We study this asymmetric self-play framework on three benchmarks: three-digit multiplication, algebra problems from the OMEGA benchmark, and programming problems from Codeforces. By continually generating more interesting problems and attempting to solve them, language models can improve on downstream benchmarks without access to any curated training datasets.
Faithful Persona-based Conversational Dataset Generation with Large Language Models
High-quality conversational datasets are essential for developing AI models that can communicate with users. One way to foster deeper interactions between a chatbot and its user is through personas, aspects of the user's character that provide insights into their personality, motivations, and behaviors. Training Natural Language Processing (NLP) models on a diverse and comprehensive persona-based dataset can lead to conversational models that create a deeper connection with the user, and maintain their engagement. In this paper, we leverage the power of Large Language Models (LLMs) to create a large, high-quality conversational dataset from a seed dataset. We propose a Generator-Critic architecture framework to expand the initial dataset, while improving the quality of its conversations. The Generator is an LLM prompted to output conversations. The Critic consists of a mixture of expert LLMs that control the quality of the generated conversations. These experts select the best generated conversations, which we then use to improve the Generator. We release Synthetic-Persona-Chat, consisting of 20k conversations seeded from Persona-Chat. We evaluate the quality of Synthetic-Persona-Chat and our generation framework on different dimensions through extensive experiments, and observe that the losing rate of Synthetic-Persona-Chat against Persona-Chat during Turing test decreases from 17.2% to 8.8% over three iterations.
Elaborative Simplification as Implicit Questions Under Discussion
Automated text simplification, a technique useful for making text more accessible to people such as children and emergent bilinguals, is often thought of as a monolingual translation task from complex sentences to simplified sentences using encoder-decoder models. This view fails to account for elaborative simplification, where new information is added into the simplified text. This paper proposes to view elaborative simplification through the lens of the Question Under Discussion (QUD) framework, providing a robust way to investigate what writers elaborate upon, how they elaborate, and how elaborations fit into the discourse context by viewing elaborations as explicit answers to implicit questions. We introduce ElabQUD, consisting of 1.3K elaborations accompanied with implicit QUDs, to study these phenomena. We show that explicitly modeling QUD (via question generation) not only provides essential understanding of elaborative simplification and how the elaborations connect with the rest of the discourse, but also substantially improves the quality of elaboration generation.
Modular Techniques for Synthetic Long-Context Data Generation in Language Model Training and Evaluation
The ability of large language models (LLMs) to process and reason over long textual inputs is critical for a wide range of real-world applications. However, progress in this area is significantly constrained by the absence of high-quality, diverse, and verifiable long-context datasets suitable for both training and evaluation. This work introduces a modular, extensible framework for synthetic long-context data generation via prompt-based interaction with LLMs. The framework supports multiple training and alignment objectives, including Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and Group Relative Policy Optimization (GRPO). It encompasses four core generation paradigms: multi-turn conversational dialogues, document-grounded input-output pairs, verifiable instruction-response tasks, and long-context reasoning examples. Through templated prompting, a model-agnostic architecture, and metadata-enriched outputs, the proposed approach facilitates scalable, controllable, and purpose-aligned dataset creation for advancing long-context capabilities in LLMs.
