new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 27

A Controllable Examination for Long-Context Language Models

Existing frameworks for evaluating long-context language models (LCLM) can be broadly categorized into real-world and synthetic tasks. Despite their utility, both approaches are accompanied by certain intrinsic limitations. Real-world tasks are too complex to interpret or characterize and are susceptible to data contamination. In contrast, synthetic tasks often adopt the needle-in-the-haystack (NIAH) format, wherein a lack of coherence between the "needle" and the "haystack" compromises their validity as proxies for realistic applications. In response to these challenges, we posit that an ideal long-context evaluation framework should be characterized by three essential features: seamless context, controllable setting, and sound evaluation. This study introduces LongBioBench, a novel benchmark that utilizes artificially generated biographies as a controlled environment for assessing LCLMs across dimensions of understanding, reasoning, and trustworthiness. Our experimental evaluation, which includes 18 LCLMs in total, demonstrates that most models still exhibit deficiencies in semantic understanding and elementary reasoning over retrieved results and are less trustworthy as context length increases. Our further analysis indicates some design choices employed by existing synthetic benchmarks, such as contextual non-coherence, numerical needles, and the absence of distractors, rendering them vulnerable to test the model long-context capabilities. Moreover, we also reveal that long-context continual pretraining primarily adjusts RoPE embedding to accommodate extended context lengths. To sum up, compared to previous synthetic benchmarks, LongBioBench achieves a better trade-off between mirroring authentic language tasks and maintaining controllability, and is highly interpretable and configurable.

  • 7 authors
·
Jun 3 2

InterFusion: Text-Driven Generation of 3D Human-Object Interaction

In this study, we tackle the complex task of generating 3D human-object interactions (HOI) from textual descriptions in a zero-shot text-to-3D manner. We identify and address two key challenges: the unsatisfactory outcomes of direct text-to-3D methods in HOI, largely due to the lack of paired text-interaction data, and the inherent difficulties in simultaneously generating multiple concepts with complex spatial relationships. To effectively address these issues, we present InterFusion, a two-stage framework specifically designed for HOI generation. InterFusion involves human pose estimations derived from text as geometric priors, which simplifies the text-to-3D conversion process and introduces additional constraints for accurate object generation. At the first stage, InterFusion extracts 3D human poses from a synthesized image dataset depicting a wide range of interactions, subsequently mapping these poses to interaction descriptions. The second stage of InterFusion capitalizes on the latest developments in text-to-3D generation, enabling the production of realistic and high-quality 3D HOI scenes. This is achieved through a local-global optimization process, where the generation of human body and object is optimized separately, and jointly refined with a global optimization of the entire scene, ensuring a seamless and contextually coherent integration. Our experimental results affirm that InterFusion significantly outperforms existing state-of-the-art methods in 3D HOI generation.

  • 8 authors
·
Mar 22, 2024

InfLLM-V2: Dense-Sparse Switchable Attention for Seamless Short-to-Long Adaptation

Long-sequence processing is a critical capability for modern large language models. However, the self-attention mechanism in the standard Transformer architecture faces severe computational and memory bottlenecks when processing long sequences. While trainable sparse attention methods offer a promising solution, existing approaches such as NSA introduce excessive extra parameters and disrupt the conventional pretrain-on-short, finetune-on-long workflow, resulting in slow convergence and difficulty in acceleration. To overcome these limitations, we introduce dense-sparse switchable attention framework, termed as InfLLM-V2. InfLLM-V2 is a trainable sparse attention that seamlessly adapts models from short to long sequences. Specifically, InfLLM-V2 reuses dense attention parameters through parameter-free architecture modification, maintaining consistency between short and long sequence processing. Additionally, InfLLM-V2 ensures computational efficiency across all sequence lengths, by using dense attention for short inputs and smoothly transitioning to sparse attention for long sequences. To achieve practical acceleration, we further introduce an efficient implementation of InfLLM-V2 that significantly reduces the computational overhead. Our experiments on long-context understanding and chain-of-thought reasoning demonstrate that InfLLM-V2 is 4times faster than dense attention while retaining 98.1% and 99.7% of the performance, respectively. Based on the InfLLM-V2 framework, we have trained and open-sourced MiniCPM4.1 (https://huggingface.co/openbmb/MiniCPM4.1-8B), a hybrid reasoning model, providing a reproducible implementation for the research community.

openbmb OpenBMB
·
Sep 29 2

MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits

To reduce development overhead and enable seamless integration between potential components comprising any given generative AI application, the Model Context Protocol (MCP) (Anthropic, 2024) has recently been released and subsequently widely adopted. The MCP is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools. By connecting multiple MCP servers, each defined with a set of tools, resources, and prompts, users are able to define automated workflows fully driven by LLMs. However, we show that the current MCP design carries a wide range of security risks for end users. In particular, we demonstrate that industry-leading LLMs may be coerced into using MCP tools to compromise an AI developer's system through various attacks, such as malicious code execution, remote access control, and credential theft. To proactively mitigate these and related attacks, we introduce a safety auditing tool, MCPSafetyScanner, the first agentic tool to assess the security of an arbitrary MCP server. MCPScanner uses several agents to (a) automatically determine adversarial samples given an MCP server's tools and resources; (b) search for related vulnerabilities and remediations based on those samples; and (c) generate a security report detailing all findings. Our work highlights serious security issues with general-purpose agentic workflows while also providing a proactive tool to audit MCP server safety and address detected vulnerabilities before deployment. The described MCP server auditing tool, MCPSafetyScanner, is freely available at: https://github.com/johnhalloran321/mcpSafetyScanner

  • 2 authors
·
Apr 2 2

Beyond the Protocol: Unveiling Attack Vectors in the Model Context Protocol Ecosystem

The Model Context Protocol (MCP) is an emerging standard designed to enable seamless interaction between Large Language Model (LLM) applications and external tools or resources. Within a short period, thousands of MCP services have already been developed and deployed. However, the client-server integration architecture inherent in MCP may expand the attack surface against LLM Agent systems, introducing new vulnerabilities that allow attackers to exploit by designing malicious MCP servers. In this paper, we present the first systematic study of attack vectors targeting the MCP ecosystem. Our analysis identifies four categories of attacks, i.e., Tool Poisoning Attacks, Puppet Attacks, Rug Pull Attacks, and Exploitation via Malicious External Resources. To evaluate the feasibility of these attacks, we conduct experiments following the typical steps of launching an attack through malicious MCP servers: upload-download-attack. Specifically, we first construct malicious MCP servers and successfully upload them to three widely used MCP aggregation platforms. The results indicate that current audit mechanisms are insufficient to identify and prevent the proposed attack methods. Next, through a user study and interview with 20 participants, we demonstrate that users struggle to identify malicious MCP servers and often unknowingly install them from aggregator platforms. Finally, we demonstrate that these attacks can trigger harmful behaviors within the user's local environment-such as accessing private files or controlling devices to transfer digital assets-by deploying a proof-of-concept (PoC) framework against five leading LLMs. Additionally, based on interview results, we discuss four key challenges faced by the current security ecosystem surrounding MCP servers. These findings underscore the urgent need for robust security mechanisms to defend against malicious MCP servers.

  • 9 authors
·
May 31 1

CoRe: Context-Regularized Text Embedding Learning for Text-to-Image Personalization

Recent advances in text-to-image personalization have enabled high-quality and controllable image synthesis for user-provided concepts. However, existing methods still struggle to balance identity preservation with text alignment. Our approach is based on the fact that generating prompt-aligned images requires a precise semantic understanding of the prompt, which involves accurately processing the interactions between the new concept and its surrounding context tokens within the CLIP text encoder. To address this, we aim to embed the new concept properly into the input embedding space of the text encoder, allowing for seamless integration with existing tokens. We introduce Context Regularization (CoRe), which enhances the learning of the new concept's text embedding by regularizing its context tokens in the prompt. This is based on the insight that appropriate output vectors of the text encoder for the context tokens can only be achieved if the new concept's text embedding is correctly learned. CoRe can be applied to arbitrary prompts without requiring the generation of corresponding images, thus improving the generalization of the learned text embedding. Additionally, CoRe can serve as a test-time optimization technique to further enhance the generations for specific prompts. Comprehensive experiments demonstrate that our method outperforms several baseline methods in both identity preservation and text alignment. Code will be made publicly available.

  • 8 authors
·
Aug 28, 2024 7

X2I: Seamless Integration of Multimodal Understanding into Diffusion Transformer via Attention Distillation

Text-to-image (T2I) models are well known for their ability to produce highly realistic images, while multimodal large language models (MLLMs) are renowned for their proficiency in understanding and integrating multiple modalities. However, currently there is no straightforward and efficient framework to transfer the multimodal comprehension abilities of MLLMs to T2I models to enable them to understand multimodal inputs. In this paper, we propose the X2I framework, which endows Diffusion Transformer (DiT) models with the capability to comprehend various modalities, including multilingual text, screenshot documents, images, videos, and audio. X2I is trained using merely 100K English corpus with 160 GPU hours. Building on the DiT teacher model, we adopt an innovative distillation method to extract the inference capabilities of the teacher model and design a lightweight AlignNet structure to serve as an intermediate bridge. Compared to the teacher model, X2I shows a decrease in performance degradation of less than 1\% while gaining various multimodal understanding abilities, including multilingual to image, image to image, image-text to image, video to image, audio to image, and utilizing creative fusion to enhance imagery. Furthermore, it is applicable for LoRA training in the context of image-text to image generation, filling a void in the industry in this area. We further design a simple LightControl to enhance the fidelity of instructional image editing. Finally, extensive experiments demonstrate the effectiveness, efficiency, multifunctionality, and transferability of our X2I. The open-source code and checkpoints for X2I can be found at the following link: https://github.com/OPPO-Mente-Lab/X2I.

  • 6 authors
·
Mar 8

Next Edit Prediction: Learning to Predict Code Edits from Context and Interaction History

The rapid advancement of large language models (LLMs) has led to the widespread adoption of AI-powered coding assistants integrated into a development environment. On one hand, low-latency code completion offers completion suggestions but is fundamentally constrained to the cursor's current position. On the other hand, chat-based editing can perform complex modifications, yet forces developers to stop their work, describe the intent in natural language, which causes a context-switch away from the code. This creates a suboptimal user experience, as neither paradigm proactively predicts the developer's next edit in a sequence of related edits. To bridge this gap and provide the seamless code edit suggestion, we introduce the task of Next Edit Prediction, a novel task designed to infer developer intent from recent interaction history to predict both the location and content of the subsequent edit. Specifically, we curate a high-quality supervised fine-tuning dataset and an evaluation benchmark for the Next Edit Prediction task. Then, we conduct supervised fine-tuning on a series of models and performed a comprehensive evaluation of both the fine-tuned models and other baseline models, yielding several novel findings. This work lays the foundation for a new interaction paradigm that proactively collaborate with developers by anticipating their following action, rather than merely reacting to explicit instructions.

  • 5 authors
·
Aug 13

CoViPAL: Layer-wise Contextualized Visual Token Pruning for Large Vision-Language Models

Large Vision-Language Models (LVLMs) process multimodal inputs consisting of text tokens and vision tokens extracted from images or videos. Due to the rich visual information, a single image can generate thousands of vision tokens, leading to high computational costs during the prefilling stage and significant memory overhead during decoding. Existing methods attempt to prune redundant vision tokens, revealing substantial redundancy in visual representations. However, these methods often struggle in shallow layers due to the lack of sufficient contextual information. We argue that many visual tokens are inherently redundant even in shallow layers and can be safely and effectively pruned with appropriate contextual signals. In this work, we propose CoViPAL, a layer-wise contextualized visual token pruning method that employs a Plug-and-Play Pruning Module (PPM) to predict and remove redundant vision tokens before they are processed by the LVLM. The PPM is lightweight, model-agnostic, and operates independently of the LVLM architecture, ensuring seamless integration with various models. Extensive experiments on multiple benchmarks demonstrate that CoViPAL outperforms training-free pruning methods under equal token budgets and surpasses training-based methods with comparable supervision. CoViPAL offers a scalable and efficient solution to improve inference efficiency in LVLMs without compromising accuracy.

  • 8 authors
·
Aug 24

Seamless: Multilingual Expressive and Streaming Speech Translation

Large-scale automatic speech translation systems today lack key features that help machine-mediated communication feel seamless when compared to human-to-human dialogue. In this work, we introduce a family of models that enable end-to-end expressive and multilingual translations in a streaming fashion. First, we contribute an improved version of the massively multilingual and multimodal SeamlessM4T model-SeamlessM4T v2. This newer model, incorporating an updated UnitY2 framework, was trained on more low-resource language data. SeamlessM4T v2 provides the foundation on which our next two models are initiated. SeamlessExpressive enables translation that preserves vocal styles and prosody. Compared to previous efforts in expressive speech research, our work addresses certain underexplored aspects of prosody, such as speech rate and pauses, while also preserving the style of one's voice. As for SeamlessStreaming, our model leverages the Efficient Monotonic Multihead Attention mechanism to generate low-latency target translations without waiting for complete source utterances. As the first of its kind, SeamlessStreaming enables simultaneous speech-to-speech/text translation for multiple source and target languages. To ensure that our models can be used safely and responsibly, we implemented the first known red-teaming effort for multimodal machine translation, a system for the detection and mitigation of added toxicity, a systematic evaluation of gender bias, and an inaudible localized watermarking mechanism designed to dampen the impact of deepfakes. Consequently, we bring major components from SeamlessExpressive and SeamlessStreaming together to form Seamless, the first publicly available system that unlocks expressive cross-lingual communication in real-time. The contributions to this work are publicly released and accessible at https://github.com/facebookresearch/seamless_communication

  • 65 authors
·
Dec 8, 2023 3

Graph of Records: Boosting Retrieval Augmented Generation for Long-context Summarization with Graphs

Retrieval-augmented generation (RAG) has revitalized Large Language Models (LLMs) by injecting non-parametric factual knowledge. Compared with long-context LLMs, RAG is considered an effective summarization tool in a more concise and lightweight manner, which can interact with LLMs multiple times using diverse queries to get comprehensive responses. However, the LLM-generated historical responses, which contain potentially insightful information, are largely neglected and discarded by existing approaches, leading to suboptimal results. In this paper, we propose graph of records (GoR), which leverages historical responses generated by LLMs to enhance RAG for long-context global summarization. Inspired by the retrieve-then-generate paradigm of RAG, we construct a graph by establishing an edge between the retrieved text chunks and the corresponding LLM-generated response. To further uncover the intricate correlations between them, GoR further features a graph neural network and an elaborately designed BERTScore-based objective for self-supervised model training, enabling seamless supervision signal backpropagation between reference summaries and node embeddings. We comprehensively compare GoR with 12 baselines across four long-context summarization datasets, and the results indicate that our proposed method reaches the best performance e.g., 15\%, 8\%, and 19\% improvement over retrievers w.r.t. Rouge-L, Rouge-1, and Rouge-2 on the WCEP dataset). Extensive experiments further demonstrate the effectiveness of GoR. Code is available at https://github.com/ulab-uiuc/GoR

  • 3 authors
·
Oct 14, 2024

SeqPE: Transformer with Sequential Position Encoding

Since self-attention layers in Transformers are permutation invariant by design, positional encodings must be explicitly incorporated to enable spatial understanding. However, fixed-size lookup tables used in traditional learnable position embeddings (PEs) limit extrapolation capabilities beyond pre-trained sequence lengths. Expert-designed methods such as ALiBi and RoPE, mitigate this limitation but demand extensive modifications for adapting to new modalities, underscoring fundamental challenges in adaptability and scalability. In this work, we present SeqPE, a unified and fully learnable position encoding framework that represents each n-dimensional position index as a symbolic sequence and employs a lightweight sequential position encoder to learn their embeddings in an end-to-end manner. To regularize SeqPE's embedding space, we introduce two complementary objectives: a contrastive objective that aligns embedding distances with a predefined position-distance function, and a knowledge distillation loss that anchors out-of-distribution position embeddings to in-distribution teacher representations, further enhancing extrapolation performance. Experiments across language modeling, long-context question answering, and 2D image classification demonstrate that SeqPE not only surpasses strong baselines in perplexity, exact match (EM), and accuracy--particularly under context length extrapolation--but also enables seamless generalization to multi-dimensional inputs without requiring manual architectural redesign. We release our code, data, and checkpoints at https://github.com/ghrua/seqpe.

  • 8 authors
·
Jun 16 2

SeamlessM4T-Massively Multilingual & Multimodal Machine Translation

What does it take to create the Babel Fish, a tool that can help individuals translate speech between any two languages? While recent breakthroughs in text-based models have pushed machine translation coverage beyond 200 languages, unified speech-to-speech translation models have yet to achieve similar strides. More specifically, conventional speech-to-speech translation systems rely on cascaded systems that perform translation progressively, putting high-performing unified systems out of reach. To address these gaps, we introduce SeamlessM4T, a single model that supports speech-to-speech translation, speech-to-text translation, text-to-speech translation, text-to-text translation, and automatic speech recognition for up to 100 languages. To build this, we used 1 million hours of open speech audio data to learn self-supervised speech representations with w2v-BERT 2.0. Subsequently, we created a multimodal corpus of automatically aligned speech translations. Filtered and combined with human-labeled and pseudo-labeled data, we developed the first multilingual system capable of translating from and into English for both speech and text. On FLEURS, SeamlessM4T sets a new standard for translations into multiple target languages, achieving an improvement of 20% BLEU over the previous SOTA in direct speech-to-text translation. Compared to strong cascaded models, SeamlessM4T improves the quality of into-English translation by 1.3 BLEU points in speech-to-text and by 2.6 ASR-BLEU points in speech-to-speech. Tested for robustness, our system performs better against background noises and speaker variations in speech-to-text tasks compared to the current SOTA model. Critically, we evaluated SeamlessM4T on gender bias and added toxicity to assess translation safety. Finally, all contributions in this work are open-sourced and accessible at https://github.com/facebookresearch/seamless_communication

  • 68 authors
·
Aug 22, 2023 1

AI-native Memory 2.0: Second Me

Human interaction with the external world fundamentally involves the exchange of personal memory, whether with other individuals, websites, applications, or, in the future, AI agents. A significant portion of this interaction is redundant, requiring users to repeatedly provide the same information across different contexts. Existing solutions, such as browser-stored credentials, autofill mechanisms, and unified authentication systems, have aimed to mitigate this redundancy by serving as intermediaries that store and retrieve commonly used user data. The advent of large language models (LLMs) presents an opportunity to redefine memory management through an AI-native paradigm: SECOND ME. SECOND ME acts as an intelligent, persistent memory offload system that retains, organizes, and dynamically utilizes user-specific knowledge. By serving as an intermediary in user interactions, it can autonomously generate context-aware responses, prefill required information, and facilitate seamless communication with external systems, significantly reducing cognitive load and interaction friction. Unlike traditional memory storage solutions, SECOND ME extends beyond static data retention by leveraging LLM-based memory parameterization. This enables structured organization, contextual reasoning, and adaptive knowledge retrieval, facilitating a more systematic and intelligent approach to memory management. As AI-driven personal agents like SECOND ME become increasingly integrated into digital ecosystems, SECOND ME further represents a critical step toward augmenting human-world interaction with persistent, contextually aware, and self-optimizing memory systems. We have open-sourced the fully localizable deployment system at GitHub: https://github.com/Mindverse/Second-Me.

  • 5 authors
·
Mar 11 2

Chat2Layout: Interactive 3D Furniture Layout with a Multimodal LLM

Automatic furniture layout is long desired for convenient interior design. Leveraging the remarkable visual reasoning capabilities of multimodal large language models (MLLMs), recent methods address layout generation in a static manner, lacking the feedback-driven refinement essential for interactive user engagement. We introduce Chat2Layout, a novel interactive furniture layout generation system that extends the functionality of MLLMs into the realm of interactive layout design. To achieve this, we establish a unified vision-question paradigm for in-context learning, enabling seamless communication with MLLMs to steer their behavior without altering model weights. Within this framework, we present a novel training-free visual prompting mechanism. This involves a visual-text prompting technique that assist MLLMs in reasoning about plausible layout plans, followed by an Offline-to-Online search (O2O-Search) method, which automatically identifies the minimal set of informative references to provide exemplars for visual-text prompting. By employing an agent system with MLLMs as the core controller, we enable bidirectional interaction. The agent not only comprehends the 3D environment and user requirements through linguistic and visual perception but also plans tasks and reasons about actions to generate and arrange furniture within the virtual space. Furthermore, the agent iteratively updates based on visual feedback from execution results. Experimental results demonstrate that our approach facilitates language-interactive generation and arrangement for diverse and complex 3D furniture.

  • 6 authors
·
Jul 31, 2024

KARMA: Augmenting Embodied AI Agents with Long-and-short Term Memory Systems

Embodied AI agents responsible for executing interconnected, long-sequence household tasks often face difficulties with in-context memory, leading to inefficiencies and errors in task execution. To address this issue, we introduce KARMA, an innovative memory system that integrates long-term and short-term memory modules, enhancing large language models (LLMs) for planning in embodied agents through memory-augmented prompting. KARMA distinguishes between long-term and short-term memory, with long-term memory capturing comprehensive 3D scene graphs as representations of the environment, while short-term memory dynamically records changes in objects' positions and states. This dual-memory structure allows agents to retrieve relevant past scene experiences, thereby improving the accuracy and efficiency of task planning. Short-term memory employs strategies for effective and adaptive memory replacement, ensuring the retention of critical information while discarding less pertinent data. Compared to state-of-the-art embodied agents enhanced with memory, our memory-augmented embodied AI agent improves success rates by 1.3x and 2.3x in Composite Tasks and Complex Tasks within the AI2-THOR simulator, respectively, and enhances task execution efficiency by 3.4x and 62.7x. Furthermore, we demonstrate that KARMA's plug-and-play capability allows for seamless deployment on real-world robotic systems, such as mobile manipulation platforms.Through this plug-and-play memory system, KARMA significantly enhances the ability of embodied agents to generate coherent and contextually appropriate plans, making the execution of complex household tasks more efficient. The experimental videos from the work can be found at https://youtu.be/4BT7fnw9ehs. Our code is available at https://github.com/WZX0Swarm0Robotics/KARMA/tree/master.

  • 9 authors
·
Sep 23, 2024

Enhancing Multilingual Information Retrieval in Mixed Human Resources Environments: A RAG Model Implementation for Multicultural Enterprise

The advent of Large Language Models has revolutionized information retrieval, ushering in a new era of expansive knowledge accessibility. While these models excel in providing open-world knowledge, effectively extracting answers in diverse linguistic environments with varying levels of literacy remains a formidable challenge. Retrieval Augmented Generation (RAG) emerges as a promising solution, bridging the gap between information availability and multilingual comprehension. However, deploying RAG models in real-world scenarios demands careful consideration of various factors. This paper addresses the critical challenges associated with implementing RAG models in multicultural environments. We delve into essential considerations, including data feeding strategies, timely updates, mitigation of hallucinations, prevention of erroneous responses, and optimization of delivery speed. Our work involves the integration of a diverse array of tools, meticulously combined to facilitate the seamless adoption of RAG models across languages and literacy levels within a multicultural organizational context. Through strategic tweaks in our approaches, we achieve not only effectiveness but also efficiency, ensuring the accelerated and accurate delivery of information in a manner that is tailored to the unique requirements of multilingual and multicultural settings.

  • 1 authors
·
Jan 2, 2024

Web3Recommend: Decentralised recommendations with trust and relevance

Web3Recommend is a decentralized Social Recommender System implementation that enables Web3 Platforms on Android to generate recommendations that balance trust and relevance. Generating recommendations in decentralized networks is a non-trivial problem because these networks lack a global perspective due to the absence of a central authority. Further, decentralized networks are prone to Sybil Attacks in which a single malicious user can generate multiple fake or Sybil identities. Web3Recommend relies on a novel graph-based content recommendation design inspired by GraphJet, a recommendation system used in Twitter enhanced with MeritRank, a decentralized reputation scheme that provides Sybil-resistance to the system. By adding MeritRank's decay parameters to the vanilla Social Recommender Systems' personalized SALSA graph algorithm, we can provide theoretical guarantees against Sybil Attacks in the generated recommendations. Similar to GraphJet, we focus on generating real-time recommendations by only acting on recent interactions in the social network, allowing us to cater temporally contextual recommendations while keeping a tight bound on the memory usage in resource-constrained devices, allowing for a seamless user experience. As a proof-of-concept, we integrate our system with MusicDAO, an open-source Web3 music-sharing platform, to generate personalized, real-time recommendations. Thus, we provide the first Sybil-resistant Social Recommender System, allowing real-time recommendations beyond classic user-based collaborative filtering. The system is also rigorously tested with extensive unit and integration tests. Further, our experiments demonstrate the trust-relevance balance of recommendations against multiple adversarial strategies in a test network generated using data from real music platforms.

  • 2 authors
·
Jul 3, 2023

Training-Free Multimodal Large Language Model Orchestration

Different Multimodal Large Language Models (MLLMs) cannot be integrated into a unified multimodal input-output system directly. In previous work, training has been considered as an inevitable component due to challenges in modal alignment, Text-to-Speech efficiency and other integration issues. In this paper, we introduce Multimodal Large Language Model Orchestration, an effective approach for creating interactive multimodal AI systems without additional training. MLLM Orchestration leverages the inherent reasoning capabilities of large language models to coordinate specialized models through explicit workflows, enabling natural multimodal interactions while maintaining modularity, improving interpretability, and significantly enhancing computational efficiency. Our orchestration framework is built upon three key innovations: (1) a central controller LLM that analyzes user inputs and dynamically routes tasks to appropriate specialized models through carefully designed agents; (2) a parallel Text-to-Speech architecture that enables true full-duplex interaction with seamless interruption handling and natural conversational flow; and (3) a cross-modal memory integration system that maintains coherent context across modalities through intelligent information synthesis and retrieval, selectively avoiding unnecessary modality calls in certain scenarios to improve response speed. Extensive evaluations demonstrate that MLLM Orchestration achieves comprehensive multimodal capabilities without additional training, performance improvements of up to 7.8% over traditional jointly-trained approaches on standard benchmarks, reduced latency by 10.3%, and significantly enhanced interpretability through explicit orchestration processes.

  • 5 authors
·
Aug 6

Sparks of Large Audio Models: A Survey and Outlook

This survey paper provides a comprehensive overview of the recent advancements and challenges in applying large language models to the field of audio signal processing. Audio processing, with its diverse signal representations and a wide range of sources--from human voices to musical instruments and environmental sounds--poses challenges distinct from those found in traditional Natural Language Processing scenarios. Nevertheless, Large Audio Models, epitomized by transformer-based architectures, have shown marked efficacy in this sphere. By leveraging massive amount of data, these models have demonstrated prowess in a variety of audio tasks, spanning from Automatic Speech Recognition and Text-To-Speech to Music Generation, among others. Notably, recently these Foundational Audio Models, like SeamlessM4T, have started showing abilities to act as universal translators, supporting multiple speech tasks for up to 100 languages without any reliance on separate task-specific systems. This paper presents an in-depth analysis of state-of-the-art methodologies regarding Foundational Large Audio Models, their performance benchmarks, and their applicability to real-world scenarios. We also highlight current limitations and provide insights into potential future research directions in the realm of Large Audio Models with the intent to spark further discussion, thereby fostering innovation in the next generation of audio-processing systems. Furthermore, to cope with the rapid development in this area, we will consistently update the relevant repository with relevant recent articles and their open-source implementations at https://github.com/EmulationAI/awesome-large-audio-models.

  • 11 authors
·
Aug 24, 2023

UniVerse-1: Unified Audio-Video Generation via Stitching of Experts

We introduce UniVerse-1, a unified, Veo-3-like model capable of simultaneously generating coordinated audio and video. To enhance training efficiency, we bypass training from scratch and instead employ a stitching of experts (SoE) technique. This approach deeply fuses the corresponding blocks of pre-trained video and music generation experts models, thereby fully leveraging their foundational capabilities. To ensure accurate annotations and temporal alignment for both ambient sounds and speech with video content, we developed an online annotation pipeline that processes the required training data and generates labels during training process. This strategy circumvents the performance degradation often caused by misalignment text-based annotations. Through the synergy of these techniques, our model, after being finetuned on approximately 7,600 hours of audio-video data, produces results with well-coordinated audio-visuals for ambient sounds generation and strong alignment for speech generation. To systematically evaluate our proposed method, we introduce Verse-Bench, a new benchmark dataset. In an effort to advance research in audio-video generation and to close the performance gap with state-of-the-art models such as Veo3, we make our model and code publicly available. We hope this contribution will benefit the broader research community. Project page: https://dorniwang.github.io/UniVerse-1/.

One-Prompt-One-Story: Free-Lunch Consistent Text-to-Image Generation Using a Single Prompt

Text-to-image generation models can create high-quality images from input prompts. However, they struggle to support the consistent generation of identity-preserving requirements for storytelling. Existing approaches to this problem typically require extensive training in large datasets or additional modifications to the original model architectures. This limits their applicability across different domains and diverse diffusion model configurations. In this paper, we first observe the inherent capability of language models, coined context consistency, to comprehend identity through context with a single prompt. Drawing inspiration from the inherent context consistency, we propose a novel training-free method for consistent text-to-image (T2I) generation, termed "One-Prompt-One-Story" (1Prompt1Story). Our approach 1Prompt1Story concatenates all prompts into a single input for T2I diffusion models, initially preserving character identities. We then refine the generation process using two novel techniques: Singular-Value Reweighting and Identity-Preserving Cross-Attention, ensuring better alignment with the input description for each frame. In our experiments, we compare our method against various existing consistent T2I generation approaches to demonstrate its effectiveness through quantitative metrics and qualitative assessments. Code is available at https://github.com/byliutao/1Prompt1Story.

  • 9 authors
·
Jan 23 2

PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters

Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.

  • 17 authors
·
Oct 21, 2024

A Survey of Context Engineering for Large Language Models

The performance of Large Language Models (LLMs) is fundamentally determined by the contextual information provided during inference. This survey introduces Context Engineering, a formal discipline that transcends simple prompt design to encompass the systematic optimization of information payloads for LLMs. We present a comprehensive taxonomy decomposing Context Engineering into its foundational components and the sophisticated implementations that integrate them into intelligent systems. We first examine the foundational components: context retrieval and generation, context processing and context management. We then explore how these components are architecturally integrated to create sophisticated system implementations: retrieval-augmented generation (RAG), memory systems and tool-integrated reasoning, and multi-agent systems. Through this systematic analysis of over 1300 research papers, our survey not only establishes a technical roadmap for the field but also reveals a critical research gap: a fundamental asymmetry exists between model capabilities. While current models, augmented by advanced context engineering, demonstrate remarkable proficiency in understanding complex contexts, they exhibit pronounced limitations in generating equally sophisticated, long-form outputs. Addressing this gap is a defining priority for future research. Ultimately, this survey provides a unified framework for both researchers and engineers advancing context-aware AI.

  • 15 authors
·
Jul 17 13

Adapting LLMs for Efficient Context Processing through Soft Prompt Compression

The rapid advancement of Large Language Models (LLMs) has inaugurated a transformative epoch in natural language processing, fostering unprecedented proficiency in text generation, comprehension, and contextual scrutiny. Nevertheless, effectively handling extensive contexts, crucial for myriad applications, poses a formidable obstacle owing to the intrinsic constraints of the models' context window sizes and the computational burdens entailed by their operations. This investigation presents an innovative framework that strategically tailors LLMs for streamlined context processing by harnessing the synergies among natural language summarization, soft prompt compression, and augmented utility preservation mechanisms. Our methodology, dubbed SoftPromptComp, amalgamates natural language prompts extracted from summarization methodologies with dynamically generated soft prompts to forge a concise yet semantically robust depiction of protracted contexts. This depiction undergoes further refinement via a weighting mechanism optimizing information retention and utility for subsequent tasks. We substantiate that our framework markedly diminishes computational overhead and enhances LLMs' efficacy across various benchmarks, while upholding or even augmenting the caliber of the produced content. By amalgamating soft prompt compression with sophisticated summarization, SoftPromptComp confronts the dual challenges of managing lengthy contexts and ensuring model scalability. Our findings point towards a propitious trajectory for augmenting LLMs' applicability and efficiency, rendering them more versatile and pragmatic for real-world applications. This research enriches the ongoing discourse on optimizing language models, providing insights into the potency of soft prompts and summarization techniques as pivotal instruments for the forthcoming generation of NLP solutions.

  • 8 authors
·
Apr 7, 2024

CollabStory: Multi-LLM Collaborative Story Generation and Authorship Analysis

The rise of unifying frameworks that enable seamless interoperability of Large Language Models (LLMs) has made LLM-LLM collaboration for open-ended tasks a possibility. Despite this, there have not been efforts to explore such collaborative writing. We take the next step beyond human-LLM collaboration to explore this multi-LLM scenario by generating the first exclusively LLM-generated collaborative stories dataset called CollabStory. We focus on single-author (N=1) to multi-author (up to N=5) scenarios, where multiple LLMs co-author stories. We generate over 32k stories using open-source instruction-tuned LLMs. Further, we take inspiration from the PAN tasks that have set the standard for human-human multi-author writing tasks and analysis. We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration. We find that current baselines are not able to handle this emerging scenario. Thus, CollabStory is a resource that could help propel an understanding as well as the development of techniques to discern the use of multiple LLMs. This is crucial to study in the context of writing tasks since LLM-LLM collaboration could potentially overwhelm ongoing challenges related to plagiarism detection, credit assignment, maintaining academic integrity in educational settings, and addressing copyright infringement concerns. We make our dataset and code available at \url{https://github.com/saranya-venkatraman/multi_llm_story_writing}.

  • 3 authors
·
Jun 18, 2024

Memory in Large Language Models: Mechanisms, Evaluation and Evolution

Under a unified operational definition, we define LLM memory as a persistent state written during pretraining, finetuning, or inference that can later be addressed and that stably influences outputs. We propose a four-part taxonomy (parametric, contextual, external, procedural/episodic) and a memory quadruple (location, persistence, write/access path, controllability). We link mechanism, evaluation, and governance via the chain write -> read -> inhibit/update. To avoid distorted comparisons across heterogeneous setups, we adopt a three-setting protocol (parametric only, offline retrieval, online retrieval) that decouples capability from information availability on the same data and timeline. On this basis we build a layered evaluation: parametric (closed-book recall, edit differential, memorization/privacy), contextual (position curves and the mid-sequence drop), external (answer correctness vs snippet attribution/faithfulness), and procedural/episodic (cross-session consistency and timeline replay, E MARS+). The framework integrates temporal governance and leakage auditing (freshness hits, outdated answers, refusal slices) and uncertainty reporting via inter-rater agreement plus paired tests with multiple-comparison correction. For updating and forgetting, we present DMM Gov: coordinating DAPT/TAPT, PEFT, model editing (ROME, MEND, MEMIT, SERAC), and RAG to form an auditable loop covering admission thresholds, rollout, monitoring, rollback, and change audits, with specs for timeliness, conflict handling, and long-horizon consistency. Finally, we give four testable propositions: minimum identifiability; a minimal evaluation card; causally constrained editing with verifiable forgetting; and when retrieval with small-window replay outperforms ultra-long-context reading. This yields a reproducible, comparable, and governable coordinate system for research and deployment.

  • 7 authors
·
Sep 23

MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning

Starting from the resurgence of deep learning, vision-language models (VLMs) benefiting from large language models (LLMs) have never been so popular. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images. The issue can traced back to the architectural design of VLMs or pre-training data. Specifically, the current VLMs primarily emphasize utilizing multi-modal data with a single image some, rather than multi-modal prompts with interleaved multiple images and text. Even though some newly proposed VLMs could handle user prompts with multiple images, pre-training data does not provide more sophisticated multi-modal prompts than interleaved image and text crawled from the web. We propose MMICL to address the issue by considering both the model and data perspectives. We introduce a well-designed architecture capable of seamlessly integrating visual and textual context in an interleaved manner and MIC dataset to reduce the gap between the training data and the complex user prompts in real-world applications, including: 1) multi-modal context with interleaved images and text, 2) textual references for each image, and 3) multi-image data with spatial, logical, or temporal relationships. Our experiments confirm that MMICL achieves new stat-of-the-art zero-shot and few-shot performance on a wide range of general vision-language tasks, especially for complex reasoning benchmarks including MME and MMBench. Our analysis demonstrates that MMICL effectively deals with the challenge of complex multi-modal prompt understanding. The experiments on ScienceQA-IMG also show that MMICL successfully alleviates the issue of language bias in VLMs, which we believe is the reason behind the advanced performance of MMICL.

  • 10 authors
·
Sep 14, 2023 1

MusicAgent: An AI Agent for Music Understanding and Generation with Large Language Models

AI-empowered music processing is a diverse field that encompasses dozens of tasks, ranging from generation tasks (e.g., timbre synthesis) to comprehension tasks (e.g., music classification). For developers and amateurs, it is very difficult to grasp all of these task to satisfy their requirements in music processing, especially considering the huge differences in the representations of music data and the model applicability across platforms among various tasks. Consequently, it is necessary to build a system to organize and integrate these tasks, and thus help practitioners to automatically analyze their demand and call suitable tools as solutions to fulfill their requirements. Inspired by the recent success of large language models (LLMs) in task automation, we develop a system, named MusicAgent, which integrates numerous music-related tools and an autonomous workflow to address user requirements. More specifically, we build 1) toolset that collects tools from diverse sources, including Hugging Face, GitHub, and Web API, etc. 2) an autonomous workflow empowered by LLMs (e.g., ChatGPT) to organize these tools and automatically decompose user requests into multiple sub-tasks and invoke corresponding music tools. The primary goal of this system is to free users from the intricacies of AI-music tools, enabling them to concentrate on the creative aspect. By granting users the freedom to effortlessly combine tools, the system offers a seamless and enriching music experience.

  • 8 authors
·
Oct 18, 2023 2

Cut2Next: Generating Next Shot via In-Context Tuning

Effective multi-shot generation demands purposeful, film-like transitions and strict cinematic continuity. Current methods, however, often prioritize basic visual consistency, neglecting crucial editing patterns (e.g., shot/reverse shot, cutaways) that drive narrative flow for compelling storytelling. This yields outputs that may be visually coherent but lack narrative sophistication and true cinematic integrity. To bridge this, we introduce Next Shot Generation (NSG): synthesizing a subsequent, high-quality shot that critically conforms to professional editing patterns while upholding rigorous cinematic continuity. Our framework, Cut2Next, leverages a Diffusion Transformer (DiT). It employs in-context tuning guided by a novel Hierarchical Multi-Prompting strategy. This strategy uses Relational Prompts to define overall context and inter-shot editing styles. Individual Prompts then specify per-shot content and cinematographic attributes. Together, these guide Cut2Next to generate cinematically appropriate next shots. Architectural innovations, Context-Aware Condition Injection (CACI) and Hierarchical Attention Mask (HAM), further integrate these diverse signals without introducing new parameters. We construct RawCuts (large-scale) and CuratedCuts (refined) datasets, both with hierarchical prompts, and introduce CutBench for evaluation. Experiments show Cut2Next excels in visual consistency and text fidelity. Crucially, user studies reveal a strong preference for Cut2Next, particularly for its adherence to intended editing patterns and overall cinematic continuity, validating its ability to generate high-quality, narratively expressive, and cinematically coherent subsequent shots.

  • 7 authors
·
Aug 11 3

OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation

Existing video avatar models can produce fluid human animations, yet they struggle to move beyond mere physical likeness to capture a character's authentic essence. Their motions typically synchronize with low-level cues like audio rhythm, lacking a deeper semantic understanding of emotion, intent, or context. To bridge this gap, we propose a framework designed to generate character animations that are not only physically plausible but also semantically coherent and expressive. Our model, OmniHuman-1.5, is built upon two key technical contributions. First, we leverage Multimodal Large Language Models to synthesize a structured textual representation of conditions that provides high-level semantic guidance. This guidance steers our motion generator beyond simplistic rhythmic synchronization, enabling the production of actions that are contextually and emotionally resonant. Second, to ensure the effective fusion of these multimodal inputs and mitigate inter-modality conflicts, we introduce a specialized Multimodal DiT architecture with a novel Pseudo Last Frame design. The synergy of these components allows our model to accurately interpret the joint semantics of audio, images, and text, thereby generating motions that are deeply coherent with the character, scene, and linguistic content. Extensive experiments demonstrate that our model achieves leading performance across a comprehensive set of metrics, including lip-sync accuracy, video quality, motion naturalness and semantic consistency with textual prompts. Furthermore, our approach shows remarkable extensibility to complex scenarios, such as those involving multi-person and non-human subjects. Homepage: https://omnihuman-lab.github.io/v1_5/

  • 9 authors
·
Aug 26 2

Thus Spake Long-Context Large Language Model

Long context is an important topic in Natural Language Processing (NLP), running through the development of NLP architectures, and offers immense opportunities for Large Language Models (LLMs) giving LLMs the lifelong learning potential akin to humans. Unfortunately, the pursuit of a long context is accompanied by numerous obstacles. Nevertheless, long context remains a core competitive advantage for LLMs. In the past two years, the context length of LLMs has achieved a breakthrough extension to millions of tokens. Moreover, the research on long-context LLMs has expanded from length extrapolation to a comprehensive focus on architecture, infrastructure, training, and evaluation technologies. Inspired by the symphonic poem, Thus Spake Zarathustra, we draw an analogy between the journey of extending the context of LLM and the attempts of humans to transcend its mortality. In this survey, We will illustrate how LLM struggles between the tremendous need for a longer context and its equal need to accept the fact that it is ultimately finite. To achieve this, we give a global picture of the lifecycle of long-context LLMs from four perspectives: architecture, infrastructure, training, and evaluation, showcasing the full spectrum of long-context technologies. At the end of this survey, we will present 10 unanswered questions currently faced by long-context LLMs. We hope this survey can serve as a systematic introduction to the research on long-context LLMs.

  • 13 authors
·
Feb 24 6

Model Tells Itself Where to Attend: Faithfulness Meets Automatic Attention Steering

Large language models (LLMs) have demonstrated remarkable performance across various real-world tasks. However, they often struggle to fully comprehend and effectively utilize their input contexts, resulting in responses that are unfaithful or hallucinated. This difficulty increases for contexts that are long or contain distracting information, which can divert LLMs from fully capturing essential evidence. To address this issue, many works use prompting to help LLMs utilize contextual information more faithfully. For instance, iterative prompting highlights key information in two steps that first ask the LLM to identify important pieces of context and then derive answers accordingly. However, prompting methods are constrained to highlighting key information implicitly in token space, which is often insufficient to fully steer the model's attention. To improve model faithfulness more reliably, we propose AutoPASTA, a method that automatically identifies key contextual information and explicitly highlights it by steering an LLM's attention scores. Like prompting, AutoPASTA is applied at inference time and does not require changing any model parameters. Our experiments on open-book QA demonstrate that AutoPASTA effectively enables models to grasp essential contextual information, leading to substantially improved model faithfulness and performance, e.g., an average improvement of 7.95% for LLAMA3-70B-Instruct. Code will be publicly available at https://github.com/QingruZhang/AutoPASTA .

  • 9 authors
·
Sep 16, 2024

CrossCodeEval: A Diverse and Multilingual Benchmark for Cross-File Code Completion

Code completion models have made significant progress in recent years, yet current popular evaluation datasets, such as HumanEval and MBPP, predominantly focus on code completion tasks within a single file. This over-simplified setting falls short of representing the real-world software development scenario where repositories span multiple files with numerous cross-file dependencies, and accessing and understanding cross-file context is often required to complete the code correctly. To fill in this gap, we propose CrossCodeEval, a diverse and multilingual code completion benchmark that necessitates an in-depth cross-file contextual understanding to complete the code accurately. CrossCodeEval is built on a diverse set of real-world, open-sourced, permissively-licensed repositories in four popular programming languages: Python, Java, TypeScript, and C#. To create examples that strictly require cross-file context for accurate completion, we propose a straightforward yet efficient static-analysis-based approach to pinpoint the use of cross-file context within the current file. Extensive experiments on state-of-the-art code language models like CodeGen and StarCoder demonstrate that CrossCodeEval is extremely challenging when the relevant cross-file context is absent, and we see clear improvements when adding these context into the prompt. However, despite such improvements, the pinnacle of performance remains notably unattained even with the highest-performing model, indicating that CrossCodeEval is also capable of assessing model's capability in leveraging extensive context to make better code completion. Finally, we benchmarked various methods in retrieving cross-file context, and show that CrossCodeEval can also be used to measure the capability of code retrievers.

  • 11 authors
·
Oct 17, 2023 1

RepoFusion: Training Code Models to Understand Your Repository

Despite the huge success of Large Language Models (LLMs) in coding assistants like GitHub Copilot, these models struggle to understand the context present in the repository (e.g., imports, parent classes, files with similar names, etc.), thereby producing inaccurate code completions. This effect is more pronounced when using these assistants for repositories that the model has not seen during training, such as proprietary software or work-in-progress code projects. Recent work has shown the promise of using context from the repository during inference. In this work, we extend this idea and propose RepoFusion, a framework to train models to incorporate relevant repository context. Experiments on single-line code completion show that our models trained with repository context significantly outperform much larger code models as CodeGen-16B-multi (sim73times larger) and closely match the performance of the sim 70times larger StarCoderBase model that was trained with the Fill-in-the-Middle objective. We find these results to be a novel and compelling demonstration of the gains that training with repository context can bring. We carry out extensive ablation studies to investigate the impact of design choices such as context type, number of contexts, context length, and initialization within our framework. Lastly, we release Stack-Repo, a dataset of 200 Java repositories with permissive licenses and near-deduplicated files that are augmented with three types of repository contexts. Additionally, we are making available the code and trained checkpoints for our work. Our released resources can be found at https://huggingface.co/RepoFusion.

  • 5 authors
·
Jun 19, 2023

TextCenGen: Attention-Guided Text-Centric Background Adaptation for Text-to-Image Generation

Text-to-image (T2I) generation has made remarkable progress in producing high-quality images, but a fundamental challenge remains: creating backgrounds that naturally accommodate text placement without compromising image quality. This capability is non-trivial for real-world applications like graphic design, where clear visual hierarchy between content and text is essential. Prior work has primarily focused on arranging layouts within existing static images, leaving unexplored the potential of T2I models for generating text-friendly backgrounds. We present TextCenGen, a training-free dynamic background adaptation in the blank region for text-friendly image generation. Instead of directly reducing attention in text areas, which degrades image quality, we relocate conflicting objects before background optimization. Our method analyzes cross-attention maps to identify conflicting objects overlapping with text regions and uses a force-directed graph approach to guide their relocation, followed by attention excluding constraints to ensure smooth backgrounds. Our method is plug-and-play, requiring no additional training while well balancing both semantic fidelity and visual quality. Evaluated on our proposed text-friendly T2I benchmark of 27,000 images across four seed datasets, TextCenGen outperforms existing methods by achieving 23% lower saliency overlap in text regions while maintaining 98% of the semantic fidelity measured by CLIP score and our proposed Visual-Textual Concordance Metric (VTCM).

  • 7 authors
·
Apr 17, 2024

FeatBench: Evaluating Coding Agents on Feature Implementation for Vibe Coding

The rapid advancement of Large Language Models (LLMs) has given rise to a novel software development paradigm known as "vibe coding," where users interact with coding agents through high-level natural language. However, existing evaluation benchmarks for code generation inadequately assess an agent's vibe coding capabilities. Existing benchmarks are misaligned, as they either require code-level specifications or focus narrowly on issue-solving, neglecting the critical scenario of feature implementation within the vibe coding paradiam. To address this gap, we propose FeatBench, a novel benchmark for vibe coding that focuses on feature implementation. Our benchmark is distinguished by several key features: 1. Pure Natural Language Prompts. Task inputs consist solely of abstract natural language descriptions, devoid of any code or structural hints. 2. A Rigorous & Evolving Data Collection Process. FeatBench is built on a multi-level filtering pipeline to ensure quality and a fully automated pipeline to evolve the benchmark, mitigating data contamination. 3. Comprehensive Test Cases. Each task includes Fail-to-Pass (F2P) and Pass-to-Pass (P2P) tests to verify correctness and prevent regressions. 4. Diverse Application Domains. The benchmark includes repositories from diverse domains to ensure it reflects real-world scenarios. We evaluate two state-of-the-art agent frameworks with four leading LLMs on FeatBench. Our evaluation reveals that feature implementation within the vibe coding paradigm is a significant challenge, with the highest success rate of only 29.94%. Our analysis also reveals a tendency for "aggressive implementation," a strategy that paradoxically leads to both critical failures and superior software design. We release FeatBench, our automated collection pipeline, and all experimental results to facilitate further community research.

  • 3 authors
·
Sep 26

Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities

One of the main challenges of multimodal learning is the need to combine heterogeneous modalities (e.g., video, audio, text). For example, video and audio are obtained at much higher rates than text and are roughly aligned in time. They are often not synchronized with text, which comes as a global context, e.g., a title, or a description. Furthermore, video and audio inputs are of much larger volumes, and grow as the video length increases, which naturally requires more compute dedicated to these modalities and makes modeling of long-range dependencies harder. We here decouple the multimodal modeling, dividing it into separate, focused autoregressive models, processing the inputs according to the characteristics of the modalities. We propose a multimodal model, called Mirasol3B, consisting of an autoregressive component for the time-synchronized modalities (audio and video), and an autoregressive component for the context modalities which are not necessarily aligned in time but are still sequential. To address the long-sequences of the video-audio inputs, we propose to further partition the video and audio sequences in consecutive snippets and autoregressively process their representations. To that end, we propose a Combiner mechanism, which models the audio-video information jointly within a timeframe. The Combiner learns to extract audio and video features from raw spatio-temporal signals, and then learns to fuse these features producing compact but expressive representations per snippet. Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models. It effectively addresses the high computational demand of media inputs by both learning compact representations, controlling the sequence length of the audio-video feature representations, and modeling their dependencies in time.

  • 6 authors
·
Nov 9, 2023 1

EIDT-V: Exploiting Intersections in Diffusion Trajectories for Model-Agnostic, Zero-Shot, Training-Free Text-to-Video Generation

Zero-shot, training-free, image-based text-to-video generation is an emerging area that aims to generate videos using existing image-based diffusion models. Current methods in this space require specific architectural changes to image generation models, which limit their adaptability and scalability. In contrast to such methods, we provide a model-agnostic approach. We use intersections in diffusion trajectories, working only with the latent values. We could not obtain localized frame-wise coherence and diversity using only the intersection of trajectories. Thus, we instead use a grid-based approach. An in-context trained LLM is used to generate coherent frame-wise prompts; another is used to identify differences between frames. Based on these, we obtain a CLIP-based attention mask that controls the timing of switching the prompts for each grid cell. Earlier switching results in higher variance, while later switching results in more coherence. Therefore, our approach can ensure appropriate control between coherence and variance for the frames. Our approach results in state-of-the-art performance while being more flexible when working with diverse image-generation models. The empirical analysis using quantitative metrics and user studies confirms our model's superior temporal consistency, visual fidelity and user satisfaction, thus providing a novel way to obtain training-free, image-based text-to-video generation.

  • 3 authors
·
Apr 9

ShotAdapter: Text-to-Multi-Shot Video Generation with Diffusion Models

Current diffusion-based text-to-video methods are limited to producing short video clips of a single shot and lack the capability to generate multi-shot videos with discrete transitions where the same character performs distinct activities across the same or different backgrounds. To address this limitation we propose a framework that includes a dataset collection pipeline and architectural extensions to video diffusion models to enable text-to-multi-shot video generation. Our approach enables generation of multi-shot videos as a single video with full attention across all frames of all shots, ensuring character and background consistency, and allows users to control the number, duration, and content of shots through shot-specific conditioning. This is achieved by incorporating a transition token into the text-to-video model to control at which frames a new shot begins and a local attention masking strategy which controls the transition token's effect and allows shot-specific prompting. To obtain training data we propose a novel data collection pipeline to construct a multi-shot video dataset from existing single-shot video datasets. Extensive experiments demonstrate that fine-tuning a pre-trained text-to-video model for a few thousand iterations is enough for the model to subsequently be able to generate multi-shot videos with shot-specific control, outperforming the baselines. You can find more details in https://shotadapter.github.io/

  • 6 authors
·
May 12

Openstory++: A Large-scale Dataset and Benchmark for Instance-aware Open-domain Visual Storytelling

Recent image generation models excel at creating high-quality images from brief captions. However, they fail to maintain consistency of multiple instances across images when encountering lengthy contexts. This inconsistency is largely due to in existing training datasets the absence of granular instance feature labeling in existing training datasets. To tackle these issues, we introduce Openstory++, a large-scale dataset combining additional instance-level annotations with both images and text. Furthermore, we develop a training methodology that emphasizes entity-centric image-text generation, ensuring that the models learn to effectively interweave visual and textual information. Specifically, Openstory++ streamlines the process of keyframe extraction from open-domain videos, employing vision-language models to generate captions that are then polished by a large language model for narrative continuity. It surpasses previous datasets by offering a more expansive open-domain resource, which incorporates automated captioning, high-resolution imagery tailored for instance count, and extensive frame sequences for temporal consistency. Additionally, we present Cohere-Bench, a pioneering benchmark framework for evaluating the image generation tasks when long multimodal context is provided, including the ability to keep the background, style, instances in the given context coherent. Compared to existing benchmarks, our work fills critical gaps in multi-modal generation, propelling the development of models that can adeptly generate and interpret complex narratives in open-domain environments. Experiments conducted within Cohere-Bench confirm the superiority of Openstory++ in nurturing high-quality visual storytelling models, enhancing their ability to address open-domain generation tasks. More details can be found at https://openstorypp.github.io/

  • 12 authors
·
Aug 7, 2024 2

Cross-Modal Contextualized Diffusion Models for Text-Guided Visual Generation and Editing

Conditional diffusion models have exhibited superior performance in high-fidelity text-guided visual generation and editing. Nevertheless, prevailing text-guided visual diffusion models primarily focus on incorporating text-visual relationships exclusively into the reverse process, often disregarding their relevance in the forward process. This inconsistency between forward and reverse processes may limit the precise conveyance of textual semantics in visual synthesis results. To address this issue, we propose a novel and general contextualized diffusion model (ContextDiff) by incorporating the cross-modal context encompassing interactions and alignments between text condition and visual sample into forward and reverse processes. We propagate this context to all timesteps in the two processes to adapt their trajectories, thereby facilitating cross-modal conditional modeling. We generalize our contextualized diffusion to both DDPMs and DDIMs with theoretical derivations, and demonstrate the effectiveness of our model in evaluations with two challenging tasks: text-to-image generation, and text-to-video editing. In each task, our ContextDiff achieves new state-of-the-art performance, significantly enhancing the semantic alignment between text condition and generated samples, as evidenced by quantitative and qualitative evaluations. Our code is available at https://github.com/YangLing0818/ContextDiff

  • 7 authors
·
Feb 26, 2024

LongGenBench: Long-context Generation Benchmark

Current long-context benchmarks primarily focus on retrieval-based tests, requiring Large Language Models (LLMs) to locate specific information within extensive input contexts, such as the needle-in-a-haystack (NIAH) benchmark. Long-context generation refers to the ability of a language model to generate coherent and contextually accurate text that spans across lengthy passages or documents. While recent studies show strong performance on NIAH and other retrieval-based long-context benchmarks, there is a significant lack of benchmarks for evaluating long-context generation capabilities. To bridge this gap and offer a comprehensive assessment, we introduce a synthetic benchmark, LongGenBench, which allows for flexible configurations of customized generation context lengths. LongGenBench advances beyond traditional benchmarks by redesigning the format of questions and necessitating that LLMs respond with a single, cohesive long-context answer. Upon extensive evaluation using LongGenBench, we observe that: (1) both API accessed and open source models exhibit performance degradation in long-context generation scenarios, ranging from 1.2% to 47.1%; (2) different series of LLMs exhibit varying trends of performance degradation, with the Gemini-1.5-Flash model showing the least degradation among API accessed models, and the Qwen2 series exhibiting the least degradation in LongGenBench among open source models.

  • 4 authors
·
Oct 5, 2024 3

SitEmb-v1.5: Improved Context-Aware Dense Retrieval for Semantic Association and Long Story Comprehension

Retrieval-augmented generation (RAG) over long documents typically involves splitting the text into smaller chunks, which serve as the basic units for retrieval. However, due to dependencies across the original document, contextual information is often essential for accurately interpreting each chunk. To address this, prior work has explored encoding longer context windows to produce embeddings for longer chunks. Despite these efforts, gains in retrieval and downstream tasks remain limited. This is because (1) longer chunks strain the capacity of embedding models due to the increased amount of information they must encode, and (2) many real-world applications still require returning localized evidence due to constraints on model or human bandwidth. We propose an alternative approach to this challenge by representing short chunks in a way that is conditioned on a broader context window to enhance retrieval performance -- i.e., situating a chunk's meaning within its context. We further show that existing embedding models are not well-equipped to encode such situated context effectively, and thus introduce a new training paradigm and develop the situated embedding models (SitEmb). To evaluate our method, we curate a book-plot retrieval dataset specifically designed to assess situated retrieval capabilities. On this benchmark, our SitEmb-v1 model based on BGE-M3 substantially outperforms state-of-the-art embedding models, including several with up to 7-8B parameters, with only 1B parameters. Our 8B SitEmb-v1.5 model further improves performance by over 10% and shows strong results across different languages and several downstream applications.

  • 9 authors
·
Aug 3 3

VIMI: Grounding Video Generation through Multi-modal Instruction

Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining. This limitation stems from the absence of large-scale multimodal prompt video datasets, resulting in a lack of visual grounding and restricting their versatility and application in multimodal integration. To address this, we construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts and then utilize a two-stage training strategy to enable diverse video generation tasks within the same model. In the first stage, we propose a multimodal conditional video generation framework for pretraining on these augmented datasets, establishing a foundational model for grounded video generation. Secondly, we finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions. This process further refines the model's ability to handle diverse inputs and tasks, ensuring seamless integration of multi-modal information. After this two-stage train-ing process, VIMI demonstrates multimodal understanding capabilities, producing contextually rich and personalized videos grounded in the provided inputs, as shown in Figure 1. Compared to previous visual grounded video generation methods, VIMI can synthesize consistent and temporally coherent videos with large motion while retaining the semantic control. Lastly, VIMI also achieves state-of-the-art text-to-video generation results on UCF101 benchmark.

  • 8 authors
·
Jul 8, 2024 1

Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation

Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license.

  • 5 authors
·
Jun 24, 2024 3

Album Storytelling with Iterative Story-aware Captioning and Large Language Models

This work studies how to transform an album to vivid and coherent stories, a task we refer to as "album storytelling". While this task can help preserve memories and facilitate experience sharing, it remains an underexplored area in current literature. With recent advances in Large Language Models (LLMs), it is now possible to generate lengthy, coherent text, opening up the opportunity to develop an AI assistant for album storytelling. One natural approach is to use caption models to describe each photo in the album, and then use LLMs to summarize and rewrite the generated captions into an engaging story. However, we find this often results in stories containing hallucinated information that contradicts the images, as each generated caption ("story-agnostic") is not always about the description related to the whole story or miss some necessary information. To address these limitations, we propose a new iterative album storytelling pipeline. Specifically, we start with an initial story and build a story-aware caption model to refine the captions using the whole story as guidance. The polished captions are then fed into the LLMs to generate a new refined story. This process is repeated iteratively until the story contains minimal factual errors while maintaining coherence. To evaluate our proposed pipeline, we introduce a new dataset of image collections from vlogs and a set of systematic evaluation metrics. Our results demonstrate that our method effectively generates more accurate and engaging stories for albums, with enhanced coherence and vividness.

  • 8 authors
·
May 22, 2023

PASS: Presentation Automation for Slide Generation and Speech

In today's fast-paced world, effective presentations have become an essential tool for communication in both online and offline meetings. The crafting of a compelling presentation requires significant time and effort, from gathering key insights to designing slides that convey information clearly and concisely. However, despite the wealth of resources available, people often find themselves manually extracting crucial points, analyzing data, and organizing content in a way that ensures clarity and impact. Furthermore, a successful presentation goes beyond just the slides; it demands rehearsal and the ability to weave a captivating narrative to fully engage the audience. Although there has been some exploration of automating document-to-slide generation, existing research is largely centered on converting research papers. In addition, automation of the delivery of these presentations has yet to be addressed. We introduce PASS, a pipeline used to generate slides from general Word documents, going beyond just research papers, which also automates the oral delivery of the generated slides. PASS analyzes user documents to create a dynamic, engaging presentation with an AI-generated voice. Additionally, we developed an LLM-based evaluation metric to assess our pipeline across three critical dimensions of presentations: relevance, coherence, and redundancy. The data and codes are available at https://github.com/AggarwalTushar/PASS.

  • 2 authors
·
Jan 11

Can Few-shot Work in Long-Context? Recycling the Context to Generate Demonstrations

Despite recent advancements in Large Language Models (LLMs), their performance on tasks involving long contexts remains sub-optimal. In-Context Learning (ICL) with few-shot examples may be an appealing solution to enhance LLM performance in this scenario; However, naively adding ICL examples with long context introduces challenges, including substantial token overhead added for each few-shot example and context mismatch between the demonstrations and the target query. In this work, we propose to automatically generate few-shot examples for long context QA tasks by recycling contexts. Specifically, given a long input context (1-3k tokens) and a query, we generate additional query-output pairs from the given context as few-shot examples, while introducing the context only once. This ensures that the demonstrations are leveraging the same context as the target query while only adding a small number of tokens to the prompt. We further enhance each demonstration by instructing the model to explicitly identify the relevant paragraphs before the answer, which improves performance while providing fine-grained attribution to the answer source. We apply our method on multiple LLMs and obtain substantial improvements (+23\% on average across models) on various QA datasets with long context, especially when the answer lies within the middle of the context. Surprisingly, despite introducing only single-hop ICL examples, LLMs also successfully generalize to multi-hop long-context QA using our approach.

  • 11 authors
·
Jun 19, 2024 1

ContextASR-Bench: A Massive Contextual Speech Recognition Benchmark

Automatic Speech Recognition (ASR) has been extensively investigated, yet prior evaluative efforts have largely been restricted to contextless paradigms. This constraint stems from the limited proficiency of conventional ASR models in context modeling and their deficiency in memory and reasoning based on world knowledge. Recent breakthroughs in the development of Large Language Models (LLMs) and corresponding Large Audio Language Models (LALMs) have markedly enhanced the visibility of general artificial intelligence capabilities. Consequently, there exists a compelling need for a benchmark that can evaluate both the generality and intelligence of ASR systems. To address this gap, we propose ContextASR-Bench: a comprehensive, large-scale benchmark designed to assess contextual speech recognition. This benchmark encompasses up to 40,000 data entries across over 10 domains, enabling a thorough evaluation of model performance in scenarios that omit or incorporate coarse-grained or fine-grained contextual information. Moreover, diverging from conventional ASR evaluations, our benchmark includes an analysis of model efficacy in recognizing named entities mentioned within the auditory input. Our extensive evaluation highlights that LALMs, with strong world knowledge and context learning capabilities, outperform conventional ASR models by a large margin. The dataset and evaluation code have been released at https://github.com/MrSupW/ContextASR-Bench.

  • 7 authors
·
Jul 8

Two are better than one: Context window extension with multi-grained self-injection

The limited context window of contemporary large language models (LLMs) remains a huge barrier to their broader application across various domains. While continual pre-training on long-context data is a straightforward and effective solution, it incurs substantial costs in terms of data acquisition and computational resources. To alleviate this issue, we propose SharedLLM, a novel approach grounded in the design philosophy of multi-grained context compression and query-aware information retrieval. SharedLLM is composed of two short-context LLMs such as LLaMA-2, termed upper model and lower model. The lower model functions as a compressor while the upper model acts as a decoder. The upper model receives compressed, multi-grained context information from the lower model and performs context-aware modeling on the running text. Information transfer between the compressor and decoder occurs only at the lowest layers to refrain from long forward paths in the lower model and redundant cross-attention modules in the upper model. Based on this architecture, we introduce a specialized tree-style data structure to efficiently encode, store and retrieve multi-grained contextual information for text chunks. This structure, combined with a search algorithm, enables rapid encoding and retrieval of relevant information from various levels of the tree based on the input query. This entire process, wherein the sender and receiver are derived from the same LLM layer, is referred to as self-injection.

  • 4 authors
·
Oct 25, 2024

Reconstructing the Charlie Parker Omnibook using an audio-to-score automatic transcription pipeline

The Charlie Parker Omnibook is a cornerstone of jazz music education, described by pianist Ethan Iverson as "the most important jazz education text ever published". In this work we propose a new transcription pipeline and explore the extent to which state of the art music technology is able to reconstruct these scores directly from the audio without human intervention. Our pipeline includes: a newly trained source separation model for saxophone, a new MIDI transcription model for solo saxophone and an adaptation of an existing MIDI-to-score method for monophonic instruments. To assess this pipeline we also provide an enhanced dataset of Charlie Parker transcriptions as score-audio pairs with accurate MIDI alignments and downbeat annotations. This represents a challenging new benchmark for automatic audio-to-score transcription that we hope will advance research into areas beyond transcribing audio-to-MIDI alone. Together, these form another step towards producing scores that musicians can use directly, without the need for onerous corrections or revisions. To facilitate future research, all model checkpoints and data are made available to download along with code for the transcription pipeline. Improvements in our modular pipeline could one day make the automatic transcription of complex jazz solos a routine possibility, thereby enriching the resources available for music education and preservation.

  • 2 authors
·
May 26, 2024

CompLLM: Compression for Long Context Q&A

Large Language Models (LLMs) face significant computational challenges when processing long contexts due to the quadratic complexity of self-attention. While soft context compression methods, which map input text to smaller latent representations, have shown promise, their real-world adoption is limited. Existing techniques typically compress the context as a single unit, which leads to quadratic compression complexity and an inability to reuse computations across queries with overlapping contexts. In this work, we introduce CompLLM, a soft compression technique designed for practical deployment. Instead of processing the context holistically, CompLLM divides it into segments and compresses each one independently. This simple design choice yields three critical properties: efficiency, as the compression step scales linearly with the context length; scalability, enabling models trained on short sequences (e.g., 1k tokens) to generalize to contexts of 100k tokens; and reusability, allowing compressed segments to be cached and reused across different queries. Our experiments show that with a 2x compression rate, at high context lengths CompLLM speeds up Time To First Token (TTFT) by up to 4x and reduces the KV cache size by 50%. Furthermore, CompLLM achieves performance comparable to that obtained with the uncompressed context, and even surpasses it on very long sequences, demonstrating its effectiveness and practical utility.

amazon Amazon
·
Sep 23 4

ONE-PEACE: Exploring One General Representation Model Toward Unlimited Modalities

In this work, we explore a scalable way for building a general representation model toward unlimited modalities. We release ONE-PEACE, a highly extensible model with 4B parameters that can seamlessly align and integrate representations across vision, audio, and language modalities. The architecture of ONE-PEACE comprises modality adapters, shared self-attention layers, and modality FFNs. This design allows for the easy extension of new modalities by adding adapters and FFNs, while also enabling multi-modal fusion through self-attention layers. To pretrain ONE-PEACE, we develop two modality-agnostic pretraining tasks, cross-modal aligning contrast and intra-modal denoising contrast, which align the semantic space of different modalities and capture fine-grained details within modalities concurrently. With the scaling-friendly architecture and pretraining tasks, ONE-PEACE has the potential to expand to unlimited modalities. Without using any vision or language pretrained model for initialization, ONE-PEACE achieves leading results on a wide range of uni-modal and multi-modal tasks, including image classification (ImageNet), semantic segmentation (ADE20K), audio-text retrieval (AudioCaps, Clotho), audio classification (ESC-50, FSD50K, VGGSound), audio question answering (AVQA), image-text retrieval (MSCOCO, Flickr30K), and visual grounding (RefCOCO/+/g). Code is available at https://github.com/OFA-Sys/ONE-PEACE.

  • 8 authors
·
May 18, 2023

Copy-Paste to Mitigate Large Language Model Hallucinations

While Retrieval-Augmented Generation (RAG) enables large language models (LLMs) to generate contextually grounded responses, contextual faithfulness remains challenging as LLMs may not consistently trust provided context, leading to hallucinations that undermine reliability. We observe an inverse correlation between response copying degree and context-unfaithful hallucinations on RAGTruth, suggesting that higher copying degrees reduce hallucinations by fostering genuine contextual belief. We propose CopyPasteLLM, obtained through two-stage high-copying response preference training. We design three prompting methods to enhance copying degree, demonstrating that high-copying responses achieve superior contextual faithfulness and hallucination control. These approaches enable a fully automated pipeline that transforms generated responses into high-copying preference data for training CopyPasteLLM. On FaithEval, ConFiQA and PubMedQA, CopyPasteLLM achieves best performance in both counterfactual and original contexts, remarkably with 12.2% to 24.5% accuracy improvements on FaithEval over the best baseline, while requiring only 365 training samples -- 1/50th of baseline data. To elucidate CopyPasteLLM's effectiveness, we propose the Context-Parameter Copying Capturing algorithm. Interestingly, this reveals that CopyPasteLLM recalibrates reliance on internal parametric knowledge rather than external knowledge during generation. All codes are available at https://github.com/longyongchao/CopyPasteLLM

  • 6 authors
·
Oct 1

I can listen but cannot read: An evaluation of two-tower multimodal systems for instrument recognition

Music two-tower multimodal systems integrate audio and text modalities into a joint audio-text space, enabling direct comparison between songs and their corresponding labels. These systems enable new approaches for classification and retrieval, leveraging both modalities. Despite the promising results they have shown for zero-shot classification and retrieval tasks, closer inspection of the embeddings is needed. This paper evaluates the inherent zero-shot properties of joint audio-text spaces for the case-study of instrument recognition. We present an evaluation and analysis of two-tower systems for zero-shot instrument recognition and a detailed analysis of the properties of the pre-joint and joint embeddings spaces. Our findings suggest that audio encoders alone demonstrate good quality, while challenges remain within the text encoder or joint space projection. Specifically, two-tower systems exhibit sensitivity towards specific words, favoring generic prompts over musically informed ones. Despite the large size of textual encoders, they do not yet leverage additional textual context or infer instruments accurately from their descriptions. Lastly, a novel approach for quantifying the semantic meaningfulness of the textual space leveraging an instrument ontology is proposed. This method reveals deficiencies in the systems' understanding of instruments and provides evidence of the need for fine-tuning text encoders on musical data.

  • 3 authors
·
Jul 25, 2024

Deep Learning-based Code Completion: On the Impact on Performance of Contextual Information

Code completion aims at speeding up code writing by recommending to developers the next tokens they are likely to type. Deep Learning (DL) models pushed the boundaries of code completion by redefining what these coding assistants can do: We moved from predicting few code tokens to automatically generating entire functions. One important factor impacting the performance of DL-based code completion techniques is the context provided as input. With "context" we refer to what the model knows about the code to complete. In a simple scenario, the DL model might be fed with a partially implemented function to complete. In this case, the context is represented by the incomplete function and, based on it, the model must generate a prediction. It is however possible to expand such a context to include additional information, like the whole source code file containing the function to complete, which could be useful to boost the prediction performance. In this work, we present an empirical study investigating how the performance of a DL-based code completion technique is affected by different contexts. We experiment with 8 types of contexts and their combinations. These contexts include: (i) coding contexts, featuring information extracted from the code base in which the code completion is invoked (e.g., code components structurally related to the one to "complete"); (ii) process context, with information aimed at depicting the current status of the project in which a code completion task is triggered (e.g., a textual representation of open issues relevant for the code to complete); and (iii) developer contexts, capturing information about the developer invoking the code completion (e.g., the APIs frequently used). Our results show that additional contextual information can benefit the performance of DL-based code completion, with relative improvements up to +22% in terms of correct predictions.

  • 3 authors
·
Jan 9

Unified Multi-Modal Interleaved Document Representation for Information Retrieval

Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way.

  • 5 authors
·
Oct 3, 2024

FreeCus: Free Lunch Subject-driven Customization in Diffusion Transformers

In light of recent breakthroughs in text-to-image (T2I) generation, particularly with diffusion transformers (DiT), subject-driven technologies are increasingly being employed for high-fidelity customized production that preserves subject identity from reference inputs, enabling thrilling design workflows and engaging entertainment. Existing alternatives typically require either per-subject optimization via trainable text embeddings or training specialized encoders for subject feature extraction on large-scale datasets. Such dependencies on training procedures fundamentally constrain their practical applications. More importantly, current methodologies fail to fully leverage the inherent zero-shot potential of modern diffusion transformers (e.g., the Flux series) for authentic subject-driven synthesis. To bridge this gap, we propose FreeCus, a genuinely training-free framework that activates DiT's capabilities through three key innovations: 1) We introduce a pivotal attention sharing mechanism that captures the subject's layout integrity while preserving crucial editing flexibility. 2) Through a straightforward analysis of DiT's dynamic shifting, we propose an upgraded variant that significantly improves fine-grained feature extraction. 3) We further integrate advanced Multimodal Large Language Models (MLLMs) to enrich cross-modal semantic representations. Extensive experiments reflect that our method successfully unlocks DiT's zero-shot ability for consistent subject synthesis across diverse contexts, achieving state-of-the-art or comparable results compared to approaches that require additional training. Notably, our framework demonstrates seamless compatibility with existing inpainting pipelines and control modules, facilitating more compelling experiences. Our code is available at: https://github.com/Monalissaa/FreeCus.

  • 4 authors
·
Jul 21

MCPToolBench++: A Large Scale AI Agent Model Context Protocol MCP Tool Use Benchmark

LLMs' capabilities are enhanced by using function calls to integrate various data sources or API results into the context window. Typical tools include search, web crawlers, maps, financial data, file systems, and browser usage, etc. Integrating these data sources or functions requires a standardized method. The Model Context Protocol (MCP) provides a standardized way to supply context to LLMs. However, the evaluation of LLMs and AI Agents' MCP tool use abilities suffer from several issues. First, there's a lack of comprehensive datasets or benchmarks to evaluate various MCP tools. Second, the diverse formats of response from MCP tool call execution further increase the difficulty of evaluation. Additionally, unlike existing tool-use benchmarks with high success rates in functions like programming and math functions, the success rate of real-world MCP tool is not guaranteed and varies across different MCP servers. Furthermore, the LLMs' context window also limits the number of available tools that can be called in a single run, because the textual descriptions of tool and the parameters have long token length for an LLM to process all at once. To help address the challenges of evaluating LLMs' performance on calling MCP tools, we propose MCPToolBench++, a large-scale, multi-domain AI Agent tool use benchmark. As of July 2025, this benchmark is build upon marketplace of over 4k MCP servers from more than 40 categories, collected from the MCP marketplaces and GitHub communities. The datasets consist of both single-step and multi-step tool calls across different categories. We evaluated SOTA LLMs with agentic abilities on this benchmark and reported the results.

  • 4 authors
·
Aug 10 2

Interpreting User Requests in the Context of Natural Language Standing Instructions

Users of natural language interfaces, generally powered by Large Language Models (LLMs),often must repeat their preferences each time they make a similar request. To alleviate this, we propose including some of a user's preferences and instructions in natural language -- collectively termed standing instructions -- as additional context for such interfaces. For example, when a user states I'm hungry, their previously expressed preference for Persian food will be automatically added to the LLM prompt, so as to influence the search for relevant restaurants. We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains, where each dialogue is paired with a user profile (a set of users specific standing instructions) and corresponding structured representations (API calls). A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue. NLSI contains diverse phenomena, from simple preferences to interdependent instructions such as triggering a hotel search whenever the user is booking tickets to an event. We conduct experiments on NLSI using prompting with large language models and various retrieval approaches, achieving a maximum of 44.7% exact match on API prediction. Our results demonstrate the challenges in identifying the relevant standing instructions and their interpretation into API calls.

  • 6 authors
·
Nov 16, 2023

MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers

The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.

  • 10 authors
·
Aug 20 10

Baichuan Alignment Technical Report

We introduce Baichuan Alignment, a detailed analysis of the alignment techniques employed in the Baichuan series of models. This represents the industry's first comprehensive account of alignment methodologies, offering valuable insights for advancing AI research. We investigate the critical components that enhance model performance during the alignment process, including optimization methods, data strategies, capability enhancements, and evaluation processes. The process spans three key stages: Prompt Augmentation System (PAS), Supervised Fine-Tuning (SFT), and Preference Alignment. The problems encountered, the solutions applied, and the improvements made are thoroughly recorded. Through comparisons across well-established benchmarks, we highlight the technological advancements enabled by Baichuan Alignment. Baichuan-Instruct is an internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct versions of the Qwen2-72B and Llama-3-70B base models, optimized through Baichuan Alignment. Baichuan-Instruct demonstrates significant improvements in core capabilities, with user experience gains ranging from 17% to 28%, and performs exceptionally well on specialized benchmarks. In open-source benchmark evaluations, both Qwen2-Nova-72B and Llama3-PBM-Nova-70B consistently outperform their respective official instruct versions across nearly all datasets. This report aims to clarify the key technologies behind the alignment process, fostering a deeper understanding within the community. Llama3-PBM-Nova-70B model is available at https://huggingface.co/PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B.

  • 25 authors
·
Oct 18, 2024 2

Is It Really Long Context if All You Need Is Retrieval? Towards Genuinely Difficult Long Context NLP

Improvements in language models' capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of "long-context", defined simply by the total length of the model's input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context.

  • 6 authors
·
Jun 29, 2024 1

Granite Embedding R2 Models

We introduce the Granite Embedding R2 models, a comprehensive family of high-performance English encoder-based embedding models engineered for enterprise-scale dense retrieval applications. Building upon our first-generation release, these models deliver substantial improvements, including 16x expanded context length (8,192 tokens), state-of-the-art performance across diverse retrieval domains - text, code, long-document search, multi-turn conversational, and tabular data - and measurable speed advantages of 19-44\% over leading competitors while maintaining superior accuracy. Our release encompasses both bi-encoder and cross-encoder architectures, featuring a highly effective 22-layer retriever model and its efficient 12-layer counterpart, alongside a high-quality reranker model, all trained exclusively on enterprise-appropriate data with comprehensive governance oversight. The models demonstrate exceptional versatility across standard benchmarks, IBM-developed evaluation suites, and real-world enterprise use cases, establishing new performance standards for open-source embedding models. In an era where retrieval speed and accuracy are paramount for competitive advantage, the Granite R2 models deliver a compelling combination of cutting-edge performance, enterprise-ready licensing, and transparent data provenance that organizations require for mission-critical deployments. All models are publicly available under the Apache 2.0 license at https://huggingface.co/collections/ibm-granite, enabling unrestricted research and commercial use.

  • 20 authors
·
Aug 26

Discourse-Aware Text Simplification: From Complex Sentences to Linked Propositions

Sentences that present a complex syntax act as a major stumbling block for downstream Natural Language Processing applications whose predictive quality deteriorates with sentence length and complexity. The task of Text Simplification (TS) may remedy this situation. It aims to modify sentences in order to make them easier to process, using a set of rewriting operations, such as reordering, deletion, or splitting. State-of-the-art syntactic TS approaches suffer from two major drawbacks: first, they follow a very conservative approach in that they tend to retain the input rather than transforming it, and second, they ignore the cohesive nature of texts, where context spread across clauses or sentences is needed to infer the true meaning of a statement. To address these problems, we present a discourse-aware TS approach that splits and rephrases complex English sentences within the semantic context in which they occur. Based on a linguistically grounded transformation stage that uses clausal and phrasal disembedding mechanisms, complex sentences are transformed into shorter utterances with a simple canonical structure that can be easily analyzed by downstream applications. With sentence splitting, we thus address a TS task that has hardly been explored so far. Moreover, we introduce the notion of minimality in this context, as we aim to decompose source sentences into a set of self-contained minimal semantic units. To avoid breaking down the input into a disjointed sequence of statements that is difficult to interpret because important contextual information is missing, we incorporate the semantic context between the split propositions in the form of hierarchical structures and semantic relationships. In that way, we generate a semantic hierarchy of minimal propositions that leads to a novel representation of complex assertions that puts a semantic layer on top of the simplified sentences.

  • 4 authors
·
Aug 1, 2023

OmniGen2: Exploration to Advanced Multimodal Generation

In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2

  • 22 authors
·
Jun 23 4

OmniBooth: Learning Latent Control for Image Synthesis with Multi-modal Instruction

We present OmniBooth, an image generation framework that enables spatial control with instance-level multi-modal customization. For all instances, the multimodal instruction can be described through text prompts or image references. Given a set of user-defined masks and associated text or image guidance, our objective is to generate an image, where multiple objects are positioned at specified coordinates and their attributes are precisely aligned with the corresponding guidance. This approach significantly expands the scope of text-to-image generation, and elevates it to a more versatile and practical dimension in controllability. In this paper, our core contribution lies in the proposed latent control signals, a high-dimensional spatial feature that provides a unified representation to integrate the spatial, textual, and image conditions seamlessly. The text condition extends ControlNet to provide instance-level open-vocabulary generation. The image condition further enables fine-grained control with personalized identity. In practice, our method empowers users with more flexibility in controllable generation, as users can choose multi-modal conditions from text or images as needed. Furthermore, thorough experiments demonstrate our enhanced performance in image synthesis fidelity and alignment across different tasks and datasets. Project page: https://len-li.github.io/omnibooth-web/

  • 9 authors
·
Oct 7, 2024 2

Lightweight In-Context Tuning for Multimodal Unified Models

In-context learning (ICL) involves reasoning from given contextual examples. As more modalities comes, this procedure is becoming more challenging as the interleaved input modalities convolutes the understanding process. This is exemplified by the observation that multimodal models often struggle to effectively extrapolate from contextual examples to perform ICL. To address these challenges, we introduce MultiModal In-conteXt Tuning (M^2IXT), a lightweight module to enhance the ICL capabilities of multimodal unified models. The proposed M^2IXT module perceives an expandable context window to incorporate various labeled examples of multiple modalities (e.g., text, image, and coordinates). It can be prepended to various multimodal unified models (e.g., OFA, Unival, LLaVA) of different architectures and trained via a mixed-tasks strategy to enable rapid few-shot adaption on multiple tasks and datasets. When tuned on as little as 50K multimodal data, M^2IXT can boost the few-shot ICL performance significantly (e.g., 18\% relative increase for OFA), and obtained state-of-the-art results across an array of tasks including visual question answering, image captioning, visual grounding, and visual entailment, while being considerably small in terms of model parameters (e.g., sim20times smaller than Flamingo or MMICL), highlighting the flexibility and effectiveness of M^2IXT as a multimodal in-context learner.

  • 4 authors
·
Oct 8, 2023

What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices

Recent advancements in large language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios. In order to achieve success in long context tasks, a large amount of work has been done to enhance the long context capabilities of the model through synthetic data. Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement. However, our preliminary experiments indicate that less than 35% of generated samples are multi-hop, and more than 40% exhibit poor quality, limiting comprehensive understanding and further research. To improve the quality of synthetic data, we propose the Multi-agent Interactive Multi-hop Generation (MIMG) framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent. This framework improves the data quality, with the proportion of high-quality, multi-hop, and diverse data exceeding 85%. Furthermore, we systematically investigate strategies for document selection, question merging, and validation techniques through extensive experiments across various models. Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human-annotated data. Our code is available at: https://github.com/WowCZ/LongMIT.

  • 10 authors
·
Sep 3, 2024

Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond

Developing a universal model that can effectively harness heterogeneous resources and respond to a wide range of personalized needs has been a longstanding community aspiration. Our daily choices, especially in domains like fashion and retail, are substantially shaped by multi-modal data, such as pictures and textual descriptions. These modalities not only offer intuitive guidance but also cater to personalized user preferences. However, the predominant personalization approaches mainly focus on the ID or text-based recommendation problem, failing to comprehend the information spanning various tasks or modalities. In this paper, our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP), which effectively leverages multi-modal data while eliminating the complexities associated with task- and modality-specific customization. We argue that the advancements in foundational generative modeling have provided the flexibility and effectiveness necessary to achieve the objective. In light of this, we develop a generic and extensible personalization generative framework, that can handle a wide range of personalized needs including item recommendation, product search, preference prediction, explanation generation, and further user-guided image generation. Our methodology enhances the capabilities of foundational language models for personalized tasks by seamlessly ingesting interleaved cross-modal user history information, ensuring a more precise and customized experience for users. To train and evaluate the proposed multi-modal personalized tasks, we also introduce a novel and comprehensive benchmark covering a variety of user requirements. Our experiments on the real-world benchmark showcase the model's potential, outperforming competitive methods specialized for each task.

  • 11 authors
·
Mar 15, 2024

Dynamic-SUPERB Phase-2: A Collaboratively Expanding Benchmark for Measuring the Capabilities of Spoken Language Models with 180 Tasks

Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.

  • 78 authors
·
Nov 8, 2024

DP-Adapter: Dual-Pathway Adapter for Boosting Fidelity and Text Consistency in Customizable Human Image Generation

With the growing popularity of personalized human content creation and sharing, there is a rising demand for advanced techniques in customized human image generation. However, current methods struggle to simultaneously maintain the fidelity of human identity and ensure the consistency of textual prompts, often resulting in suboptimal outcomes. This shortcoming is primarily due to the lack of effective constraints during the simultaneous integration of visual and textual prompts, leading to unhealthy mutual interference that compromises the full expression of both types of input. Building on prior research that suggests visual and textual conditions influence different regions of an image in distinct ways, we introduce a novel Dual-Pathway Adapter (DP-Adapter) to enhance both high-fidelity identity preservation and textual consistency in personalized human image generation. Our approach begins by decoupling the target human image into visually sensitive and text-sensitive regions. For visually sensitive regions, DP-Adapter employs an Identity-Enhancing Adapter (IEA) to preserve detailed identity features. For text-sensitive regions, we introduce a Textual-Consistency Adapter (TCA) to minimize visual interference and ensure the consistency of textual semantics. To seamlessly integrate these pathways, we develop a Fine-Grained Feature-Level Blending (FFB) module that efficiently combines hierarchical semantic features from both pathways, resulting in more natural and coherent synthesis outcomes. Additionally, DP-Adapter supports various innovative applications, including controllable headshot-to-full-body portrait generation, age editing, old-photo to reality, and expression editing.

  • 5 authors
·
Feb 19

AudioStory: Generating Long-Form Narrative Audio with Large Language Models

Recent advances in text-to-audio (TTA) generation excel at synthesizing short audio clips but struggle with long-form narrative audio, which requires temporal coherence and compositional reasoning. To address this gap, we propose AudioStory, a unified framework that integrates large language models (LLMs) with TTA systems to generate structured, long-form audio narratives. AudioStory possesses strong instruction-following reasoning generation capabilities. It employs LLMs to decompose complex narrative queries into temporally ordered sub-tasks with contextual cues, enabling coherent scene transitions and emotional tone consistency. AudioStory has two appealing features: (1) Decoupled bridging mechanism: AudioStory disentangles LLM-diffuser collaboration into two specialized components, i.e., a bridging query for intra-event semantic alignment and a residual query for cross-event coherence preservation. (2) End-to-end training: By unifying instruction comprehension and audio generation within a single end-to-end framework, AudioStory eliminates the need for modular training pipelines while enhancing synergy between components. Furthermore, we establish a benchmark AudioStory-10K, encompassing diverse domains such as animated soundscapes and natural sound narratives. Extensive experiments show the superiority of AudioStory on both single-audio generation and narrative audio generation, surpassing prior TTA baselines in both instruction-following ability and audio fidelity. Our code is available at https://github.com/TencentARC/AudioStory

  • 7 authors
·
Aug 27 3

Code2MCP: A Multi-Agent Framework for Automated Transformation of Code Repositories into Model Context Protocol Services

The proliferation of Large Language Models (LLMs) has created a significant integration challenge in the AI agent ecosystem, often called the "N times M problem," where N models require custom integrations for M tools. This fragmentation stifles innovation and creates substantial development overhead. While the Model Context Protocol (MCP) has emerged as a standard to resolve this, its adoption is hindered by the manual effort required to convert the vast universe of existing software into MCP-compliant services. This is especially true for the millions of open-source repositories on GitHub, the world's largest collection of functional code. This paper introduces Code2MCP, a highly automated, agentic framework designed to transform any GitHub repository into a functional MCP service with minimal human intervention. Our system employs a multi-stage workflow that automates the entire process, from code analysis and environment configuration to service generation and deployment. A key innovation of our framework is an LLM-driven, closed-loop "Run--Review--Fix" cycle, which enables the system to autonomously debug and repair the code it generates. Code2MCP produces not only deployable services but also comprehensive technical documentation, acting as a catalyst to accelerate the MCP ecosystem by systematically unlocking the world's largest open-source code repository and automating the critical last mile of tool integration. The code is open-sourced at https://github.com/DEFENSE-SEU/MCP-Github-Agent.

InternLM-XComposer: A Vision-Language Large Model for Advanced Text-image Comprehension and Composition

We propose InternLM-XComposer, a vision-language large model that enables advanced image-text comprehension and composition. The innovative nature of our model is highlighted by three appealing properties: 1) Interleaved Text-Image Composition: InternLM-XComposer can effortlessly generate coherent and contextual articles that seamlessly integrate images, providing a more engaging and immersive reading experience. Simply provide a title, and our system will generate the corresponding manuscript. It can intelligently identify the areas in the text where images would enhance the content and automatically insert the most appropriate visual candidates. 2) Comprehension with Rich Multilingual Knowledge: The text-image comprehension is empowered by training on extensive multi-modal multilingual concepts with carefully crafted strategies, resulting in a deep understanding of visual content. 3) State-of-the-art Performance: Our model consistently achieves state-of-the-art results across various mainstream benchmarks for vision-language foundational models, including MME Benchmark, MMBench, MMBench-CN, Seed-Bench, and CCBench (Chinese Cultural Benchmark). Collectively, InternLM-XComposer seamlessly blends advanced text-image comprehension and composition, revolutionizing vision-language interaction and offering new insights and opportunities. The InternLM-XComposer model series with 7B parameters are publicly available at https://github.com/InternLM/InternLM-XComposer.

  • 20 authors
·
Sep 26, 2023

Holistic Evaluation for Interleaved Text-and-Image Generation

Interleaved text-and-image generation has been an intriguing research direction, where the models are required to generate both images and text pieces in an arbitrary order. Despite the emerging advancements in interleaved generation, the progress in its evaluation still significantly lags behind. Existing evaluation benchmarks do not support arbitrarily interleaved images and text for both inputs and outputs, and they only cover a limited number of domains and use cases. Also, current works predominantly use similarity-based metrics which fall short in assessing the quality in open-ended scenarios. To this end, we introduce InterleavedBench, the first benchmark carefully curated for the evaluation of interleaved text-and-image generation. InterleavedBench features a rich array of tasks to cover diverse real-world use cases. In addition, we present InterleavedEval, a strong reference-free metric powered by GPT-4o to deliver accurate and explainable evaluation. We carefully define five essential evaluation aspects for InterleavedEval, including text quality, perceptual quality, image coherence, text-image coherence, and helpfulness, to ensure a comprehensive and fine-grained assessment. Through extensive experiments and rigorous human evaluation, we show that our benchmark and metric can effectively evaluate the existing models with a strong correlation with human judgments surpassing previous reference-based metrics. We also provide substantial findings and insights to foster future research in interleaved generation and its evaluation.

  • 7 authors
·
Jun 20, 2024

OmniInsert: Mask-Free Video Insertion of Any Reference via Diffusion Transformer Models

Recent advances in video insertion based on diffusion models are impressive. However, existing methods rely on complex control signals but struggle with subject consistency, limiting their practical applicability. In this paper, we focus on the task of Mask-free Video Insertion and aim to resolve three key challenges: data scarcity, subject-scene equilibrium, and insertion harmonization. To address the data scarcity, we propose a new data pipeline InsertPipe, constructing diverse cross-pair data automatically. Building upon our data pipeline, we develop OmniInsert, a novel unified framework for mask-free video insertion from both single and multiple subject references. Specifically, to maintain subject-scene equilibrium, we introduce a simple yet effective Condition-Specific Feature Injection mechanism to distinctly inject multi-source conditions and propose a novel Progressive Training strategy that enables the model to balance feature injection from subjects and source video. Meanwhile, we design the Subject-Focused Loss to improve the detailed appearance of the subjects. To further enhance insertion harmonization, we propose an Insertive Preference Optimization methodology to optimize the model by simulating human preferences, and incorporate a Context-Aware Rephraser module during reference to seamlessly integrate the subject into the original scenes. To address the lack of a benchmark for the field, we introduce InsertBench, a comprehensive benchmark comprising diverse scenes with meticulously selected subjects. Evaluation on InsertBench indicates OmniInsert outperforms state-of-the-art closed-source commercial solutions. The code will be released.

  • 11 authors
·
Sep 22 2

Grounding Language Model with Chunking-Free In-Context Retrieval

This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems. Traditional RAG systems often struggle with grounding responses using precise evidence text due to the challenges of processing lengthy documents and filtering out irrelevant content. Commonly employed solutions, such as document chunking and adapting language models to handle longer contexts, have their limitations. These methods either disrupt the semantic coherence of the text or fail to effectively address the issues of noise and inaccuracy in evidence retrieval. CFIC addresses these challenges by circumventing the conventional chunking process. It utilizes the encoded hidden states of documents for in-context retrieval, employing auto-aggressive decoding to accurately identify the specific evidence text required for user queries, eliminating the need for chunking. CFIC is further enhanced by incorporating two decoding strategies, namely Constrained Sentence Prefix Decoding and Skip Decoding. These strategies not only improve the efficiency of the retrieval process but also ensure that the fidelity of the generated grounding text evidence is maintained. Our evaluations of CFIC on a range of open QA datasets demonstrate its superiority in retrieving relevant and accurate evidence, offering a significant improvement over traditional methods. By doing away with the need for document chunking, CFIC presents a more streamlined, effective, and efficient retrieval solution, making it a valuable advancement in the field of RAG systems.

  • 5 authors
·
Feb 15, 2024

OmniDataComposer: A Unified Data Structure for Multimodal Data Fusion and Infinite Data Generation

This paper presents OmniDataComposer, an innovative approach for multimodal data fusion and unlimited data generation with an intent to refine and uncomplicate interplay among diverse data modalities. Coming to the core breakthrough, it introduces a cohesive data structure proficient in processing and merging multimodal data inputs, which include video, audio, and text. Our crafted algorithm leverages advancements across multiple operations such as video/image caption extraction, dense caption extraction, Automatic Speech Recognition (ASR), Optical Character Recognition (OCR), Recognize Anything Model(RAM), and object tracking. OmniDataComposer is capable of identifying over 6400 categories of objects, substantially broadening the spectrum of visual information. It amalgamates these diverse modalities, promoting reciprocal enhancement among modalities and facilitating cross-modal data correction. The final output metamorphoses each video input into an elaborate sequential document, virtually transmuting videos into thorough narratives, making them easier to be processed by large language models. Future prospects include optimizing datasets for each modality to encourage unlimited data generation. This robust base will offer priceless insights to models like ChatGPT, enabling them to create higher quality datasets for video captioning and easing question-answering tasks based on video content. OmniDataComposer inaugurates a new stage in multimodal learning, imparting enormous potential for augmenting AI's understanding and generation of complex, real-world data.

  • 4 authors
·
Aug 8, 2023 1

ContextAgent: Context-Aware Proactive LLM Agents with Open-World Sensory Perceptions

Recent advances in Large Language Models (LLMs) have propelled intelligent agents from reactive responses to proactive support. While promising, existing proactive agents either rely exclusively on observations from enclosed environments (e.g., desktop UIs) with direct LLM inference or employ rule-based proactive notifications, leading to suboptimal user intent understanding and limited functionality for proactive service. In this paper, we introduce ContextAgent, the first context-aware proactive agent that incorporates extensive sensory contexts to enhance the proactive capabilities of LLM agents. ContextAgent first extracts multi-dimensional contexts from massive sensory perceptions on wearables (e.g., video and audio) to understand user intentions. ContextAgent then leverages the sensory contexts and the persona contexts from historical data to predict the necessity for proactive services. When proactive assistance is needed, ContextAgent further automatically calls the necessary tools to assist users unobtrusively. To evaluate this new task, we curate ContextAgentBench, the first benchmark for evaluating context-aware proactive LLM agents, covering 1,000 samples across nine daily scenarios and twenty tools. Experiments on ContextAgentBench show that ContextAgent outperforms baselines by achieving up to 8.5% and 6.0% higher accuracy in proactive predictions and tool calling, respectively. We hope our research can inspire the development of more advanced, human-centric, proactive AI assistants.

  • 10 authors
·
May 20

Deep Learning Driven Natural Languages Text to SQL Query Conversion: A Survey

With the future striving toward data-centric decision-making, seamless access to databases is of utmost importance. There is extensive research on creating an efficient text-to-sql (TEXT2SQL) model to access data from the database. Using a Natural language is one of the best interfaces that can bridge the gap between the data and results by accessing the database efficiently, especially for non-technical users. It will open the doors and create tremendous interest among users who are well versed in technical skills or not very skilled in query languages. Even if numerous deep learning-based algorithms are proposed or studied, there still is very challenging to have a generic model to solve the data query issues using natural language in a real-work scenario. The reason is the use of different datasets in different studies, which comes with its limitations and assumptions. At the same time, we do lack a thorough understanding of these proposed models and their limitations with the specific dataset it is trained on. In this paper, we try to present a holistic overview of 24 recent neural network models studied in the last couple of years, including their architectures involving convolutional neural networks, recurrent neural networks, pointer networks, reinforcement learning, generative models, etc. We also give an overview of the 11 datasets that are widely used to train the models for TEXT2SQL technologies. We also discuss the future application possibilities of TEXT2SQL technologies for seamless data queries.

  • 4 authors
·
Aug 8, 2022

VinTAGe: Joint Video and Text Conditioning for Holistic Audio Generation

Recent advances in audio generation have focused on text-to-audio (T2A) and video-to-audio (V2A) tasks. However, T2A or V2A methods cannot generate holistic sounds (onscreen and off-screen). This is because T2A cannot generate sounds aligning with onscreen objects, while V2A cannot generate semantically complete (offscreen sounds missing). In this work, we address the task of holistic audio generation: given a video and a text prompt, we aim to generate both onscreen and offscreen sounds that are temporally synchronized with the video and semantically aligned with text and video. Previous approaches for joint text and video-to-audio generation often suffer from modality bias, favoring one modality over the other. To overcome this limitation, we introduce VinTAGe, a flow-based transformer model that jointly considers text and video to guide audio generation. Our framework comprises two key components: a Visual-Text Encoder and a Joint VT-SiT model. To reduce modality bias and improve generation quality, we employ pretrained uni-modal text-to-audio and video-to-audio generation models for additional guidance. Due to the lack of appropriate benchmarks, we also introduce VinTAGe-Bench, a dataset of 636 video-text-audio pairs containing both onscreen and offscreen sounds. Our comprehensive experiments on VinTAGe-Bench demonstrate that joint text and visual interaction is necessary for holistic audio generation. Furthermore, VinTAGe achieves state-of-the-art results on the VGGSound benchmark. Our source code and pre-trained models will be released. Demo is available at: https://www.youtube.com/watch?v=QmqWhUjPkJI.

  • 2 authors
·
Dec 14, 2024

BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs

LLMs have demonstrated remarkable abilities at interacting with humans through language, especially with the usage of instruction-following data. Recent advancements in LLMs, such as MiniGPT-4, LLaVA, and X-LLM, further enlarge their abilities by incorporating multi-modal inputs, including image, video, and speech. Despite their effectiveness at generating precise and detailed language understanding of the given modality signal, these LLMs give up the ability to ground specific parts of inputs, thus only constructing a coarse-grained mapping. However, explicit and informative correspondence between text and other modalities will not only improve the user experience but also help to expand the application scenario of multi-modal LLMs. Therefore, we propose BuboGPT, a multi-modal LLM with visual grounding that can perform cross-modal interaction between vision, audio and language, providing fine-grained understanding of visual objects and other given modalities. As a result, BuboGPT is able to point out the specific location of an object in the image, when it is generating response or description for that object. Our contributions are two-fold: 1) An off-the-shelf visual grounding module based on SAM that extracts entities in a sentence and find corresponding masks in the image. 2) A two-stage training scheme and instruction dataset to endow joint text-image-audio understanding. Our experiments show that BuboGPT achieves impressive multi-modality understanding and visual grounding abilities during the interaction with human. It performs consistently well when provided by arbitrary modality combinations (either aligned or unaligned). Our code, model and dataset are available at https://bubo-gpt.github.io .

  • 6 authors
·
Jul 17, 2023

MTVG : Multi-text Video Generation with Text-to-Video Models

Recently, video generation has attracted massive attention and yielded noticeable outcomes. Concerning the characteristics of video, multi-text conditioning incorporating sequential events is necessary for next-step video generation. In this work, we propose a novel multi-text video generation~(MTVG) by directly utilizing a pre-trained diffusion-based text-to-video~(T2V) generation model without additional fine-tuning. To generate consecutive video segments, visual consistency generated by distinct prompts is necessary with diverse variations, such as motion and content-related transitions. Our proposed MTVG includes Dynamic Noise and Last Frame Aware Inversion which reinitialize the noise latent to preserve visual coherence between videos of different prompts and prevent repetitive motion or contents. Furthermore, we present Structure Guiding Sampling to maintain the global appearance across the frames in a single video clip, where we leverage iterative latent updates across the preceding frame. Additionally, our Prompt Generator allows for arbitrary format of text conditions consisting of diverse events. As a result, our extensive experiments, including diverse transitions of descriptions, demonstrate that our proposed methods show superior generated outputs in terms of semantically coherent and temporally seamless video.Video examples are available in our project page: https://kuai-lab.github.io/mtvg-page.

  • 8 authors
·
Dec 7, 2023

LivelySpeaker: Towards Semantic-Aware Co-Speech Gesture Generation

Gestures are non-verbal but important behaviors accompanying people's speech. While previous methods are able to generate speech rhythm-synchronized gestures, the semantic context of the speech is generally lacking in the gesticulations. Although semantic gestures do not occur very regularly in human speech, they are indeed the key for the audience to understand the speech context in a more immersive environment. Hence, we introduce LivelySpeaker, a framework that realizes semantics-aware co-speech gesture generation and offers several control handles. In particular, our method decouples the task into two stages: script-based gesture generation and audio-guided rhythm refinement. Specifically, the script-based gesture generation leverages the pre-trained CLIP text embeddings as the guidance for generating gestures that are highly semantically aligned with the script. Then, we devise a simple but effective diffusion-based gesture generation backbone simply using pure MLPs, that is conditioned on only audio signals and learns to gesticulate with realistic motions. We utilize such powerful prior to rhyme the script-guided gestures with the audio signals, notably in a zero-shot setting. Our novel two-stage generation framework also enables several applications, such as changing the gesticulation style, editing the co-speech gestures via textual prompting, and controlling the semantic awareness and rhythm alignment with guided diffusion. Extensive experiments demonstrate the advantages of the proposed framework over competing methods. In addition, our core diffusion-based generative model also achieves state-of-the-art performance on two benchmarks. The code and model will be released to facilitate future research.

  • 7 authors
·
Sep 17, 2023

Contextual API Completion for Unseen Repositories Using LLMs

Large language models have made substantial progress in addressing diverse code-related tasks. However, their adoption is hindered by inconsistencies in generating output due to the lack of real-world, domain-specific information, such as for intra-repository API calls for unseen software projects. We introduce a novel technique to mitigate hallucinations by leveraging global and local contextual information within a code repository for API completion tasks. Our approach is tailored to refine code completion tasks, with a focus on optimizing local API completions. We examine relevant import statements during API completion to derive insights into local APIs, drawing from their method signatures. For API token completion, we analyze the inline variables and correlate them with the appropriate imported modules, thereby allowing our approach to rank the most contextually relevant suggestions from the available local APIs. Further, for conversational API completion, we gather APIs that are most relevant to the developer query with a retrieval-based search across the project. We employ our tool, LANCE, within the framework of our proposed benchmark, APIEval, encompassing two different programming languages. Our evaluation yields an average accuracy of 82.6% for API token completion and 76.9% for conversational API completion tasks. On average, LANCE surpasses Copilot by 143% and 142% for API token completion and conversational API completion, respectively. The implications of our findings are substantial for developers, suggesting that our lightweight context analysis can be applied to multilingual environments without language-specific training or fine-tuning, allowing for efficient implementation with minimal examples and effort.

  • 4 authors
·
May 7, 2024

UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities

Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing RAG approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single combined corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it. Also, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over modality-specific and unified baselines.

  • 5 authors
·
Apr 29 3

Patch Matters: Training-free Fine-grained Image Caption Enhancement via Local Perception

High-quality image captions play a crucial role in improving the performance of cross-modal applications such as text-to-image generation, text-to-video generation, and text-image retrieval. To generate long-form, high-quality captions, many recent studies have employed multimodal large language models (MLLMs). However, current MLLMs often produce captions that lack fine-grained details or suffer from hallucinations, a challenge that persists in both open-source and closed-source models. Inspired by Feature-Integration theory, which suggests that attention must focus on specific regions to integrate visual information effectively, we propose a divide-then-aggregate strategy. Our method first divides the image into semantic and spatial patches to extract fine-grained details, enhancing the model's local perception of the image. These local details are then hierarchically aggregated to generate a comprehensive global description. To address hallucinations and inconsistencies in the generated captions, we apply a semantic-level filtering process during hierarchical aggregation. This training-free pipeline can be applied to both open-source models (LLaVA-1.5, LLaVA-1.6, Mini-Gemini) and closed-source models (Claude-3.5-Sonnet, GPT-4o, GLM-4V-Plus). Extensive experiments demonstrate that our method generates more detailed, reliable captions, advancing multimodal description generation without requiring model retraining. The source code are available at https://github.com/GeWu-Lab/Patch-Matters

  • 5 authors
·
Apr 9

GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training Data Exploration

Noticing the urgent need to provide tools for fast and user-friendly qualitative analysis of large-scale textual corpora of the modern NLP, we propose to turn to the mature and well-tested methods from the domain of Information Retrieval (IR) - a research field with a long history of tackling TB-scale document collections. We discuss how Pyserini - a widely used toolkit for reproducible IR research can be integrated with the Hugging Face ecosystem of open-source AI libraries and artifacts. We leverage the existing functionalities of both platforms while proposing novel features further facilitating their integration. Our goal is to give NLP researchers tools that will allow them to develop retrieval-based instrumentation for their data analytics needs with ease and agility. We include a Jupyter Notebook-based walk through the core interoperability features, available on GitHub at https://github.com/huggingface/gaia. We then demonstrate how the ideas we present can be operationalized to create a powerful tool for qualitative data analysis in NLP. We present GAIA Search - a search engine built following previously laid out principles, giving access to four popular large-scale text collections. GAIA serves a dual purpose of illustrating the potential of methodologies we discuss but also as a standalone qualitative analysis tool that can be leveraged by NLP researchers aiming to understand datasets prior to using them in training. GAIA is hosted live on Hugging Face Spaces - https://huggingface.co/spaces/spacerini/gaia.

  • 9 authors
·
Jun 2, 2023

CodeRAG-Bench: Can Retrieval Augment Code Generation?

While language models (LMs) have proven remarkably adept at generating code, many programs are challenging for LMs to generate using their parametric knowledge alone. Providing external contexts such as library documentation can facilitate generating accurate and functional code. Despite the success of retrieval-augmented generation (RAG) in various text-oriented tasks, its potential for improving code generation remains under-explored. In this work, we conduct a systematic, large-scale analysis by asking: in what scenarios can retrieval benefit code generation models? and what challenges remain? We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks, including basic programming, open-domain, and repository-level problems. We aggregate documents from five sources for models to retrieve contexts: competition solutions, online tutorials, library documentation, StackOverflow posts, and GitHub repositories. We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources. While notable gains are made in final code generation by retrieving high-quality contexts across various settings, our analysis reveals room for improvement -- current retrievers still struggle to fetch useful contexts especially with limited lexical overlap, and generators fail to improve with limited context lengths or abilities to integrate additional contexts. We hope CodeRAG-Bench serves as an effective testbed to encourage further development of advanced code-oriented RAG methods.

  • 7 authors
·
Jun 20, 2024