Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLight-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following
While advancements in the reasoning abilities of LLMs have significantly enhanced their performance in solving mathematical problems, coding tasks, and general puzzles, their effectiveness in accurately adhering to instructions remains inconsistent, particularly with more complex directives. Our investigation identifies lazy reasoning during the thinking stage as the primary factor contributing to poor instruction adherence. To mitigate this issue, we propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking, essential for satisfying strict instruction constraints. Specifically, we first generate instructions with complex constraints and apply a filtering process to obtain valid prompts, resulting in three distinct prompt datasets categorized as hard, easy, and pass. Then, we employ rejection sampling on the pass prompts to curate a small yet high-quality dataset, enabling a cold-start initialization of the model and facilitating its adaptation to effective reasoning patterns. Subsequently, we employ an entropy-preserving supervised fine-tuning (Entropy-SFT) strategy coupled with token-wise entropy-adaptive (TEA-RL) reinforcement learning guided by rule-based dense rewards. This approach encourages the model to transform its reasoning mechanism, ultimately fostering generalizable reasoning abilities that encompass preview and self-checking. Extensive experiments conducted on instruction-following benchmarks demonstrate remarkable performance improvements across various model scales. Notably, our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
START: Self-taught Reasoner with Tools
Large reasoning models (LRMs) like OpenAI-o1 and DeepSeek-R1 have demonstrated remarkable capabilities in complex reasoning tasks through the utilization of long Chain-of-thought (CoT). However, these models often suffer from hallucinations and inefficiencies due to their reliance solely on internal reasoning processes. In this paper, we introduce START (Self-Taught Reasoner with Tools), a novel tool-integrated long CoT reasoning LLM that significantly enhances reasoning capabilities by leveraging external tools. Through code execution, START is capable of performing complex computations, self-checking, exploring diverse methods, and self-debugging, thereby addressing the limitations of LRMs. The core innovation of START lies in its self-learning framework, which comprises two key techniques: 1) Hint-infer: We demonstrate that inserting artificially designed hints (e.g., ``Wait, maybe using Python here is a good idea.'') during the inference process of a LRM effectively stimulates its ability to utilize external tools without the need for any demonstration data. Hint-infer can also serve as a simple and effective sequential test-time scaling method; 2) Hint Rejection Sampling Fine-Tuning (Hint-RFT): Hint-RFT combines Hint-infer and RFT by scoring, filtering, and modifying the reasoning trajectories with tool invocation generated by a LRM via Hint-infer, followed by fine-tuning the LRM. Through this framework, we have fine-tuned the QwQ-32B model to achieve START. On PhD-level science QA (GPQA), competition-level math benchmarks (AMC23, AIME24, AIME25), and the competition-level code benchmark (LiveCodeBench), START achieves accuracy rates of 63.6%, 95.0%, 66.7%, 47.1%, and 47.3%, respectively. It significantly outperforms the base QwQ-32B and achieves performance comparable to the state-of-the-art open-weight model R1-Distill-Qwen-32B and the proprietary model o1-Preview.
A New Benchmark and Reverse Validation Method for Passage-level Hallucination Detection
Large Language Models (LLMs) have shown their ability to collaborate effectively with humans in real-world scenarios. However, LLMs are apt to generate hallucinations, i.e., makeup incorrect text and unverified information, which can cause significant damage when deployed for mission-critical tasks. In this paper, we propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion. To facilitate future studies and assess different methods, we construct a hallucination detection benchmark named PHD, which is generated by ChatGPT and annotated by human annotators. Contrasting previous studies of zero-resource hallucination detection, our method and benchmark concentrate on passage-level detection instead of sentence-level. We empirically evaluate our method and existing zero-resource detection methods on two datasets. The experimental results demonstrate that the proposed method considerably outperforms the baselines while costing fewer tokens and less time. Furthermore, we manually analyze some hallucination cases that LLM failed to capture, revealing the shared limitation of zero-resource methods.
A-MemGuard: A Proactive Defense Framework for LLM-Based Agent Memory
Large Language Model (LLM) agents use memory to learn from past interactions, enabling autonomous planning and decision-making in complex environments. However, this reliance on memory introduces a critical security risk: an adversary can inject seemingly harmless records into an agent's memory to manipulate its future behavior. This vulnerability is characterized by two core aspects: First, the malicious effect of injected records is only activated within a specific context, making them hard to detect when individual memory entries are audited in isolation. Second, once triggered, the manipulation can initiate a self-reinforcing error cycle: the corrupted outcome is stored as precedent, which not only amplifies the initial error but also progressively lowers the threshold for similar attacks in the future. To address these challenges, we introduce A-MemGuard (Agent-Memory Guard), the first proactive defense framework for LLM agent memory. The core idea of our work is the insight that memory itself must become both self-checking and self-correcting. Without modifying the agent's core architecture, A-MemGuard combines two mechanisms: (1) consensus-based validation, which detects anomalies by comparing reasoning paths derived from multiple related memories and (2) a dual-memory structure, where detected failures are distilled into ``lessons'' stored separately and consulted before future actions, breaking error cycles and enabling adaptation. Comprehensive evaluations on multiple benchmarks show that A-MemGuard effectively cuts attack success rates by over 95% while incurring a minimal utility cost. This work shifts LLM memory security from static filtering to a proactive, experience-driven model where defenses strengthen over time. Our code is available in https://github.com/TangciuYueng/AMemGuard
Critique Ability of Large Language Models
Critical thinking is essential for rational decision-making and problem-solving. This skill hinges on the ability to provide precise and reasoned critiques and is a hallmark of human intelligence. In the era of large language models (LLMs), this study explores the ability of LLMs to deliver accurate critiques across various tasks. We are interested in this topic as a capable critic model could not only serve as a reliable evaluator, but also as a source of supervised signals for model tuning. Particularly, if a model can self-critique, it has the potential for autonomous self-improvement. To examine this, we introduce a unified evaluation framework for assessing the critique abilities of LLMs. We develop a benchmark called CriticBench, which comprises 3K high-quality natural language queries and corresponding model responses; and annotate the correctness of these responses. The benchmark cover tasks such as math problem-solving, code completion, and question answering. We evaluate multiple LLMs on the collected dataset and our analysis reveals several noteworthy insights: (1) Critique is generally challenging for most LLMs, and this capability often emerges only when models are sufficiently large. (2) In particular, self-critique is especially difficult. Even top-performing LLMs struggle to achieve satisfactory performance. (3) Models tend to have lower critique accuracy on problems where they are most uncertain. To this end, we introduce a simple yet effective baseline named self-check, which leverages self-critique to improve task performance for various models. We hope this study serves as an initial exploration into understanding the critique abilities of LLMs, and aims to inform future research, including the development of more proficient critic models and the application of critiques across diverse tasks.
Ovis2.5 Technical Report
We present Ovis2.5, a successor to Ovis2 designed for native-resolution visual perception and strong multimodal reasoning. Ovis2.5 integrates a native-resolution vision transformer that processes images at their native, variable resolutions, avoiding the degradation from fixed-resolution tiling and preserving both fine detail and global layout -- crucial for visually dense content like complex charts. To strengthen reasoning, we train the model to move beyond linear chain-of-thought and perform reflection -- including self-checking and revision. This advanced capability is exposed as an optional "thinking mode" at inference time, allowing users to trade latency for enhanced accuracy on difficult inputs. The model is trained via a comprehensive five-phase curriculum that progressively builds its skills. The process begins with foundational visual and multimodal pretraining, advances through large-scale instruction tuning, and culminates in alignment and reasoning enhancement using DPO and GRPO. To scale these upgrades efficiently, we employ multimodal data packing and hybrid parallelism, yielding a significant end-to-end speedup. We release two open-source models: Ovis2.5-9B and Ovis2.5-2B. The latter continues the "small model, big performance" philosophy of Ovis2, making it ideal for resource-constrained, on-device scenarios. On the OpenCompass multimodal leaderboard, Ovis2.5-9B averages 78.3, marking a substantial improvement over its predecessor, Ovis2-8B, and achieving state-of-the-art results among open-source MLLMs in the sub-40B parameter range; Ovis2.5-2B scores 73.9, establishing SOTA for its size. Beyond aggregate scores, Ovis2.5 achieves leading results on STEM benchmarks, exhibits strong capabilities on grounding and video tasks, and achieves open-source SOTA at its scale for complex chart analysis.
Rethinking Thinking Tokens: LLMs as Improvement Operators
Reasoning training incentivizes LLMs to produce long chains of thought (long CoT), which among other things, allows them to explore solution strategies with self-checking. This results in higher accuracy, but inflates context length, token/compute cost, and answer latency. We ask: Can current models leverage their metacognition to provide other combinations on this Pareto frontier, e.g., better accuracy with lower context length and/or latency? Abstractly, we view the model as an improvement operator on its own "thoughts" with a continuum of possible strategies. We identify an interesting inference family Parallel-Distill-Refine (PDR), which performs the following: (i) generate diverse drafts in parallel; (ii) distill them into a bounded, textual workspace; and (iii) refine conditioned on this workspace, producing an output that seeds the next round. Importantly, context length (hence compute cost) is controllable via degree of parallelism, and is no longer conflated with the total number of generated tokens. We report PDR instantiations of current models that give better accuracy than long CoT while incurring lower latency. Setting degree of parallelism to 1 yields an interesting subcase, Sequential Refinement (SR) (iteratively improve a single candidate answer) which provides performance superior to long CoT. Success of such model orchestrations raises the question whether further training could shift the Pareto frontier. To this end, we train an 8B thinking model with Reinforcement Learning (RL) to make it consistent with PDR as the inference method. On math tasks with verifiable answers, iterative pipelines surpass single-pass baselines at matched sequential budgets, with PDR delivering the largest gains (e.g., +11% on AIME 2024 and +9% on AIME 2025).
R1-Code-Interpreter: Training LLMs to Reason with Code via Supervised and Reinforcement Learning
Despite advances in reasoning and planning of R1-like models, Large Language Models (LLMs) still struggle with tasks requiring precise computation, symbolic manipulation, optimization, and algorithmic reasoning, in which textual reasoning lacks the rigor of code execution. A key challenge is enabling LLMs to decide when to use textual reasoning versus code generation. While OpenAI trains models to invoke a Code Interpreter as needed, public research lacks guidance on aligning pre-trained LLMs to effectively leverage code and generalize across diverse tasks. We present R1-Code-Interpreter, an extension of a text-only LLM trained via multi-turn supervised fine-tuning (SFT) and reinforcement learning (RL) to autonomously generate multiple code queries during step-by-step reasoning. We curate 144 reasoning and planning tasks (107 for training, 37 for testing), each with over 200 diverse questions. We fine-tune Qwen-2.5 models (3B/7B/14B) using various SFT and RL strategies, investigating different answer formats, reasoning vs. non-reasoning models, cold vs. warm starts, GRPO vs. PPO, and masked vs. unmasked code outputs. Unlike prior RL work on narrow domains, we find that Code Interpreter training is significantly harder due to high task diversity and expensive code execution, highlighting the critical role of the SFT stage. Our final model, R1-CI-14B, improves average accuracy on the 37 test tasks from 44.0\% to 64.1\%, outperforming GPT-4o (text-only: 58.6\%) and approaching GPT-4o with Code Interpreter (70.9\%), with the emergent self-checking behavior via code generation. Datasets, Codes, and Models are available at https://github.com/yongchao98/R1-Code-Interpreter and https://huggingface.co/yongchao98.
VeriReason: Reinforcement Learning with Testbench Feedback for Reasoning-Enhanced Verilog Generation
Automating Register Transfer Level (RTL) code generation using Large Language Models (LLMs) offers substantial promise for streamlining digital circuit design and reducing human effort. However, current LLM-based approaches face significant challenges with training data scarcity, poor specification-code alignment, lack of verification mechanisms, and balancing generalization with specialization. Inspired by DeepSeek-R1, we introduce VeriReason, a framework integrating supervised fine-tuning with Guided Reward Proximal Optimization (GRPO) reinforcement learning for RTL generation. Using curated training examples and a feedback-driven reward model, VeriReason combines testbench evaluations with structural heuristics while embedding self-checking capabilities for autonomous error correction. On the VerilogEval Benchmark, VeriReason delivers significant improvements: achieving 83.1% functional correctness on the VerilogEval Machine benchmark, substantially outperforming both comparable-sized models and much larger commercial systems like GPT-4 Turbo. Additionally, our approach demonstrates up to a 2.8X increase in first-attempt functional correctness compared to baseline methods and exhibits robust generalization to unseen designs. To our knowledge, VeriReason represents the first system to successfully integrate explicit reasoning capabilities with reinforcement learning for Verilog generation, establishing a new state-of-the-art for automated RTL synthesis. The models and datasets are available at: https://huggingface.co/collections/AI4EDA-CASE Code is Available at: https://github.com/NellyW8/VeriReason
Adaptive White-Box Watermarking with Self-Mutual Check Parameters in Deep Neural Networks
Artificial Intelligence (AI) has found wide application, but also poses risks due to unintentional or malicious tampering during deployment. Regular checks are therefore necessary to detect and prevent such risks. Fragile watermarking is a technique used to identify tampering in AI models. However, previous methods have faced challenges including risks of omission, additional information transmission, and inability to locate tampering precisely. In this paper, we propose a method for detecting tampered parameters and bits, which can be used to detect, locate, and restore parameters that have been tampered with. We also propose an adaptive embedding method that maximizes information capacity while maintaining model accuracy. Our approach was tested on multiple neural networks subjected to attacks that modified weight parameters, and our results demonstrate that our method achieved great recovery performance when the modification rate was below 20%. Furthermore, for models where watermarking significantly affected accuracy, we utilized an adaptive bit technique to recover more than 15% of the accuracy loss of the model.
KnowHalu: Hallucination Detection via Multi-Form Knowledge Based Factual Checking
This paper introduces KnowHalu, a novel approach for detecting hallucinations in text generated by large language models (LLMs), utilizing step-wise reasoning, multi-formulation query, multi-form knowledge for factual checking, and fusion-based detection mechanism. As LLMs are increasingly applied across various domains, ensuring that their outputs are not hallucinated is critical. Recognizing the limitations of existing approaches that either rely on the self-consistency check of LLMs or perform post-hoc fact-checking without considering the complexity of queries or the form of knowledge, KnowHalu proposes a two-phase process for hallucination detection. In the first phase, it identifies non-fabrication hallucinations--responses that, while factually correct, are irrelevant or non-specific to the query. The second phase, multi-form based factual checking, contains five key steps: reasoning and query decomposition, knowledge retrieval, knowledge optimization, judgment generation, and judgment aggregation. Our extensive evaluations demonstrate that KnowHalu significantly outperforms SOTA baselines in detecting hallucinations across diverse tasks, e.g., improving by 15.65% in QA tasks and 5.50% in summarization tasks, highlighting its effectiveness and versatility in detecting hallucinations in LLM-generated content.
Can Large Language Models Explain Themselves?
Instruction-tuned large language models (LLMs) excel at many tasks, and will even provide explanations for their behavior. Since these models are directly accessible to the public, there is a risk that convincing and wrong explanations can lead to unsupported confidence in LLMs. Therefore, interpretability-faithfulness of self-explanations is an important consideration for AI Safety. Assessing the interpretability-faithfulness of these explanations, termed self-explanations, is challenging as the models are too complex for humans to annotate what is a correct explanation. To address this, we propose employing self-consistency checks as a measure of faithfulness. For example, if an LLM says a set of words is important for making a prediction, then it should not be able to make the same prediction without these words. While self-consistency checks are a common approach to faithfulness, they have not previously been applied to LLM's self-explanations. We apply self-consistency checks to three types of self-explanations: counterfactuals, importance measures, and redactions. Our work demonstrate that faithfulness is both task and model dependent, e.g., for sentiment classification, counterfactual explanations are more faithful for Llama2, importance measures for Mistral, and redaction for Falcon 40B. Finally, our findings are robust to prompt-variations.
CodeSteer: Symbolic-Augmented Language Models via Code/Text Guidance
Existing methods fail to effectively steer Large Language Models (LLMs) between textual reasoning and code generation, leaving symbolic computing capabilities underutilized. We introduce CodeSteer, an effective method for guiding LLM code/text generation. We construct a comprehensive benchmark SymBench comprising 37 symbolic tasks with adjustable complexity and also synthesize datasets of 12k multi-round guidance/generation trajectories and 5.5k guidance comparison pairs. We fine-tune the Llama-3-8B model with a newly designed multi-round supervised fine-tuning (SFT) and direct preference optimization (DPO). The resulting model, CodeSteerLLM, augmented with the proposed symbolic and self-answer checkers, effectively guides the code/text generation of larger models. Augmenting GPT-4o with CodeSteer raises its average performance score from 53.3 to 86.4, even outperforming the existing best LLM OpenAI o1 (82.7), o1-preview (74.8), and DeepSeek R1 (76.8) across all 37 tasks (28 seen, 9 unseen). Trained for GPT-4o, CodeSteer demonstrates superior generalizability, providing an average 41.8 performance boost on Claude, Mistral, and GPT-3.5. CodeSteer-guided LLMs fully harness symbolic computing to maintain strong performance on highly complex tasks. Models, Datasets, and Codes are available at https://github.com/yongchao98/CodeSteer-v1.0.
Question-Answering Dense Video Events
Multimodal Large Language Models (MLLMs) have shown excellent performance in question-answering of single-event videos. In this paper, we present question-answering dense video events, a novel task that requires answering and grounding the dense-event questions in long videos, thus challenging MLLMs to faithfully comprehend and reason about multiple events occurring over extended time periods. To facilitate the study, we construct DeVE-QA - a dataset featuring 78K questions about 26K events on 10.6K long videos. We then benchmark and show that existing MLLMs excelling at single-event QA struggle to perform well in DeVE-QA. For improvement, we propose DeVi, a novel training-free MLLM approach that highlights a hierarchical captioning module, a temporal event memory module, and a self-consistency checking module to respectively detect, contextualize and memorize, and ground dense-events in long videos for question answering. Extensive experiments show that DeVi is superior at answering dense-event questions and grounding relevant video moments. Compared with existing MLLMs, it achieves a remarkable increase of 4.1 percent and 3.7 percent for G(round)QA accuracy on DeVE-QA and NExT-GQA respectively.
Double-Checker: Enhancing Reasoning of Slow-Thinking LLMs via Self-Critical Fine-Tuning
While slow-thinking large language models (LLMs) exhibit reflection-like reasoning, commonly referred to as the "aha moment:, their ability to generate informative critiques and refine prior solutions remains limited. In this paper, we introduce Double-Checker, a principled framework designed to enhance the reasoning capabilities of slow-thinking LLMs by fostering explicit self-critique and iterative refinement of their previous solutions. By fine-tuning on our curated 1,730 self-critical instances, Double-Checker empowers long-CoT LLMs to iteratively critique and refine their outputs during inference until they evaluate their solutions as correct under self-generated critiques. We validate the efficacy of Double-Checker across a comprehensive suite of reasoning benchmarks, demonstrating that iterative self-critique significantly enhances the reasoning capabilities of long-CoT LLMs. Notably, our Double-Checker increases the pass@1 performance on challenging AIME benchmarks from 4.4% to 18.2% compared to the original long-CoT LLMs. These results highlight a promising direction for developing more trustworthy and effective LLMs capable of structured self-critique. Our codes and data are available at https://github.com/XinXU-USTC/DoubleChecker
Self-Supervised U-Net for Segmenting Flat and Sessile Polyps
Colorectal Cancer(CRC) poses a great risk to public health. It is the third most common cause of cancer in the US. Development of colorectal polyps is one of the earliest signs of cancer. Early detection and resection of polyps can greatly increase survival rate to 90%. Manual inspection can cause misdetections because polyps vary in color, shape, size and appearance. To this end, Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos. The system acts a secondary check to help clinicians reduce misdetections so that polyps may be resected before they transform to cancer. Polyps vary in color, shape, size, texture and appearance. As a result, the miss rate of polyps is between 6% and 27% despite the prominence of CADx solutions. Furthermore, sessile and flat polyps which have diameter less than 10 mm are more likely to be undetected. Convolutional Neural Networks(CNN) have shown promising results in polyp segmentation. However, all of these works have a supervised approach and are limited by the size of the dataset. It was observed that smaller datasets reduce the segmentation accuracy of ResUNet++. We train a U-Net to inpaint randomly dropped out pixels in the image as a proxy task. The dataset we use for pre-training is Kvasir-SEG dataset. This is followed by a supervised training on the limited Kvasir-Sessile dataset. Our experimental results demonstrate that with limited annotated dataset and a larger unlabeled dataset, self-supervised approach is a better alternative than fully supervised approach. Specifically, our self-supervised U-Net performs better than five segmentation models which were trained in supervised manner on the Kvasir-Sessile dataset.
MuQ: Self-Supervised Music Representation Learning with Mel Residual Vector Quantization
Recent years have witnessed the success of foundation models pre-trained with self-supervised learning (SSL) in various music informatics understanding tasks, including music tagging, instrument classification, key detection, and more. In this paper, we propose a self-supervised music representation learning model for music understanding. Distinguished from previous studies adopting random projection or existing neural codec, the proposed model, named MuQ, is trained to predict tokens generated by Mel Residual Vector Quantization (Mel-RVQ). Our Mel-RVQ utilizes residual linear projection structure for Mel spectrum quantization to enhance the stability and efficiency of target extraction and lead to better performance. Experiments in a large variety of downstream tasks demonstrate that MuQ outperforms previous self-supervised music representation models with only 0.9K hours of open-source pre-training data. Scaling up the data to over 160K hours and adopting iterative training consistently improve the model performance. To further validate the strength of our model, we present MuQ-MuLan, a joint music-text embedding model based on contrastive learning, which achieves state-of-the-art performance in the zero-shot music tagging task on the MagnaTagATune dataset. Code and checkpoints are open source in https://github.com/tencent-ailab/MuQ.
NEST: Self-supervised Fast Conformer as All-purpose Seasoning to Speech Processing Tasks
Self-supervised learning has been proved to benefit a wide range of speech processing tasks, such as speech recognition/translation, speaker verification and diarization, etc. However, most of current approaches are computationally expensive. In this paper, we propose a simplified and more efficient self-supervised learning framework termed as NeMo Encoder for Speech Tasks (NEST). Specifically, we adopt the FastConformer architecture with 8x sub-sampling rate, which is faster than Transformer or Conformer architectures. Instead of clustering-based quantization, we use fixed random projection for its simplicity and effectiveness. We also implement a generalized noisy speech augmentation that teaches the model to disentangle the main speaker from noise or other speakers. Experiments show that \model improves over existing self-supervised models and achieves new state-of-the-art performance on a variety of speech processing tasks, such as speech recognition/translation, speaker diarization, spoken language understanding, etc. Code and checkpoints will be publicly available via NVIDIA NeMo framework.
A Vision Check-up for Language Models
What does learning to model relationships between strings teach large language models (LLMs) about the visual world? We systematically evaluate LLMs' abilities to generate and recognize an assortment of visual concepts of increasing complexity and then demonstrate how a preliminary visual representation learning system can be trained using models of text. As language models lack the ability to consume or output visual information as pixels, we use code to represent images in our study. Although LLM-generated images do not look like natural images, results on image generation and the ability of models to correct these generated images indicate that precise modeling of strings can teach language models about numerous aspects of the visual world. Furthermore, experiments on self-supervised visual representation learning, utilizing images generated with text models, highlight the potential to train vision models capable of making semantic assessments of natural images using just LLMs.
TICKing All the Boxes: Generated Checklists Improve LLM Evaluation and Generation
Given the widespread adoption and usage of Large Language Models (LLMs), it is crucial to have flexible and interpretable evaluations of their instruction-following ability. Preference judgments between model outputs have become the de facto evaluation standard, despite distilling complex, multi-faceted preferences into a single ranking. Furthermore, as human annotation is slow and costly, LLMs are increasingly used to make these judgments, at the expense of reliability and interpretability. In this work, we propose TICK (Targeted Instruct-evaluation with ChecKlists), a fully automated, interpretable evaluation protocol that structures evaluations with LLM-generated, instruction-specific checklists. We first show that, given an instruction, LLMs can reliably produce high-quality, tailored evaluation checklists that decompose the instruction into a series of YES/NO questions. Each question asks whether a candidate response meets a specific requirement of the instruction. We demonstrate that using TICK leads to a significant increase (46.4% to 52.2%) in the frequency of exact agreements between LLM judgements and human preferences, as compared to having an LLM directly score an output. We then show that STICK (Self-TICK) can be used to improve generation quality across multiple benchmarks via self-refinement and Best-of-N selection. STICK self-refinement on LiveBench reasoning tasks leads to an absolute gain of +7.8%, whilst Best-of-N selection with STICK attains +6.3% absolute improvement on the real-world instruction dataset, WildBench. In light of this, structured, multi-faceted self-improvement is shown to be a promising way to further advance LLM capabilities. Finally, by providing LLM-generated checklists to human evaluators tasked with directly scoring LLM responses to WildBench instructions, we notably increase inter-annotator agreement (0.194 to 0.256).
Self-Attention Generative Adversarial Networks
In this paper, we propose the Self-Attention Generative Adversarial Network (SAGAN) which allows attention-driven, long-range dependency modeling for image generation tasks. Traditional convolutional GANs generate high-resolution details as a function of only spatially local points in lower-resolution feature maps. In SAGAN, details can be generated using cues from all feature locations. Moreover, the discriminator can check that highly detailed features in distant portions of the image are consistent with each other. Furthermore, recent work has shown that generator conditioning affects GAN performance. Leveraging this insight, we apply spectral normalization to the GAN generator and find that this improves training dynamics. The proposed SAGAN achieves the state-of-the-art results, boosting the best published Inception score from 36.8 to 52.52 and reducing Frechet Inception distance from 27.62 to 18.65 on the challenging ImageNet dataset. Visualization of the attention layers shows that the generator leverages neighborhoods that correspond to object shapes rather than local regions of fixed shape.
Med-REFL: Medical Reasoning Enhancement via Self-Corrected Fine-grained Reflection
Large reasoning models have recently made significant strides in mathematical and code reasoning, yet their success has not transferred smoothly to the medical domain. While multiple factors contribute to this disparity, a critical issue is the inadequate focus on the quality of intermediate reflection steps, which is particularly crucial in high-stakes medical scenarios. To address this challenge, we propose Med-REFL, a \textbf{Med}ical \textbf{R}easoning \textbf{E}nhancement via self-corrected \textbf{F}ine-grained ref\textbf{L}ection. Our method leverages a tree-of-thought approach to decompose medical questions into fine-grained reasoning paths, quantitatively evaluating each step and its subsequent reflections. These assessments enable automatic construction of direct preference optimization data, reducing reliance on expensive expert annotations while guiding models to identify and correct reasoning errors. Experimental results on the MedQA-USMLE benchmark demonstrate Med-REFL achieves consistent improvements, with average gains up to 4.11\%. Notably, it further boosts the state-of-the-art performance of 7B/8B models by an additional 4.13\%. Furthermore, Med-REFL exhibits strong generalization capabilities and robustness across several challenging medical question-answering datasets. Our work illustrates that prioritizing reflection quality leads to more accurate and trustworthy reasoning in medical AI applications. Checkpoints, code, and data can be found https://github.com/TianYin123/Med-REFL{here}.
Self Expanding Convolutional Neural Networks
In this paper, we present a novel method for dynamically expanding Convolutional Neural Networks (CNNs) during training, aimed at meeting the increasing demand for efficient and sustainable deep learning models. Our approach, drawing from the seminal work on Self-Expanding Neural Networks (SENN), employs a natural expansion score as an expansion criteria to address the common issue of over-parameterization in deep convolutional neural networks, thereby ensuring that the model's complexity is finely tuned to the task's specific needs. A significant benefit of this method is its eco-friendly nature, as it obviates the necessity of training multiple models of different sizes. We employ a strategy where a single model is dynamically expanded, facilitating the extraction of checkpoints at various complexity levels, effectively reducing computational resource use and energy consumption while also expediting the development cycle by offering diverse model complexities from a single training session. We evaluate our method on the CIFAR-10 dataset and our experimental results validate this approach, demonstrating that dynamically adding layers not only maintains but also improves CNN performance, underscoring the effectiveness of our expansion criteria. This approach marks a considerable advancement in developing adaptive, scalable, and environmentally considerate neural network architectures, addressing key challenges in the field of deep learning.
LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding
We present LayerSkip, an end-to-end solution to speed-up inference of large language models (LLMs). First, during training we apply layer dropout, with low dropout rates for earlier layers and higher dropout rates for later layers, and an early exit loss where all transformer layers share the same exit. Second, during inference, we show that this training recipe increases the accuracy of early exit at earlier layers, without adding any auxiliary layers or modules to the model. Third, we present a novel self-speculative decoding solution where we exit at early layers and verify and correct with remaining layers of the model. Our proposed self-speculative decoding approach has less memory footprint than other speculative decoding approaches and benefits from shared compute and activations of the draft and verification stages. We run experiments on different Llama model sizes on different types of training: pretraining from scratch, continual pretraining, finetuning on specific data domain, and finetuning on specific task. We implement our inference solution and show speedups of up to 2.16x on summarization for CNN/DM documents, 1.82x on coding, and 2.0x on TOPv2 semantic parsing task. We open source our code and checkpoints at https://github.com/facebookresearch/LayerSkip.
Multiple Choice Questions: Reasoning Makes Large Language Models (LLMs) More Self-Confident Even When They Are Wrong
One of the most widely used methods to evaluate LLMs are Multiple Choice Question (MCQ) tests. MCQ benchmarks enable the testing of LLM knowledge on almost any topic at scale as the results can be processed automatically. To help the LLM answer, a few examples called few shots can be included in the prompt. Moreover, the LLM can be asked to answer the question directly with the selected option or to first provide the reasoning and then the selected answer, which is known as chain of thought. In addition to checking whether the selected answer is correct, the evaluation can look at the LLM-estimated probability of its response as an indication of the confidence of the LLM in the response. In this paper, we study how the LLM confidence in its answer depends on whether the model has been asked to answer directly or to provide the reasoning before answering. The results of the evaluation of questions on a wide range of topics in seven different models show that LLMs are more confident in their answers when they provide reasoning before the answer. This occurs regardless of whether the selected answer is correct. Our hypothesis is that this behavior is due to the reasoning that modifies the probability of the selected answer, as the LLM predicts the answer based on the input question and the reasoning that supports the selection made. Therefore, LLM estimated probabilities seem to have intrinsic limitations that should be understood in order to use them in evaluation procedures. Interestingly, the same behavior has been observed in humans, for whom explaining an answer increases confidence in its correctness.
GLLM: Self-Corrective G-Code Generation using Large Language Models with User Feedback
This paper introduces GLLM, an innovative tool that leverages Large Language Models (LLMs) to automatically generate G-code from natural language instructions for Computer Numerical Control (CNC) machining. GLLM addresses the challenges of manual G-code writing by bridging the gap between human-readable task descriptions and machine-executable code. The system incorporates a fine-tuned StarCoder-3B model, enhanced with domain-specific training data and a Retrieval-Augmented Generation (RAG) mechanism. GLLM employs advanced prompting strategies and a novel self-corrective code generation approach to ensure both syntactic and semantic correctness of the generated G-code. The architecture includes robust validation mechanisms, including syntax checks, G-code-specific verifications, and functional correctness evaluations using Hausdorff distance. By combining these techniques, GLLM aims to democratize CNC programming, making it more accessible to users without extensive programming experience while maintaining high accuracy and reliability in G-code generation.
Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation
In this paper, we propose a simple yet effective approach for self-supervised video object segmentation (VOS). Our key insight is that the inherent structural dependencies present in DINO-pretrained Transformers can be leveraged to establish robust spatio-temporal correspondences in videos. Furthermore, simple clustering on this correspondence cue is sufficient to yield competitive segmentation results. Previous self-supervised VOS techniques majorly resort to auxiliary modalities or utilize iterative slot attention to assist in object discovery, which restricts their general applicability and imposes higher computational requirements. To deal with these challenges, we develop a simplified architecture that capitalizes on the emerging objectness from DINO-pretrained Transformers, bypassing the need for additional modalities or slot attention. Specifically, we first introduce a single spatio-temporal Transformer block to process the frame-wise DINO features and establish spatio-temporal dependencies in the form of self-attention. Subsequently, utilizing these attention maps, we implement hierarchical clustering to generate object segmentation masks. To train the spatio-temporal block in a fully self-supervised manner, we employ semantic and dynamic motion consistency coupled with entropy normalization. Our method demonstrates state-of-the-art performance across multiple unsupervised VOS benchmarks and particularly excels in complex real-world multi-object video segmentation tasks such as DAVIS-17-Unsupervised and YouTube-VIS-19. The code and model checkpoints will be released at https://github.com/shvdiwnkozbw/SSL-UVOS.
Self-play with Execution Feedback: Improving Instruction-following Capabilities of Large Language Models
One core capability of large language models (LLMs) is to follow natural language instructions. However, the issue of automatically constructing high-quality training data to enhance the complex instruction-following abilities of LLMs without manual annotation remains unresolved. In this paper, we introduce AutoIF, the first scalable and reliable method for automatically generating instruction-following training data. AutoIF transforms the validation of instruction-following data quality into code verification, requiring LLMs to generate instructions, the corresponding code to check the correctness of the instruction responses, and unit test samples to verify the code's correctness. Then, execution feedback-based rejection sampling can generate data for Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) training. AutoIF achieves significant improvements across three training algorithms, SFT, Offline DPO, and Online DPO, when applied to the top open-source LLMs, Qwen2 and LLaMA3, in self-alignment and strong-to-weak distillation settings. Our code is publicly available at https://github.com/QwenLM/AutoIF.
Self-Verification Improves Few-Shot Clinical Information Extraction
Extracting patient information from unstructured text is a critical task in health decision-support and clinical research. Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning, in contrast to supervised learning which requires much more costly human annotations. However, despite drastic advances in modern LLMs such as GPT-4, they still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health. Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs. This is made possible by the asymmetry between verification and generation, where the latter is often much easier than the former. Experimental results show that our method consistently improves accuracy for various LLMs in standard clinical information extraction tasks. Additionally, self-verification yields interpretations in the form of a short text span corresponding to each output, which makes it very efficient for human experts to audit the results, paving the way towards trustworthy extraction of clinical information in resource-constrained scenarios. To facilitate future research in this direction, we release our code and prompts.
X2Edit: Revisiting Arbitrary-Instruction Image Editing through Self-Constructed Data and Task-Aware Representation Learning
Existing open-source datasets for arbitrary-instruction image editing remain suboptimal, while a plug-and-play editing module compatible with community-prevalent generative models is notably absent. In this paper, we first introduce the X2Edit Dataset, a comprehensive dataset covering 14 diverse editing tasks, including subject-driven generation. We utilize the industry-leading unified image generation models and expert models to construct the data. Meanwhile, we design reasonable editing instructions with the VLM and implement various scoring mechanisms to filter the data. As a result, we construct 3.7 million high-quality data with balanced categories. Second, to better integrate seamlessly with community image generation models, we design task-aware MoE-LoRA training based on FLUX.1, with only 8\% of the parameters of the full model. To further improve the final performance, we utilize the internal representations of the diffusion model and define positive/negative samples based on image editing types to introduce contrastive learning. Extensive experiments demonstrate that the model's editing performance is competitive among many excellent models. Additionally, the constructed dataset exhibits substantial advantages over existing open-source datasets. The open-source code, checkpoints, and datasets for X2Edit can be found at the following link: https://github.com/OPPO-Mente-Lab/X2Edit.
Self-Contrast: Better Reflection Through Inconsistent Solving Perspectives
The reflection capacity of Large Language Model (LLM) has garnered extensive attention. A post-hoc prompting strategy, e.g., reflexion and self-refine, refines LLM's response based on self-evaluated or external feedback. However, recent research indicates without external feedback, LLM's intrinsic reflection is unstable. Our investigation unveils that the key bottleneck is the quality of the self-evaluated feedback. We find LLMs often exhibit overconfidence or high randomness when self-evaluate, offering stubborn or inconsistent feedback, which causes poor reflection. To remedy this, we advocate Self-Contrast: It adaptively explores diverse solving perspectives tailored to the request, contrasts the differences, and summarizes these discrepancies into a checklist which could be used to re-examine and eliminate discrepancies. Our method endows LLM with diverse perspectives to alleviate stubborn biases. Moreover, their discrepancies indicate potential errors or inherent uncertainties that LLM often overlooks. Reflecting upon these can catalyze more accurate and stable reflection. Experiments conducted on a series of reasoning and translation tasks with different LLMs serve to underscore the effectiveness and generality of our strategy.
A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification
In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.
CODE-ACCORD: A Corpus of Building Regulatory Data for Rule Generation towards Automatic Compliance Checking
Automatic Compliance Checking (ACC) within the Architecture, Engineering, and Construction (AEC) sector necessitates automating the interpretation of building regulations to achieve its full potential. However, extracting information from textual rules to convert them to a machine-readable format has been a challenge due to the complexities associated with natural language and the limited resources that can support advanced machine-learning techniques. To address this challenge, we introduce CODE-ACCORD, a unique dataset compiled under the EU Horizon ACCORD project. CODE-ACCORD comprises 862 self-contained sentences extracted from the building regulations of England and Finland. Aligned with our core objective of facilitating information extraction from text for machine-readable rule generation, each sentence was annotated with entities and relations. Entities represent specific components such as "window" and "smoke detectors", while relations denote semantic associations between these entities, collectively capturing the conveyed ideas in natural language. We manually annotated all the sentences using a group of 12 annotators. Each sentence underwent annotations by multiple annotators and subsequently careful data curation to finalise annotations, ensuring their accuracy and reliability, thereby establishing the dataset as a solid ground truth. CODE-ACCORD offers a rich resource for diverse machine learning and natural language processing (NLP) related tasks in ACC, including text classification, entity recognition and relation extraction. To the best of our knowledge, this is the first entity and relation-annotated dataset in compliance checking, which is also publicly available.
Improving Autoformalization using Type Checking
Large language models show promise for autoformalization, the task of automatically translating natural language into formal languages. However, current autoformalization methods remain limited. The last reported state-of-the-art performance on the ProofNet formalization benchmark for the Lean proof assistant, achieved using Codex for Lean 3, only showed successful formalization of 16.1% of informal statements. Similarly, our evaluation of GPT-4o for Lean 4 only produces successful translations 34.9% of the time. Our analysis shows that the performance of these models is largely limited by their inability to generate formal statements that successfully type-check (i.e., are syntactically correct and consistent with types) - with a whopping 86.6% of GPT-4o errors starting from a type-check failure. In this work, we propose a method to fix this issue through decoding with type-check filtering, where we initially sample a diverse set of candidate formalizations for an informal statement, then use the Lean proof assistant to filter out candidates that do not type-check. Using GPT-4o as a base model, and combining our method with self-consistency, we obtain a +18.3% absolute increase in formalization accuracy, and achieve a new state-of-the-art of 53.2% on ProofNet with Lean 4.
Mitigating Catastrophic Forgetting in Large Language Models with Self-Synthesized Rehearsal
Large language models (LLMs) suffer from catastrophic forgetting during continual learning. Conventional rehearsal-based methods rely on previous training data to retain the model's ability, which may not be feasible in real-world applications. When conducting continual learning based on a publicly-released LLM checkpoint, the availability of the original training data may be non-existent. To address this challenge, we propose a framework called Self-Synthesized Rehearsal (SSR) that uses the LLM to generate synthetic instances for rehearsal. Concretely, we first employ the base LLM for in-context learning to generate synthetic instances. Subsequently, we utilize the latest LLM to refine the instance outputs based on the synthetic inputs, preserving its acquired ability. Finally, we select diverse high-quality synthetic instances for rehearsal in future stages. Experimental results demonstrate that SSR achieves superior or comparable performance compared to conventional rehearsal-based approaches while being more data-efficient. Besides, SSR effectively preserves the generalization capabilities of LLMs in general domains.
CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing
Recent developments in large language models (LLMs) have been impressive. However, these models sometimes show inconsistencies and problematic behavior, such as hallucinating facts, generating flawed code, or creating offensive and toxic content. Unlike these models, humans typically utilize external tools to cross-check and refine their initial content, like using a search engine for fact-checking, or a code interpreter for debugging. Inspired by this observation, we introduce a framework called CRITIC that allows LLMs, which are essentially "black boxes" to validate and progressively amend their own outputs in a manner similar to human interaction with tools. More specifically, starting with an initial output, CRITIC interacts with appropriate tools to evaluate certain aspects of the text, and then revises the output based on the feedback obtained during this validation process. Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs. Meanwhile, our research highlights the crucial importance of external feedback in promoting the ongoing self-improvement of LLMs.
CSnake: Detecting Self-Sustaining Cascading Failure via Causal Stitching of Fault Propagations
Recent studies have revealed that self-sustaining cascading failures in distributed systems frequently lead to widespread outages, which are challenging to contain and recover from. Existing failure detection techniques struggle to expose such failures prior to deployment, as they typically require a complex combination of specific conditions to be triggered. This challenge stems from the inherent nature of cascading failures, as they typically involve a sequence of fault propagations, each activated by distinct conditions. This paper presents CSnake, a fault injection framework to expose self-sustaining cascading failures in distributed systems. CSnake uses the novel idea of causal stitching, which causally links multiple single-fault injections in different tests to simulate complex fault propagation chains. To identify these chains, CSnake designs a counterfactual causality analysis of fault propagations - fault causality analysis (FCA): FCA compares the execution trace of a fault injection run with its corresponding profile run (i.e., same test w/o the injection) and identifies any additional faults triggered, which are considered to have a causal relationship with the injected fault. To address the large search space of fault and workload combinations, CSnake employs a three-phase allocation protocol of test budget that prioritizes faults with unique and diverse causal consequences, increasing the likelihood of uncovering conditional fault propagations. Furthermore, to avoid incorrectly connecting fault propagations from workloads with incompatible conditions, CSnake performs a local compatibility check that approximately checks the compatibility of the path constraints associated with connected fault propagations with low overhead. CSnake detected 15 bugs that cause self-sustaining cascading failures in five systems, five of which have been confirmed with two fixed.
T1: Tool-integrated Self-verification for Test-time Compute Scaling in Small Language Models
Recent studies have demonstrated that test-time compute scaling effectively improves the performance of small language models (sLMs). However, prior research has mainly examined test-time compute scaling with an additional larger model as a verifier, leaving self-verification by sLMs underexplored. In this work, we investigate whether sLMs can reliably self-verify their outputs under test-time scaling. We find that even with knowledge distillation from larger verifiers, sLMs struggle with verification tasks requiring memorization, such as numerical calculations and fact-checking. To address this limitation, we propose Tool-integrated self-verification (T1), which delegates memorization-heavy verification steps to external tools, such as a code interpreter. Our theoretical analysis shows that tool integration reduces memorization demands and improves test-time scaling performance. Experiments on the MATH benchmark demonstrate that, with T1, a Llama-3.2 1B model under test-time scaling outperforms the significantly larger Llama-3.1 8B model. Moreover, T1 generalizes effectively to both mathematical (MATH500) and multi-domain knowledge-intensive tasks (MMLU-Pro). Our findings highlight the potential of tool integration to substantially improve the self-verification abilities of sLMs.
SCoder: Iterative Self-Distillation for Bootstrapping Small-Scale Data Synthesizers to Empower Code LLMs
Existing code large language models (LLMs) often rely on large-scale instruction data distilled from proprietary LLMs for fine-tuning, which typically incurs high costs. In this paper, we explore the potential of small-scale open-source LLMs (e.g., 7B) as synthesizers for high-quality code instruction data construction. We first observe that the data synthesis capability of small-scale LLMs can be enhanced by training on a few superior data synthesis samples from proprietary LLMs. Building on this, we propose a novel iterative self-distillation approach to bootstrap small-scale LLMs, transforming them into powerful synthesizers that reduce reliance on proprietary LLMs and minimize costs. Concretely, in each iteration, to obtain diverse and high-quality self-distilled data, we design multi-checkpoint sampling and multi-aspect scoring strategies for initial data selection. Furthermore, to identify the most influential samples, we introduce a gradient-based influence estimation method for final data filtering. Based on the code instruction datasets from the small-scale synthesizers, we develop SCoder, a family of code generation models fine-tuned from DeepSeek-Coder. SCoder models achieve state-of-the-art code generation capabilities, demonstrating the effectiveness of our method.
Large Language Models are Better Reasoners with Self-Verification
Recently, with the chain of thought (CoT) prompting, large language models (LLMs), e.g., GPT-3, have shown strong reasoning ability in several natural language processing tasks such as arithmetic, commonsense, and logical reasoning. However, LLMs with CoT require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes and vulnerable to error accumulation. The above issues make the LLMs need the ability to verify the answers. In fact, after inferring conclusions in some thinking decision tasks, people often check them by re-verifying steps to avoid some mistakes. In this paper, we propose and prove that LLMs also have similar self-verification abilities. We take the conclusion obtained by CoT as one of the conditions for solving the original problem. By taking turns masking the original conditions and predicting their results, we calculate an explainable answer verification score based on whether the re-predicted conditions are correct. Experimental results demonstrate that the proposed method can improve the reasoning performance on various arithmetic, commonsense, and logical reasoning datasets. Our code is publicly available at: https://github.com/WENGSYX/Self-Verification.
A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention
Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: https://github.com/C4AI/gap-text2sql.
Attentive Eraser: Unleashing Diffusion Model's Object Removal Potential via Self-Attention Redirection Guidance
Recently, diffusion models have emerged as promising newcomers in the field of generative models, shining brightly in image generation. However, when employed for object removal tasks, they still encounter issues such as generating random artifacts and the incapacity to repaint foreground object areas with appropriate content after removal. To tackle these problems, we propose Attentive Eraser, a tuning-free method to empower pre-trained diffusion models for stable and effective object removal. Firstly, in light of the observation that the self-attention maps influence the structure and shape details of the generated images, we propose Attention Activation and Suppression (ASS), which re-engineers the self-attention mechanism within the pre-trained diffusion models based on the given mask, thereby prioritizing the background over the foreground object during the reverse generation process. Moreover, we introduce Self-Attention Redirection Guidance (SARG), which utilizes the self-attention redirected by ASS to guide the generation process, effectively removing foreground objects within the mask while simultaneously generating content that is both plausible and coherent. Experiments demonstrate the stability and effectiveness of Attentive Eraser in object removal across a variety of pre-trained diffusion models, outperforming even training-based methods. Furthermore, Attentive Eraser can be implemented in various diffusion model architectures and checkpoints, enabling excellent scalability. Code is available at https://github.com/Anonym0u3/AttentiveEraser.
Logically at Factify 2: A Multi-Modal Fact Checking System Based on Evidence Retrieval techniques and Transformer Encoder Architecture
In this paper, we present the Logically submissions to De-Factify 2 challenge (DE-FACTIFY 2023) on the task 1 of Multi-Modal Fact Checking. We describes our submissions to this challenge including explored evidence retrieval and selection techniques, pre-trained cross-modal and unimodal models, and a cross-modal veracity model based on the well established Transformer Encoder (TE) architecture which is heavily relies on the concept of self-attention. Exploratory analysis is also conducted on this Factify 2 data set that uncovers the salient multi-modal patterns and hypothesis motivating the architecture proposed in this work. A series of preliminary experiments were done to investigate and benchmarking different pre-trained embedding models, evidence retrieval settings and thresholds. The final system, a standard two-stage evidence based veracity detection system, yields weighted avg. 0.79 on both val set and final blind test set on the task 1, which achieves 3rd place with a small margin to the top performing system on the leaderboard among 9 participants.
Reasoned Safety Alignment: Ensuring Jailbreak Defense via Answer-Then-Check
As large language models (LLMs) continue to advance in capabilities, ensuring their safety against jailbreak attacks remains a critical challenge. In this paper, we introduce a novel safety alignment approach called Answer-Then-Check, which enhances LLM robustness against malicious prompts by applying thinking ability to mitigate jailbreaking problems before producing a final answer to the user. Our method enables models to directly answer the question in their thought and then critically evaluate its safety before deciding whether to provide it. To implement this approach, we construct the Reasoned Safety Alignment (ReSA) dataset, comprising 80K examples that teach models to reason through direct responses and then analyze their safety. Experimental results demonstrate that our approach achieves the Pareto frontier with superior safety capability while decreasing over-refusal rates on over-refusal benchmarks. Notably, the model fine-tuned with ReSA maintains general reasoning capabilities on benchmarks like MMLU, MATH500, and HumanEval. Besides, our method equips models with the ability to perform safe completion. Unlike post-hoc methods that can only reject harmful queries, our model can provide helpful and safe alternative responses for sensitive topics (e.g., self-harm). Furthermore, we discover that training on a small subset of just 500 examples can achieve comparable performance to using the full dataset, suggesting that safety alignment may require less data than previously assumed.
AlphaApollo: Orchestrating Foundation Models and Professional Tools into a Self-Evolving System for Deep Agentic Reasoning
We present AlphaApollo, a self-evolving agentic reasoning system that aims to address two bottlenecks in foundation model (FM) reasoning-limited model-intrinsic capacity and unreliable test-time iteration. AlphaApollo orchestrates multiple models with professional tools to enable deliberate, verifiable reasoning. It couples (i) a computation tool (Python with numerical and symbolic libraries) and (ii) a retrieval tool (task-relevant external information) to execute exact calculations and ground decisions. The system further supports multi-round, multi-model solution evolution via a shared state map that records candidates, executable checks, and feedback for iterative refinement. In evaluations on AIME 2024/2025 across multiple models, AlphaApollo delivers consistent gains: +5.15% Average@32 and +23.34% Pass@32 for Qwen2.5-14B-Instruct, and +8.91% Average@32 with +26.67% Pass@32 for Llama-3.3-70B-Instruct. Tool-use analysis shows that more than 80% of tool calls are successfully executed, with consistent outperformance of non-tool baselines, thereby lifting the capability ceiling of FMs. More empirical results and implementation details will be updated at https://github.com/tmlr-group/AlphaApollo.
Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation
Recent advances in large language models (LLMs) have improved their performance on coding benchmarks. However, improvement is plateauing due to the exhaustion of readily available high-quality data. Prior work has shown the potential of synthetic self-instruct data, but naively training on a model's own outputs can cause error accumulation, especially in coding tasks, where generalization may collapse due to overly simple or erroneous training data, highlighting the need for rigorous quality checks on synthetic data. In this work, we explore an effective approach whereby the model itself verifies the correctness of its own data. We thus propose Sol-Ver, a self-play solver-verifier framework that jointly improves a single model's code and test generation capacity. By iteratively refining code (LLM-as-a-solver) and tests (LLM-as-a-verifier) together, we boost both capabilities without relying on human annotations or larger teacher models. Experiments with the Llama 3.1 8B model demonstrate substantial performance enhancements, achieving average relative improvements of 19.63% in code generation and 17.49% in test generation on MBPP and LiveCodeBench.
Preventing Errors in Person Detection: A Part-Based Self-Monitoring Framework
The ability to detect learned objects regardless of their appearance is crucial for autonomous systems in real-world applications. Especially for detecting humans, which is often a fundamental task in safety-critical applications, it is vital to prevent errors. To address this challenge, we propose a self-monitoring framework that allows for the perception system to perform plausibility checks at runtime. We show that by incorporating an additional component for detecting human body parts, we are able to significantly reduce the number of missed human detections by factors of up to 9 when compared to a baseline setup, which was trained only on holistic person objects. Additionally, we found that training a model jointly on humans and their body parts leads to a substantial reduction in false positive detections by up to 50% compared to training on humans alone. We performed comprehensive experiments on the publicly available datasets DensePose and Pascal VOC in order to demonstrate the effectiveness of our framework. Code is available at https://github.com/ FraunhoferIKS/smf-object-detection.
Huxley-Gödel Machine: Human-Level Coding Agent Development by an Approximation of the Optimal Self-Improving Machine
Recent studies operationalize self-improvement through coding agents that edit their own codebases. They grow a tree of self-modifications through expansion strategies that favor higher software engineering benchmark performance, assuming that this implies more promising subsequent self-modifications. However, we identify a mismatch between the agent's self-improvement potential (metaproductivity) and its coding benchmark performance, namely the Metaproductivity-Performance Mismatch. Inspired by Huxley's concept of clade, we propose a metric (CMP) that aggregates the benchmark performances of the descendants of an agent as an indicator of its potential for self-improvement. We show that, in our self-improving coding agent development setting, access to the true CMP is sufficient to simulate how the G\"odel Machine would behave under certain assumptions. We introduce the Huxley-G\"odel Machine (HGM), which, by estimating CMP and using it as guidance, searches the tree of self-modifications. On SWE-bench Verified and Polyglot, HGM outperforms prior self-improving coding agent development methods while using less wall-clock time. Last but not least, HGM demonstrates strong transfer to other coding datasets and large language models. The agent optimized by HGM on SWE-bench Verified with GPT-5-mini and evaluated on SWE-bench Lite with GPT-5 achieves human-level performance, matching the best officially checked results of human-engineered coding agents. Our code is available at https://github.com/metauto-ai/HGM.
Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction
We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis: We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction: We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging: We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184, securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.
PARIKSHA : A Large-Scale Investigation of Human-LLM Evaluator Agreement on Multilingual and Multi-Cultural Data
Evaluation of multilingual Large Language Models (LLMs) is challenging due to a variety of factors -- the lack of benchmarks with sufficient linguistic diversity, contamination of popular benchmarks into LLM pre-training data and the lack of local, cultural nuances in translated benchmarks. In this work, we study human and LLM-based evaluation in a multilingual, multi-cultural setting. We evaluate 30 models across 10 Indic languages by conducting 90K human evaluations and 30K LLM-based evaluations and find that models such as GPT-4o and Llama-3 70B consistently perform best for most Indic languages. We build leaderboards for two evaluation settings - pairwise comparison and direct assessment and analyse the agreement between humans and LLMs. We find that humans and LLMs agree fairly well in the pairwise setting but the agreement drops for direct assessment evaluation especially for languages such as Bengali and Odia. We also check for various biases in human and LLM-based evaluation and find evidence of self-bias in the GPT-based evaluator. Our work presents a significant step towards scaling up multilingual evaluation of LLMs.
FAIR-BFL: Flexible and Incentive Redesign for Blockchain-based Federated Learning
Vanilla Federated learning (FL) relies on the centralized global aggregation mechanism and assumes that all clients are honest. This makes it a challenge for FL to alleviate the single point of failure and dishonest clients. These impending challenges in the design philosophy of FL call for blockchain-based federated learning (BFL) due to the benefits of coupling FL and blockchain (e.g., democracy, incentive, and immutability). However, one problem in vanilla BFL is that its capabilities do not follow adopters' needs in a dynamic fashion. Besides, vanilla BFL relies on unverifiable clients' self-reported contributions like data size because checking clients' raw data is not allowed in FL for privacy concerns. We design and evaluate a novel BFL framework, and resolve the identified challenges in vanilla BFL with greater flexibility and incentive mechanism called FAIR-BFL. In contrast to existing works, FAIR-BFL offers unprecedented flexibility via the modular design, allowing adopters to adjust its capabilities following business demands in a dynamic fashion. Our design accounts for BFL's ability to quantify each client's contribution to the global learning process. Such quantification provides a rational metric for distributing the rewards among federated clients and helps discover malicious participants that may poison the global model.
Knowledge-Level Consistency Reinforcement Learning: Dual-Fact Alignment for Long-Form Factuality
Hallucination and factuality deficits remain key obstacles to the reliability of large language models (LLMs) in long-form generation. Existing reinforcement learning from human feedback (RLHF) frameworks primarily rely on preference rewards, yet they often overlook the model's internal knowledge boundaries, exacerbating the so-called "hallucination tax". To address this challenge, we propose Knowledge-Level Consistency Reinforcement Learning Framework (KLCF), a novel framework that focuses on the knowledge consistency between the policy model's expressed knowledge and the base model's parametric knowledge, and introduces a Dual-Fact Alignment mechanism to jointly optimize factual recall and precision. Specifically, KLCF leverages pretrained knowledge boundaries to construct fact checklist, guiding online reinforcement learning to improve factual coverage and recall; simultaneously, it trains a self-assessment module based on the base model's internal knowledge to enhance factual precision during generation. Unlike prior methods that rely on external retrieval or heavy verification, our reward design is fully external-knowledge-free and lightweight, making KLCF efficient and easily scalable to large-scale training. Experimental results demonstrate that KLCF substantially improves factuality metrics across multiple long-form benchmarks and effectively alleviates model hallucinations.
Manalyzer: End-to-end Automated Meta-analysis with Multi-agent System
Meta-analysis is a systematic research methodology that synthesizes data from multiple existing studies to derive comprehensive conclusions. This approach not only mitigates limitations inherent in individual studies but also facilitates novel discoveries through integrated data analysis. Traditional meta-analysis involves a complex multi-stage pipeline including literature retrieval, paper screening, and data extraction, which demands substantial human effort and time. However, while LLM-based methods can accelerate certain stages, they still face significant challenges, such as hallucinations in paper screening and data extraction. In this paper, we propose a multi-agent system, Manalyzer, which achieves end-to-end automated meta-analysis through tool calls. The hybrid review, hierarchical extraction, self-proving, and feedback checking strategies implemented in Manalyzer significantly alleviate these two hallucinations. To comprehensively evaluate the performance of meta-analysis, we construct a new benchmark comprising 729 papers across 3 domains, encompassing text, image, and table modalities, with over 10,000 data points. Extensive experiments demonstrate that Manalyzer achieves significant performance improvements over the LLM baseline in multi meta-analysis tasks. Project page: https://black-yt.github.io/meta-analysis-page/ .
Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification
Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that "the gold standard for supporting a mathematical claim is to provide a proof". We propose a retrospective, step-aware formal verification framework Safe. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework Safe across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose FormalStep as a benchmark for step correctness theorem proving with 30,809 formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying natural language content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.
ALMA: Alignment with Minimal Annotation
Recent approaches to large language model (LLM) alignment typically require millions of human annotations or rely on external aligned models for synthetic data generation. This paper introduces ALMA: Alignment with Minimal Annotation, demonstrating that effective alignment can be achieved using only 9,000 labeled examples -- less than 1% of conventional approaches. ALMA generates large amounts of high-quality synthetic alignment data through new techniques: diverse prompt synthesis via few-shot learning, diverse response generation with multiple model checkpoints, and judge (reward model) enhancement through score aggregation and self-distillation. Using only a pretrained Llama3 base model, 5,000 SFT examples, and 4,000 judge annotations, ALMA achieves performance close to Llama3-Instruct across diverse alignment benchmarks (e.g., 0.1% difference on AlpacaEval 2.0 score). These results are achieved with a multi-round, self-bootstrapped data synthesis and training recipe that continues to improve for 10 rounds, surpassing the typical 3-round ceiling of previous methods. These results suggest that base models already possess sufficient knowledge for effective alignment, and that synthetic data generation methods can expose it.
Auto MC-Reward: Automated Dense Reward Design with Large Language Models for Minecraft
Many reinforcement learning environments (e.g., Minecraft) provide only sparse rewards that indicate task completion or failure with binary values. The challenge in exploration efficiency in such environments makes it difficult for reinforcement-learning-based agents to learn complex tasks. To address this, this paper introduces an advanced learning system, named Auto MC-Reward, that leverages Large Language Models (LLMs) to automatically design dense reward functions, thereby enhancing the learning efficiency. Auto MC-Reward consists of three important components: Reward Designer, Reward Critic, and Trajectory Analyzer. Given the environment information and task descriptions, the Reward Designer first design the reward function by coding an executable Python function with predefined observation inputs. Then, our Reward Critic will be responsible for verifying the code, checking whether the code is self-consistent and free of syntax and semantic errors. Further, the Trajectory Analyzer summarizes possible failure causes and provides refinement suggestions according to collected trajectories. In the next round, Reward Designer will further refine and iterate the dense reward function based on feedback. Experiments demonstrate a significant improvement in the success rate and learning efficiency of our agents in complex tasks in Minecraft, such as obtaining diamond with the efficient ability to avoid lava, and efficiently explore trees and animals that are sparse in the plains biome.
OmnimatteZero: Training-free Real-time Omnimatte with Pre-trained Video Diffusion Models
Omnimatte aims to decompose a given video into semantically meaningful layers, including the background and individual objects along with their associated effects, such as shadows and reflections. Existing methods often require extensive training or costly self-supervised optimization. In this paper, we present OmnimatteZero, a training-free approach that leverages off-the-shelf pre-trained video diffusion models for omnimatte. It can remove objects from videos, extract individual object layers along with their effects, and composite those objects onto new videos. We accomplish this by adapting zero-shot image inpainting techniques for video object removal, a task they fail to handle effectively out-of-the-box. We then show that self-attention maps capture information about the object and its footprints and use them to inpaint the object's effects, leaving a clean background. Additionally, through simple latent arithmetic, object layers can be isolated and recombined seamlessly with new video layers to produce new videos. Evaluations show that OmnimatteZero not only achieves superior performance in terms of background reconstruction but also sets a new record for the fastest Omnimatte approach, achieving real-time performance with minimal frame runtime.
Sparser Block-Sparse Attention via Token Permutation
Scaling the context length of large language models (LLMs) offers significant benefits but is computationally expensive. This expense stems primarily from the self-attention mechanism, whose O(N^2) complexity with respect to sequence length presents a major bottleneck for both memory and latency. Fortunately, the attention matrix is often sparse, particularly for long sequences, suggesting an opportunity for optimization. Block-sparse attention has emerged as a promising solution that partitions sequences into blocks and skips computation for a subset of these blocks. However, the effectiveness of this method is highly dependent on the underlying attention patterns, which can lead to sub-optimal block-level sparsity. For instance, important key tokens for queries within a single block may be scattered across numerous other blocks, leading to computational redundancy. In this work, we propose Permuted Block-Sparse Attention (PBS-Attn), a plug-and-play method that leverages the permutation properties of attention to increase block-level sparsity and enhance the computational efficiency of LLM prefilling. We conduct comprehensive experiments on challenging real-world long-context datasets, demonstrating that PBS-Attn consistently outperforms existing block-sparse attention methods in model accuracy and closely matches the full attention baseline. Powered by our custom permuted-FlashAttention kernels, PBS-Attn achieves an end-to-end speedup of up to 2.75times in long-context prefilling, confirming its practical viability. Code available at https://github.com/xinghaow99/pbs-attn
Per-Query Visual Concept Learning
Visual concept learning, also known as Text-to-image personalization, is the process of teaching new concepts to a pretrained model. This has numerous applications from product placement to entertainment and personalized design. Here we show that many existing methods can be substantially augmented by adding a personalization step that is (1) specific to the prompt and noise seed, and (2) using two loss terms based on the self- and cross- attention, capturing the identity of the personalized concept. Specifically, we leverage PDM features -- previously designed to capture identity -- and show how they can be used to improve personalized semantic similarity. We evaluate the benefit that our method gains on top of six different personalization methods, and several base text-to-image models (both UNet- and DiT-based). We find significant improvements even over previous per-query personalization methods.
Multi-Shot Character Consistency for Text-to-Video Generation
Text-to-video models have made significant strides in generating short video clips from textual descriptions. Yet, a significant challenge remains: generating several video shots of the same characters, preserving their identity without hurting video quality, dynamics, and responsiveness to text prompts. We present Video Storyboarding, a training-free method to enable pretrained text-to-video models to generate multiple shots with consistent characters, by sharing features between them. Our key insight is that self-attention query features (Q) encode both motion and identity. This creates a hard-to-avoid trade-off between preserving character identity and making videos dynamic, when features are shared. To address this issue, we introduce a novel query injection strategy that balances identity preservation and natural motion retention. This approach improves upon naive consistency techniques applied to videos, which often struggle to maintain this delicate equilibrium. Our experiments demonstrate significant improvements in character consistency across scenes while maintaining high-quality motion and text alignment. These results offer insights into critical stages of video generation and the interplay of structure and motion in video diffusion models.
FreeTacMan: Robot-free Visuo-Tactile Data Collection System for Contact-rich Manipulation
Enabling robots with contact-rich manipulation remains a pivotal challenge in robot learning, which is substantially hindered by the data collection gap, including its inefficiency and limited sensor setup. While prior work has explored handheld paradigms, their rod-based mechanical structures remain rigid and unintuitive, providing limited tactile feedback and posing challenges for human operators. Motivated by the dexterity and force feedback of human motion, we propose FreeTacMan, a human-centric and robot-free data collection system for accurate and efficient robot manipulation. Concretely, we design a wearable gripper with dual visuo-tactile sensors for data collection, which can be worn by human fingers for intuitive control. A high-precision optical tracking system is introduced to capture end-effector poses while synchronizing visual and tactile feedback simultaneously. We leverage FreeTacMan to collect a large-scale multimodal dataset, comprising over 3000k paired visual-tactile images with end-effector poses, 10k demonstration trajectories across 50 diverse contact-rich manipulation tasks. FreeTacMan achieves multiple improvements in data collection performance compared to prior works, and enables effective policy learning for contact-rich manipulation tasks with self-collected dataset. The full suite of hardware specifications and the dataset will be released to facilitate reproducibility and support research in visuo-tactile manipulation.
Where's Waldo: Diffusion Features for Personalized Segmentation and Retrieval
Personalized retrieval and segmentation aim to locate specific instances within a dataset based on an input image and a short description of the reference instance. While supervised methods are effective, they require extensive labeled data for training. Recently, self-supervised foundation models have been introduced to these tasks showing comparable results to supervised methods. However, a significant flaw in these models is evident: they struggle to locate a desired instance when other instances within the same class are presented. In this paper, we explore text-to-image diffusion models for these tasks. Specifically, we propose a novel approach called PDM for Personalized Features Diffusion Matching, that leverages intermediate features of pre-trained text-to-image models for personalization tasks without any additional training. PDM demonstrates superior performance on popular retrieval and segmentation benchmarks, outperforming even supervised methods. We also highlight notable shortcomings in current instance and segmentation datasets and propose new benchmarks for these tasks.
DiffUHaul: A Training-Free Method for Object Dragging in Images
Text-to-image diffusion models have proven effective for solving many image editing tasks. However, the seemingly straightforward task of seamlessly relocating objects within a scene remains surprisingly challenging. Existing methods addressing this problem often struggle to function reliably in real-world scenarios due to lacking spatial reasoning. In this work, we propose a training-free method, dubbed DiffUHaul, that harnesses the spatial understanding of a localized text-to-image model, for the object dragging task. Blindly manipulating layout inputs of the localized model tends to cause low editing performance due to the intrinsic entanglement of object representation in the model. To this end, we first apply attention masking in each denoising step to make the generation more disentangled across different objects and adopt the self-attention sharing mechanism to preserve the high-level object appearance. Furthermore, we propose a new diffusion anchoring technique: in the early denoising steps, we interpolate the attention features between source and target images to smoothly fuse new layouts with the original appearance; in the later denoising steps, we pass the localized features from the source images to the interpolated images to retain fine-grained object details. To adapt DiffUHaul to real-image editing, we apply a DDPM self-attention bucketing that can better reconstruct real images with the localized model. Finally, we introduce an automated evaluation pipeline for this task and showcase the efficacy of our method. Our results are reinforced through a user preference study.
Padding Tone: A Mechanistic Analysis of Padding Tokens in T2I Models
Text-to-image (T2I) diffusion models rely on encoded prompts to guide the image generation process. Typically, these prompts are extended to a fixed length by adding padding tokens before text encoding. Despite being a default practice, the influence of padding tokens on the image generation process has not been investigated. In this work, we conduct the first in-depth analysis of the role padding tokens play in T2I models. We develop two causal techniques to analyze how information is encoded in the representation of tokens across different components of the T2I pipeline. Using these techniques, we investigate when and how padding tokens impact the image generation process. Our findings reveal three distinct scenarios: padding tokens may affect the model's output during text encoding, during the diffusion process, or be effectively ignored. Moreover, we identify key relationships between these scenarios and the model's architecture (cross or self-attention) and its training process (frozen or trained text encoder). These insights contribute to a deeper understanding of the mechanisms of padding tokens, potentially informing future model design and training practices in T2I systems.
SelfCheck: Using LLMs to Zero-Shot Check Their Own Step-by-Step Reasoning
The recent progress in large language models (LLMs), especially the invention of chain-of-thoughts (CoT) prompting, makes it possible to solve reasoning problems. However, even the strongest LLMs are still struggling with more complicated problems that require non-linear thinking and multi-step reasoning. In this work, we explore whether LLMs have the ability to recognize their own errors, without resorting to external resources. In particular, we investigate whether they can be used to identify individual errors within a step-by-step reasoning. To this end, we propose a zero-shot verification scheme to recognize such errors. We then use this verification scheme to improve question-answering performance, by using it to perform weighted voting on different generated answers. We test the method on three math datasets-GSM8K, MathQA, and MATH-and find that it successfully recognizes errors and, in turn, increases final predictive performance.
SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models
Generative Large Language Models (LLMs) such as GPT-3 are capable of generating highly fluent responses to a wide variety of user prompts. However, LLMs are known to hallucinate facts and make non-factual statements which can undermine trust in their output. Existing fact-checking approaches either require access to token-level output probability distribution (which may not be available for systems such as ChatGPT) or external databases that are interfaced via separate, often complex, modules. In this work, we propose "SelfCheckGPT", a simple sampling-based approach that can be used to fact-check black-box models in a zero-resource fashion, i.e. without an external database. SelfCheckGPT leverages the simple idea that if a LLM has knowledge of a given concept, sampled responses are likely to be similar and contain consistent facts. However, for hallucinated facts, stochastically sampled responses are likely to diverge and contradict one another. We investigate this approach by using GPT-3 to generate passages about individuals from the WikiBio dataset, and manually annotate the factuality of the generated passages. We demonstrate that SelfCheckGPT can: i) detect non-factual and factual sentences; and ii) rank passages in terms of factuality. We compare our approach to several existing baselines and show that in sentence hallucination detection, our approach has AUC-PR scores comparable to grey-box methods, while SelfCheckGPT is best at passage factuality assessment.
SelfCheckAgent: Zero-Resource Hallucination Detection in Generative Large Language Models
Detecting hallucinations in Large Language Models (LLMs) remains a critical challenge for their reliable deployment in real-world applications. To address this, we introduce SelfCheckAgent, a novel framework integrating three different agents: the Symbolic Agent, the Specialized Detection Agent, and the Contextual Consistency Agent. These agents provide a robust multi-dimensional approach to hallucination detection. Notable results include the Contextual Consistency Agent leveraging Llama 3.1 with Chain-of-Thought (CoT) to achieve outstanding performance on the WikiBio dataset, with NonFactual hallucination detection scoring 93.64%, Factual 70.26%, and Ranking 78.48% respectively. On the AIME dataset, GPT-4o with CoT excels in NonFactual detection with 94.89% but reveals trade-offs in Factual with 30.58% and Ranking with 30.68%, underscoring the complexity of hallucination detection in the complex mathematical domains. The framework also incorporates a triangulation strategy, which increases the strengths of the SelfCheckAgent, yielding significant improvements in real-world hallucination identification. The comparative analysis demonstrates SelfCheckAgent's applicability across diverse domains, positioning it as a crucial advancement for trustworthy LLMs. These findings highlight the potentiality of consistency-driven methodologies in detecting hallucinations in LLMs.
FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as knowledge graphs consisting of facts in the form of triples. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sampling-based methods while providing more detailed insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only an 8% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content.

 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
	 
			 
			 
			 
			