new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 6

Textured 3D Regenerative Morphing with 3D Diffusion Prior

Textured 3D morphing creates smooth and plausible interpolation sequences between two 3D objects, focusing on transitions in both shape and texture. This is important for creative applications like visual effects in filmmaking. Previous methods rely on establishing point-to-point correspondences and determining smooth deformation trajectories, which inherently restrict them to shape-only morphing on untextured, topologically aligned datasets. This restriction leads to labor-intensive preprocessing and poor generalization. To overcome these challenges, we propose a method for 3D regenerative morphing using a 3D diffusion prior. Unlike previous methods that depend on explicit correspondences and deformations, our method eliminates the additional need for obtaining correspondence and uses the 3D diffusion prior to generate morphing. Specifically, we introduce a 3D diffusion model and interpolate the source and target information at three levels: initial noise, model parameters, and condition features. We then explore an Attention Fusion strategy to generate more smooth morphing sequences. To further improve the plausibility of semantic interpolation and the generated 3D surfaces, we propose two strategies: (a) Token Reordering, where we match approximate tokens based on semantic analysis to guide implicit correspondences in the denoising process of the diffusion model, and (b) Low-Frequency Enhancement, where we enhance low-frequency signals in the tokens to improve the quality of generated surfaces. Experimental results show that our method achieves superior smoothness and plausibility in 3D morphing across diverse cross-category object pairs, offering a novel regenerative method for 3D morphing with textured representations.

  • 4 authors
·
Feb 20

Latent Diffusion Autoencoders: Toward Efficient and Meaningful Unsupervised Representation Learning in Medical Imaging

This study presents Latent Diffusion Autoencoder (LDAE), a novel encoder-decoder diffusion-based framework for efficient and meaningful unsupervised learning in medical imaging, focusing on Alzheimer disease (AD) using brain MR from the ADNI database as a case study. Unlike conventional diffusion autoencoders operating in image space, LDAE applies the diffusion process in a compressed latent representation, improving computational efficiency and making 3D medical imaging representation learning tractable. To validate the proposed approach, we explore two key hypotheses: (i) LDAE effectively captures meaningful semantic representations on 3D brain MR associated with AD and ageing, and (ii) LDAE achieves high-quality image generation and reconstruction while being computationally efficient. Experimental results support both hypotheses: (i) linear-probe evaluations demonstrate promising diagnostic performance for AD (ROC-AUC: 90%, ACC: 84%) and age prediction (MAE: 4.1 years, RMSE: 5.2 years); (ii) the learned semantic representations enable attribute manipulation, yielding anatomically plausible modifications; (iii) semantic interpolation experiments show strong reconstruction of missing scans, with SSIM of 0.969 (MSE: 0.0019) for a 6-month gap. Even for longer gaps (24 months), the model maintains robust performance (SSIM > 0.93, MSE < 0.004), indicating an ability to capture temporal progression trends; (iv) compared to conventional diffusion autoencoders, LDAE significantly increases inference throughput (20x faster) while also enhancing reconstruction quality. These findings position LDAE as a promising framework for scalable medical imaging applications, with the potential to serve as a foundation model for medical image analysis. Code available at https://github.com/GabrieleLozupone/LDAE

  • 6 authors
·
Apr 11 2

I-Segmenter: Integer-Only Vision Transformer for Efficient Semantic Segmentation

Vision Transformers (ViTs) have recently achieved strong results in semantic segmentation, yet their deployment on resource-constrained devices remains limited due to their high memory footprint and computational cost. Quantization offers an effective strategy to improve efficiency, but ViT-based segmentation models are notoriously fragile under low precision, as quantization errors accumulate across deep encoder-decoder pipelines. We introduce I-Segmenter, the first fully integer-only ViT segmentation framework. Building on the Segmenter architecture, I-Segmenter systematically replaces floating-point operations with integer-only counterparts. To further stabilize both training and inference, we propose lambda-ShiftGELU, a novel activation function that mitigates the limitations of uniform quantization in handling long-tailed activation distributions. In addition, we remove the L2 normalization layer and replace bilinear interpolation in the decoder with nearest neighbor upsampling, ensuring integer-only execution throughout the computational graph. Extensive experiments show that I-Segmenter achieves accuracy within a reasonable margin of its FP32 baseline (5.1 % on average), while reducing model size by up to 3.8x and enabling up to 1.2x faster inference with optimized runtimes. Notably, even in one-shot PTQ with a single calibration image, I-Segmenter delivers competitive accuracy, underscoring its practicality for real-world deployment.

  • 3 authors
·
Sep 12

IconShop: Text-Guided Vector Icon Synthesis with Autoregressive Transformers

Scalable Vector Graphics (SVG) is a popular vector image format that offers good support for interactivity and animation. Despite its appealing characteristics, creating custom SVG content can be challenging for users due to the steep learning curve required to understand SVG grammars or get familiar with professional editing software. Recent advancements in text-to-image generation have inspired researchers to explore vector graphics synthesis using either image-based methods (i.e., text -> raster image -> vector graphics) combining text-to-image generation models with image vectorization, or language-based methods (i.e., text -> vector graphics script) through pretrained large language models. However, these methods still suffer from limitations in terms of generation quality, diversity, and flexibility. In this paper, we introduce IconShop, a text-guided vector icon synthesis method using autoregressive transformers. The key to success of our approach is to sequentialize and tokenize SVG paths (and textual descriptions as guidance) into a uniquely decodable token sequence. With that, we are able to fully exploit the sequence learning power of autoregressive transformers, while enabling both unconditional and text-conditioned icon synthesis. Through standard training to predict the next token on a large-scale vector icon dataset accompanied by textural descriptions, the proposed IconShop consistently exhibits better icon synthesis capability than existing image-based and language-based methods both quantitatively and qualitatively. Meanwhile, we observe a dramatic improvement in generation diversity, which is validated by the objective Uniqueness and Novelty measures. More importantly, we demonstrate the flexibility of IconShop with multiple novel icon synthesis tasks, including icon editing, icon interpolation, icon semantic combination, and icon design auto-suggestion.

  • 4 authors
·
Apr 27, 2023

OneActor: Consistent Character Generation via Cluster-Conditioned Guidance

Text-to-image diffusion models benefit artists with high-quality image generation. Yet its stochastic nature prevent artists from creating consistent images of the same character. Existing methods try to tackle this challenge and generate consistent content in various ways. However, they either depend on external data or require expensive tuning of the diffusion model. For this issue, we argue that a lightweight but intricate guidance is enough to function. Aiming at this, we lead the way to formalize the objective of consistent generation, derive a clustering-based score function and propose a novel paradigm, OneActor. We design a cluster-conditioned model which incorporates posterior samples to guide the denoising trajectories towards the target cluster. To overcome the overfitting challenge shared by one-shot tuning pipelines, we devise auxiliary components to simultaneously augment the tuning and regulate the inference. This technique is later verified to significantly enhance the content diversity of generated images. Comprehensive experiments show that our method outperforms a variety of baselines with satisfactory character consistency, superior prompt conformity as well as high image quality. And our method is at least 4 times faster than tuning-based baselines. Furthermore, to our best knowledge, we first prove that the semantic space has the same interpolation property as the latent space dose. This property can serve as another promising tool for fine generation control.

  • 4 authors
·
Apr 15, 2024 2