3 AdvChain: Adversarial Chain-of-Thought Tuning for Robust Safety Alignment of Large Reasoning Models Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in complex problem-solving through Chain-of-Thought (CoT) reasoning. However, the multi-step nature of CoT introduces new safety challenges that extend beyond conventional language model alignment. We identify a failure mode in current safety CoT tuning methods: the snowball effect, where minor reasoning deviations progressively amplify throughout the thought process, leading to either harmful compliance or excessive refusal. This effect stems from models being trained to imitate perfect reasoning scripts without learning to self-correct. To address this limitation, we propose AdvChain, an alignment paradigm that teaches models dynamic self-correction through adversarial CoT tuning. Our method involves constructing a dataset containing Temptation-Correction and Hesitation-Correction samples, where models learn to recover from harmful reasoning drifts and unnecessary cautions. Extensive experiments show that AdvChain significantly enhances robustness against jailbreak attacks and CoT hijacking while substantially reducing over-refusal on benign prompts, achieving a superior safety-utility balance without compromising reasoning capabilities. Our work establishes a new direction for building more robust and reliable reasoning models. The Chinese University of Hongkong,Shenzhen · Sep 29 2
- Water Snowline in Young Stellar Objects with Various Density Structures Using Radiative Transfer Models Tracing the water snowline in low-mass young stellar objects (YSOs) is important because dust grain growth is promoted and the chemical composition varies at the water snowline, which influences planet formation and its properties. In protostellar envelopes, the water snowline can be estimated as a function of luminosity using a relation derived from radiative transfer models, and these predictions are consistent with observations. However, accurately estimating the water snowline in protoplanetary disks requires new relations that account for the disk structure. We present the relations between luminosity and water snowline using the dust continuum radiative transfer models with various density structures. We adopt two-dimensional density structures for an envelope-only model (Model E), an envelope+disk+cavity model (Model E+D), and a protoplanetary disk model (Model PPD). The relations between the water snowline, where T_dust = 100 K, and the total luminosity, ranging 0.1-1,000 solar luminosity, are well fitted by a power-law relation, R_snow=a * (L/L_solar)^p au. The factor a decreases with increasing disk density, while the power index p has values around 0.5 in all models. As the disk becomes denser, the water snowline forms at smaller radii even at the same luminosity, since dense dust hinders photon propagation. We also explore the effect of viscous heating on the water snowline. In Model PPD with viscous heating, the water snowline shifts outward by a few au up to 15 au, increasing the factor a and decreasing the power index p. In Model E+D with lower disk mass, the effect of viscous heating is negligible, indicating that the disk mass controls the effect. The discrepancy between our models and direct observations provides insights into the recent outburst event and the presence of a disk structure in low-mass YSOs. 4 authors · Oct 16
5 Possible Meissner effect near room temperature in copper-substituted lead apatite With copper-substituted lead apatite below room temperature, we observe diamagnetic dc magnetization under magnetic field of 25 Oe with remarkable bifurcation between zero-field-cooling and field-cooling measurements, and under 200 Oe it changes to be paramagnetism. A glassy memory effect is found during cooling. Typical hysteresis loops for superconductors are detected below 250 K, along with an asymmetry between forward and backward sweep of magnetic field. Our experiment suggests at room temperature the Meissner effect is possibly present in this material. 9 authors · Jan 1, 2024 1
1 A Neural Scaling Law from Lottery Ticket Ensembling Neural scaling laws (NSL) refer to the phenomenon where model performance improves with scale. Sharma & Kaplan analyzed NSL using approximation theory and predict that MSE losses decay as N^{-alpha}, alpha=4/d, where N is the number of model parameters, and d is the intrinsic input dimension. Although their theory works well for some cases (e.g., ReLU networks), we surprisingly find that a simple 1D problem y=x^2 manifests a different scaling law (alpha=1) from their predictions (alpha=4). We opened the neural networks and found that the new scaling law originates from lottery ticket ensembling: a wider network on average has more "lottery tickets", which are ensembled to reduce the variance of outputs. We support the ensembling mechanism by mechanistically interpreting single neural networks, as well as studying them statistically. We attribute the N^{-1} scaling law to the "central limit theorem" of lottery tickets. Finally, we discuss its potential implications for large language models and statistical physics-type theories of learning. 2 authors · Oct 3, 2023