Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSurvey of Design Paradigms for Social Robots
The demand for social robots in fields like healthcare, education, and entertainment increases due to their emotional adaptation features. These robots leverage multimodal communication, incorporating speech, facial expressions, and gestures to enhance user engagement and emotional support. The understanding of design paradigms of social robots is obstructed by the complexity of the system and the necessity to tune it to a specific task. This article provides a structured review of social robot design paradigms, categorizing them into cognitive architectures, role design models, linguistic models, communication flow, activity system models, and integrated design models. By breaking down the articles on social robot design and application based on these paradigms, we highlight the strengths and areas for improvement in current approaches. We further propose our original integrated design model that combines the most important aspects of the design of social robots. Our approach shows the importance of integrating operational, communicational, and emotional dimensions to create more adaptive and empathetic interactions between robots and humans.
FAtiMA Toolkit -- Toward an effective and accessible tool for the development of intelligent virtual agents and social robots
More than a decade has passed since the development of FearNot!, an application designed to help children deal with bullying through role-playing with virtual characters. It was also the application that led to the creation of FAtiMA, an affective agent architecture for creating autonomous characters that can evoke empathic responses. In this paper, we describe FAtiMA Toolkit, a collection of open-source tools that is designed to help researchers, game developers and roboticists incorporate a computational model of emotion and decision-making in their work. The toolkit was developed with the goal of making FAtiMA more accessible, easier to incorporate into different projects and more flexible in its capabilities for human-agent interaction, based upon the experience gathered over the years across different virtual environments and human-robot interaction scenarios. As a result, this work makes several different contributions to the field of Agent-Based Architectures. More precisely, FAtiMA Toolkit's library based design allows developers to easily integrate it with other frameworks, its meta-cognitive model affords different internal reasoners and affective components and its explicit dialogue structure gives control to the author even within highly complex scenarios. To demonstrate the use of FAtiMA Toolkit, several different use cases where the toolkit was successfully applied are described and discussed.
Sustainable Cloud Services for Verbal Interaction with Embodied Agents
This article presents the design and the implementation of a cloud system for knowledge-based autonomous interaction devised for Social Robots and other conversational agents. The system is particularly convenient for low-cost robots and devices: it can be used as a stand-alone dialogue system or as an integration to provide "background" dialogue capabilities to any preexisting Natural Language Processing ability that the robot may already have as part of its basic skills. By connecting to the cloud, developers are provided with a sustainable solution to manage verbal interaction through a network connection, with about 3,000 topics of conversation ready for "chit-chatting" and a library of pre-cooked plans that only needs to be grounded into the robot's physical capabilities. The system is structured as a set of REST API endpoints so that it can be easily expanded by adding new APIs to improve the capabilities of the clients connected to the cloud. Another key feature of the system is that it has been designed to make the development of its clients straightforward: in this way, multiple robots and devices can be easily endowed with the capability of autonomously interacting with the user, understanding when to perform specific actions, and exploiting all the information provided by cloud services. The article outlines and discusses the results of the experiments performed to assess the system's performance in terms of response time, paving the way for its use both for research and market solutions. Links to repositories with clients for ROS and popular robots such as Pepper and NAO are available on request.
Fast Inference and Update of Probabilistic Density Estimation on Trajectory Prediction
Safety-critical applications such as autonomous vehicles and social robots require fast computation and accurate probability density estimation on trajectory prediction. To address both requirements, this paper presents a new normalizing flow-based trajectory prediction model named FlowChain. FlowChain is a stack of conditional continuously-indexed flows (CIFs) that are expressive and allow analytical probability density computation. This analytical computation is faster than the generative models that need additional approximations such as kernel density estimation. Moreover, FlowChain is more accurate than the Gaussian mixture-based models due to fewer assumptions on the estimated density. FlowChain also allows a rapid update of estimated probability densities. This update is achieved by adopting the newest observed position and reusing the flow transformations and its log-det-jacobians that represent the motion trend. This update is completed in less than one millisecond because this reuse greatly omits the computational cost. Experimental results showed our FlowChain achieved state-of-the-art trajectory prediction accuracy compared to previous methods. Furthermore, our FlowChain demonstrated superiority in the accuracy and speed of density estimation. Our code is available at https://github.com/meaten/FlowChain-ICCV2023
EmpathicStories++: A Multimodal Dataset for Empathy towards Personal Experiences
Modeling empathy is a complex endeavor that is rooted in interpersonal and experiential dimensions of human interaction, and remains an open problem within AI. Existing empathy datasets fall short in capturing the richness of empathy responses, often being confined to in-lab or acted scenarios, lacking longitudinal data, and missing self-reported labels. We introduce a new multimodal dataset for empathy during personal experience sharing: the EmpathicStories++ dataset (https://mitmedialab.github.io/empathic-stories-multimodal/) containing 53 hours of video, audio, and text data of 41 participants sharing vulnerable experiences and reading empathically resonant stories with an AI agent. EmpathicStories++ is the first longitudinal dataset on empathy, collected over a month-long deployment of social robots in participants' homes, as participants engage in natural, empathic storytelling interactions with AI agents. We then introduce a novel task of predicting individuals' empathy toward others' stories based on their personal experiences, evaluated in two contexts: participants' own personal shared story context and their reflections on stories they read. We benchmark this task using state-of-the-art models to pave the way for future improvements in contextualized and longitudinal empathy modeling. Our work provides a valuable resource for further research in developing empathetic AI systems and understanding the intricacies of human empathy within genuine, real-world settings.
Responsive Listening Head Generation: A Benchmark Dataset and Baseline
We present a new listening head generation benchmark, for synthesizing responsive feedbacks of a listener (e.g., nod, smile) during a face-to-face conversation. As the indispensable complement to talking heads generation, listening head generation has seldomly been studied in literature. Automatically synthesizing listening behavior that actively responds to a talking head, is critical to applications such as digital human, virtual agents and social robots. In this work, we propose a novel dataset "ViCo", highlighting the listening head generation during a face-to-face conversation. A total number of 92 identities (67 speakers and 76 listeners) are involved in ViCo, featuring 483 clips in a paired "speaking-listening" pattern, where listeners show three listening styles based on their attitudes: positive, neutral, negative. Different from traditional speech-to-gesture or talking-head generation, listening head generation takes as input both the audio and visual signals from the speaker, and gives non-verbal feedbacks (e.g., head motions, facial expressions) in a real-time manner. Our dataset supports a wide range of applications such as human-to-human interaction, video-to-video translation, cross-modal understanding and generation. To encourage further research, we also release a listening head generation baseline, conditioning on different listening attitudes. Code & ViCo dataset: https://project.mhzhou.com/vico.
Proactive Interaction Framework for Intelligent Social Receptionist Robots
Proactive human-robot interaction (HRI) allows the receptionist robots to actively greet people and offer services based on vision, which has been found to improve acceptability and customer satisfaction. Existing approaches are either based on multi-stage decision processes or based on end-to-end decision models. However, the rule-based approaches require sedulous expert efforts and only handle minimal pre-defined scenarios. On the other hand, existing works with end-to-end models are limited to very general greetings or few behavior patterns (typically less than 10). To address those challenges, we propose a new end-to-end framework, the TransFormer with Visual Tokens for Human-Robot Interaction (TFVT-HRI). The proposed framework extracts visual tokens of relative objects from an RGB camera first. To ensure the correct interpretation of the scenario, a transformer decision model is then employed to process the visual tokens, which is augmented with the temporal and spatial information. It predicts the appropriate action to take in each scenario and identifies the right target. Our data is collected from an in-service receptionist robot in an office building, which is then annotated by experts for appropriate proactive behavior. The action set includes 1000+ diverse patterns by combining language, emoji expression, and body motions. We compare our model with other SOTA end-to-end models on both offline test sets and online user experiments in realistic office building environments to validate this framework. It is demonstrated that the decision model achieves SOTA performance in action triggering and selection, resulting in more humanness and intelligence when compared with the previous reactive reception policies.
Social 3D Scene Graphs: Modeling Human Actions and Relations for Interactive Service Robots
Understanding how people interact with their surroundings and each other is essential for enabling robots to act in socially compliant and context-aware ways. While 3D Scene Graphs have emerged as a powerful semantic representation for scene understanding, existing approaches largely ignore humans in the scene, also due to the lack of annotated human-environment relationships. Moreover, existing methods typically capture only open-vocabulary relations from single image frames, which limits their ability to model long-range interactions beyond the observed content. We introduce Social 3D Scene Graphs, an augmented 3D Scene Graph representation that captures humans, their attributes, activities and relationships in the environment, both local and remote, using an open-vocabulary framework. Furthermore, we introduce a new benchmark consisting of synthetic environments with comprehensive human-scene relationship annotations and diverse types of queries for evaluating social scene understanding in 3D. The experiments demonstrate that our representation improves human activity prediction and reasoning about human-environment relations, paving the way toward socially intelligent robots.
Socially Pertinent Robots in Gerontological Healthcare
Despite the many recent achievements in developing and deploying social robotics, there are still many underexplored environments and applications for which systematic evaluation of such systems by end-users is necessary. While several robotic platforms have been used in gerontological healthcare, the question of whether or not a social interactive robot with multi-modal conversational capabilities will be useful and accepted in real-life facilities is yet to be answered. This paper is an attempt to partially answer this question, via two waves of experiments with patients and companions in a day-care gerontological facility in Paris with a full-sized humanoid robot endowed with social and conversational interaction capabilities. The software architecture, developed during the H2020 SPRING project, together with the experimental protocol, allowed us to evaluate the acceptability (AES) and usability (SUS) with more than 60 end-users. Overall, the users are receptive to this technology, especially when the robot perception and action skills are robust to environmental clutter and flexible to handle a plethora of different interactions.
Large Language Models as Zero-Shot Human Models for Human-Robot Interaction
Human models play a crucial role in human-robot interaction (HRI), enabling robots to consider the impact of their actions on people and plan their behavior accordingly. However, crafting good human models is challenging; capturing context-dependent human behavior requires significant prior knowledge and/or large amounts of interaction data, both of which are difficult to obtain. In this work, we explore the potential of large-language models (LLMs) -- which have consumed vast amounts of human-generated text data -- to act as zero-shot human models for HRI. Our experiments on three social datasets yield promising results; the LLMs are able to achieve performance comparable to purpose-built models. That said, we also discuss current limitations, such as sensitivity to prompts and spatial/numerical reasoning mishaps. Based on our findings, we demonstrate how LLM-based human models can be integrated into a social robot's planning process and applied in HRI scenarios. Specifically, we present one case study on a simulated trust-based table-clearing task and replicate past results that relied on custom models. Next, we conduct a new robot utensil-passing experiment (n = 65) where preliminary results show that planning with a LLM-based human model can achieve gains over a basic myopic plan. In summary, our results show that LLMs offer a promising (but incomplete) approach to human modeling for HRI.
SACSoN: Scalable Autonomous Control for Social Navigation
Machine learning provides a powerful tool for building socially compliant robotic systems that go beyond simple predictive models of human behavior. By observing and understanding human interactions from past experiences, learning can enable effective social navigation behaviors directly from data. In this paper, our goal is to develop methods for training policies for socially unobtrusive navigation, such that robots can navigate among humans in ways that don't disturb human behavior. We introduce a definition for such behavior based on the counterfactual perturbation of the human: if the robot had not intruded into the space, would the human have acted in the same way? By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space. Instantiating this principle requires training policies to minimize their effect on human behavior, and this in turn requires data that allows us to model the behavior of humans in the presence of robots. Therefore, our approach is based on two key contributions. First, we collect a large dataset where an indoor mobile robot interacts with human bystanders. Second, we utilize this dataset to train policies that minimize counterfactual perturbation. We provide supplementary videos and make publicly available the largest-of-its-kind visual navigation dataset on our project page.
Understanding Large-Language Model (LLM)-powered Human-Robot Interaction
Large-language models (LLMs) hold significant promise in improving human-robot interaction, offering advanced conversational skills and versatility in managing diverse, open-ended user requests in various tasks and domains. Despite the potential to transform human-robot interaction, very little is known about the distinctive design requirements for utilizing LLMs in robots, which may differ from text and voice interaction and vary by task and context. To better understand these requirements, we conducted a user study (n = 32) comparing an LLM-powered social robot against text- and voice-based agents, analyzing task-based requirements in conversational tasks, including choose, generate, execute, and negotiate. Our findings show that LLM-powered robots elevate expectations for sophisticated non-verbal cues and excel in connection-building and deliberation, but fall short in logical communication and may induce anxiety. We provide design implications both for robots integrating LLMs and for fine-tuning LLMs for use with robots.
Generative Expressive Robot Behaviors using Large Language Models
People employ expressive behaviors to effectively communicate and coordinate their actions with others, such as nodding to acknowledge a person glancing at them or saying "excuse me" to pass people in a busy corridor. We would like robots to also demonstrate expressive behaviors in human-robot interaction. Prior work proposes rule-based methods that struggle to scale to new communication modalities or social situations, while data-driven methods require specialized datasets for each social situation the robot is used in. We propose to leverage the rich social context available from large language models (LLMs) and their ability to generate motion based on instructions or user preferences, to generate expressive robot motion that is adaptable and composable, building upon each other. Our approach utilizes few-shot chain-of-thought prompting to translate human language instructions into parametrized control code using the robot's available and learned skills. Through user studies and simulation experiments, we demonstrate that our approach produces behaviors that users found to be competent and easy to understand. Supplementary material can be found at https://generative-expressive-motion.github.io/.
Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots
We present Habitat 3.0: a simulation platform for studying collaborative human-robot tasks in home environments. Habitat 3.0 offers contributions across three dimensions: (1) Accurate humanoid simulation: addressing challenges in modeling complex deformable bodies and diversity in appearance and motion, all while ensuring high simulation speed. (2) Human-in-the-loop infrastructure: enabling real human interaction with simulated robots via mouse/keyboard or a VR interface, facilitating evaluation of robot policies with human input. (3) Collaborative tasks: studying two collaborative tasks, Social Navigation and Social Rearrangement. Social Navigation investigates a robot's ability to locate and follow humanoid avatars in unseen environments, whereas Social Rearrangement addresses collaboration between a humanoid and robot while rearranging a scene. These contributions allow us to study end-to-end learned and heuristic baselines for human-robot collaboration in-depth, as well as evaluate them with humans in the loop. Our experiments demonstrate that learned robot policies lead to efficient task completion when collaborating with unseen humanoid agents and human partners that might exhibit behaviors that the robot has not seen before. Additionally, we observe emergent behaviors during collaborative task execution, such as the robot yielding space when obstructing a humanoid agent, thereby allowing the effective completion of the task by the humanoid agent. Furthermore, our experiments using the human-in-the-loop tool demonstrate that our automated evaluation with humanoids can provide an indication of the relative ordering of different policies when evaluated with real human collaborators. Habitat 3.0 unlocks interesting new features in simulators for Embodied AI, and we hope it paves the way for a new frontier of embodied human-AI interaction capabilities.
Building Knowledge from Interactions: An LLM-Based Architecture for Adaptive Tutoring and Social Reasoning
Integrating robotics into everyday scenarios like tutoring or physical training requires robots capable of adaptive, socially engaging, and goal-oriented interactions. While Large Language Models show promise in human-like communication, their standalone use is hindered by memory constraints and contextual incoherence. This work presents a multimodal, cognitively inspired framework that enhances LLM-based autonomous decision-making in social and task-oriented Human-Robot Interaction. Specifically, we develop an LLM-based agent for a robot trainer, balancing social conversation with task guidance and goal-driven motivation. To further enhance autonomy and personalization, we introduce a memory system for selecting, storing and retrieving experiences, facilitating generalized reasoning based on knowledge built across different interactions. A preliminary HRI user study and offline experiments with a synthetic dataset validate our approach, demonstrating the system's ability to manage complex interactions, autonomously drive training tasks, and build and retrieve contextual memories, advancing socially intelligent robotics.
Towards Social AI: A Survey on Understanding Social Interactions
Social interactions form the foundation of human societies. Artificial intelligence has made significant progress in certain areas, but enabling machines to seamlessly understand social interactions remains an open challenge. It is important to address this gap by endowing machines with social capabilities. We identify three key capabilities needed for effective social understanding: 1) understanding multimodal social cues, 2) understanding multi-party dynamics, and 3) understanding beliefs. Building upon these foundations, we classify and review existing machine learning works on social understanding from the perspectives of verbal, non-verbal, and multimodal social cues. The verbal branch focuses on understanding linguistic signals such as speaker intent, dialogue sentiment, and commonsense reasoning. The non-verbal branch addresses techniques for perceiving social meaning from visual behaviors such as body gestures, gaze patterns, and facial expressions. The multimodal branch covers approaches that integrate verbal and non-verbal multimodal cues to holistically interpret social interactions such as recognizing emotions, conversational dynamics, and social situations. By reviewing the scope and limitations of current approaches and benchmarks, we aim to clarify the development trajectory and illuminate the path towards more comprehensive intelligence for social understanding. We hope this survey will spur further research interest and insights into this area.
OLiVia-Nav: An Online Lifelong Vision Language Approach for Mobile Robot Social Navigation
Service robots in human-centered environments such as hospitals, office buildings, and long-term care homes need to navigate while adhering to social norms to ensure the safety and comfortability of the people they are sharing the space with. Furthermore, they need to adapt to new social scenarios that can arise during robot navigation. In this paper, we present a novel Online Lifelong Vision Language architecture, OLiVia- Nav, which uniquely integrates vision-language models (VLMs) with an online lifelong learning framework for robot social navigation. We introduce a unique distillation approach, Social Context Contrastive Language Image Pre-training (SC-CLIP), to transfer the social reasoning capabilities of large VLMs to a lightweight VLM, in order for OLiVia-Nav to directly encode social and environment context during robot navigation. These encoded embeddings are used to generate and select robot social compliant trajectories. The lifelong learning capabilities of SC-CLIP enable OLiVia-Nav to update the robot trajectory planning overtime as new social scenarios are encountered. We conducted extensive real-world experiments in diverse social navigation scenarios. The results showed that OLiVia-Nav outperformed existing state-of-the-art DRL and VLM methods in terms of mean squared error, Hausdorff loss, and personal space violation duration. Ablation studies also verified the design choices for OLiVia-Nav.
Adaptive Coordination in Social Embodied Rearrangement
We present the task of "Social Rearrangement", consisting of cooperative everyday tasks like setting up the dinner table, tidying a house or unpacking groceries in a simulated multi-agent environment. In Social Rearrangement, two robots coordinate to complete a long-horizon task, using onboard sensing and egocentric observations, and no privileged information about the environment. We study zero-shot coordination (ZSC) in this task, where an agent collaborates with a new partner, emulating a scenario where a robot collaborates with a new human partner. Prior ZSC approaches struggle to generalize in our complex and visually rich setting, and on further analysis, we find that they fail to generate diverse coordination behaviors at training time. To counter this, we propose Behavior Diversity Play (BDP), a novel ZSC approach that encourages diversity through a discriminability objective. Our results demonstrate that BDP learns adaptive agents that can tackle visual coordination, and zero-shot generalize to new partners in unseen environments, achieving 35% higher success and 32% higher efficiency compared to baselines.
SELFI: Autonomous Self-Improvement with Reinforcement Learning for Social Navigation
Autonomous self-improving robots that interact and improve with experience are key to the real-world deployment of robotic systems. In this paper, we propose an online learning method, SELFI, that leverages online robot experience to rapidly fine-tune pre-trained control policies efficiently. SELFI applies online model-free reinforcement learning on top of offline model-based learning to bring out the best parts of both learning paradigms. Specifically, SELFI stabilizes the online learning process by incorporating the same model-based learning objective from offline pre-training into the Q-values learned with online model-free reinforcement learning. We evaluate SELFI in multiple real-world environments and report improvements in terms of collision avoidance, as well as more socially compliant behavior, measured by a human user study. SELFI enables us to quickly learn useful robotic behaviors with less human interventions such as pre-emptive behavior for the pedestrians, collision avoidance for small and transparent objects, and avoiding travel on uneven floor surfaces. We provide supplementary videos to demonstrate the performance of our fine-tuned policy on our project page.
Butter-Bench: Evaluating LLM Controlled Robots for Practical Intelligence
We present Butter-Bench, a benchmark evaluating large language model (LLM) controlled robots for practical intelligence, defined as the ability to navigate the messiness of the physical world. Current state-of-the-art robotic systems use a hierarchical architecture with LLMs in charge of high-level reasoning, and a Vision Language Action (VLA) model for low-level control. Butter-Bench evaluates the LLM part in isolation from the VLA. Although LLMs have repeatedly surpassed humans in evaluations requiring analytical intelligence, we find humans still outperform LLMs on Butter-Bench. The best LLMs score 40% on Butter-Bench, while the mean human score is 95%. LLMs struggled the most with multi-step spatial planning and social understanding. We also evaluate LLMs that are fine-tuned for embodied reasoning and conclude that this training does not improve their score on Butter-Bench.
SocialNav-SUB: Benchmarking VLMs for Scene Understanding in Social Robot Navigation
Robot navigation in dynamic, human-centered environments requires socially-compliant decisions grounded in robust scene understanding. Recent Vision-Language Models (VLMs) exhibit promising capabilities such as object recognition, common-sense reasoning, and contextual understanding-capabilities that align with the nuanced requirements of social robot navigation. However, it remains unclear whether VLMs can accurately understand complex social navigation scenes (e.g., inferring the spatial-temporal relations among agents and human intentions), which is essential for safe and socially compliant robot navigation. While some recent works have explored the use of VLMs in social robot navigation, no existing work systematically evaluates their ability to meet these necessary conditions. In this paper, we introduce the Social Navigation Scene Understanding Benchmark (SocialNav-SUB), a Visual Question Answering (VQA) dataset and benchmark designed to evaluate VLMs for scene understanding in real-world social robot navigation scenarios. SocialNav-SUB provides a unified framework for evaluating VLMs against human and rule-based baselines across VQA tasks requiring spatial, spatiotemporal, and social reasoning in social robot navigation. Through experiments with state-of-the-art VLMs, we find that while the best-performing VLM achieves an encouraging probability of agreeing with human answers, it still underperforms simpler rule-based approach and human consensus baselines, indicating critical gaps in social scene understanding of current VLMs. Our benchmark sets the stage for further research on foundation models for social robot navigation, offering a framework to explore how VLMs can be tailored to meet real-world social robot navigation needs. An overview of this paper along with the code and data can be found at https://larg.github.io/socialnav-sub .
Toward Grounded Social Reasoning
Consider a robot tasked with tidying a desk with a meticulously constructed Lego sports car. A human may recognize that it is not socially appropriate to disassemble the sports car and put it away as part of the "tidying". How can a robot reach that conclusion? Although large language models (LLMs) have recently been used to enable social reasoning, grounding this reasoning in the real world has been challenging. To reason in the real world, robots must go beyond passively querying LLMs and *actively gather information from the environment* that is required to make the right decision. For instance, after detecting that there is an occluded car, the robot may need to actively perceive the car to know whether it is an advanced model car made out of Legos or a toy car built by a toddler. We propose an approach that leverages an LLM and vision language model (VLM) to help a robot actively perceive its environment to perform grounded social reasoning. To evaluate our framework at scale, we release the MessySurfaces dataset which contains images of 70 real-world surfaces that need to be cleaned. We additionally illustrate our approach with a robot on 2 carefully designed surfaces. We find an average 12.9% improvement on the MessySurfaces benchmark and an average 15% improvement on the robot experiments over baselines that do not use active perception. The dataset, code, and videos of our approach can be found at https://minaek.github.io/groundedsocialreasoning.
Metarobotics for Industry and Society: Vision, Technologies, and Opportunities
Metarobotics aims to combine next generation wireless communication, multi-sense immersion, and collective intelligence to provide a pervasive, itinerant, and non-invasive access and interaction with distant robotized applications. Industry and society are expected to benefit from these functionalities. For instance, robot programmers will no longer travel worldwide to plan and test robot motions, even collaboratively. Instead, they will have a personalized access to robots and their environments from anywhere, thus spending more time with family and friends. Students enrolled in robotics courses will be taught under authentic industrial conditions in real-time. This paper describes objectives of Metarobotics in society, industry, and in-between. It identifies and surveys technologies likely to enable their completion and provides an architecture to put forward the interplay of key components of Metarobotics. Potentials for self-determination, self-efficacy, and work-life-flexibility in robotics-related applications in Society 5.0, Industry 4.0, and Industry 5.0 are outlined.
GRUtopia: Dream General Robots in a City at Scale
Recent works have been exploring the scaling laws in the field of Embodied AI. Given the prohibitive costs of collecting real-world data, we believe the Simulation-to-Real (Sim2Real) paradigm is a crucial step for scaling the learning of embodied models. This paper introduces project GRUtopia, the first simulated interactive 3D society designed for various robots. It features several advancements: (a) The scene dataset, GRScenes, includes 100k interactive, finely annotated scenes, which can be freely combined into city-scale environments. In contrast to previous works mainly focusing on home, GRScenes covers 89 diverse scene categories, bridging the gap of service-oriented environments where general robots would be initially deployed. (b) GRResidents, a Large Language Model (LLM) driven Non-Player Character (NPC) system that is responsible for social interaction, task generation, and task assignment, thus simulating social scenarios for embodied AI applications. (c) The benchmark, GRBench, supports various robots but focuses on legged robots as primary agents and poses moderately challenging tasks involving Object Loco-Navigation, Social Loco-Navigation, and Loco-Manipulation. We hope that this work can alleviate the scarcity of high-quality data in this field and provide a more comprehensive assessment of Embodied AI research. The project is available at https://github.com/OpenRobotLab/GRUtopia.
It Takes Two: Learning Interactive Whole-Body Control Between Humanoid Robots
The true promise of humanoid robotics lies beyond single-agent autonomy: two or more humanoids must engage in physically grounded, socially meaningful whole-body interactions that echo the richness of human social interaction. However, single-humanoid methods suffer from the isolation issue, ignoring inter-agent dynamics and causing misaligned contacts, interpenetrations, and unrealistic motions. To address this, we present Harmanoid , a dual-humanoid motion imitation framework that transfers interacting human motions to two robots while preserving both kinematic fidelity and physical realism. Harmanoid comprises two key components: (i) contact-aware motion retargeting, which restores inter-body coordination by aligning SMPL contacts with robot vertices, and (ii) interaction-driven motion controller, which leverages interaction-specific rewards to enforce coordinated keypoints and physically plausible contacts. By explicitly modeling inter-agent contacts and interaction-aware dynamics, Harmanoid captures the coupled behaviors between humanoids that single-humanoid frameworks inherently overlook. Experiments demonstrate that Harmanoid significantly improves interactive motion imitation, surpassing existing single-humanoid frameworks that largely fail in such scenarios.
Are Large Language Models Aligned with People's Social Intuitions for Human-Robot Interactions?
Large language models (LLMs) are increasingly used in robotics, especially for high-level action planning. Meanwhile, many robotics applications involve human supervisors or collaborators. Hence, it is crucial for LLMs to generate socially acceptable actions that align with people's preferences and values. In this work, we test whether LLMs capture people's intuitions about behavior judgments and communication preferences in human-robot interaction (HRI) scenarios. For evaluation, we reproduce three HRI user studies, comparing the output of LLMs with that of real participants. We find that GPT-4 strongly outperforms other models, generating answers that correlate strongly with users' answers in two studies x2014 the first study dealing with selecting the most appropriate communicative act for a robot in various situations (r_s = 0.82), and the second with judging the desirability, intentionality, and surprisingness of behavior (r_s = 0.83). However, for the last study, testing whether people judge the behavior of robots and humans differently, no model achieves strong correlations. Moreover, we show that vision models fail to capture the essence of video stimuli and that LLMs tend to rate different communicative acts and behavior desirability higher than people.
Large Language Models for Multi-Robot Systems: A Survey
The rapid advancement of Large Language Models (LLMs) has opened new possibilities in Multi-Robot Systems (MRS), enabling enhanced communication, task planning, and human-robot interaction. Unlike traditional single-robot and multi-agent systems, MRS poses unique challenges, including coordination, scalability, and real-world adaptability. This survey provides the first comprehensive exploration of LLM integration into MRS. It systematically categorizes their applications across high-level task allocation, mid-level motion planning, low-level action generation, and human intervention. We highlight key applications in diverse domains, such as household robotics, construction, formation control, target tracking, and robot games, showcasing the versatility and transformative potential of LLMs in MRS. Furthermore, we examine the challenges that limit adapting LLMs in MRS, including mathematical reasoning limitations, hallucination, latency issues, and the need for robust benchmarking systems. Finally, we outline opportunities for future research, emphasizing advancements in fine-tuning, reasoning techniques, and task-specific models. This survey aims to guide researchers in the intelligence and real-world deployment of MRS powered by LLMs. Based on the fast-evolving nature of research in the field, we keep updating the papers in the open-source Github repository.
Social Simulacra: Creating Populated Prototypes for Social Computing Systems
Social computing prototypes probe the social behaviors that may arise in an envisioned system design. This prototyping practice is currently limited to recruiting small groups of people. Unfortunately, many challenges do not arise until a system is populated at a larger scale. Can a designer understand how a social system might behave when populated, and make adjustments to the design before the system falls prey to such challenges? We introduce social simulacra, a prototyping technique that generates a breadth of realistic social interactions that may emerge when a social computing system is populated. Social simulacra take as input the designer's description of a community's design -- goal, rules, and member personas -- and produce as output an instance of that design with simulated behavior, including posts, replies, and anti-social behaviors. We demonstrate that social simulacra shift the behaviors that they generate appropriately in response to design changes, and that they enable exploration of "what if?" scenarios where community members or moderators intervene. To power social simulacra, we contribute techniques for prompting a large language model to generate thousands of distinct community members and their social interactions with each other; these techniques are enabled by the observation that large language models' training data already includes a wide variety of positive and negative behavior on social media platforms. In evaluations, we show that participants are often unable to distinguish social simulacra from actual community behavior and that social computing designers successfully refine their social computing designs when using social simulacra.
JRDB-Social: A Multifaceted Robotic Dataset for Understanding of Context and Dynamics of Human Interactions Within Social Groups
Understanding human social behaviour is crucial in computer vision and robotics. Micro-level observations like individual actions fall short, necessitating a comprehensive approach that considers individual behaviour, intra-group dynamics, and social group levels for a thorough understanding. To address dataset limitations, this paper introduces JRDB-Social, an extension of JRDB. Designed to fill gaps in human understanding across diverse indoor and outdoor social contexts, JRDB-Social provides annotations at three levels: individual attributes, intra-group interactions, and social group context. This dataset aims to enhance our grasp of human social dynamics for robotic applications. Utilizing the recent cutting-edge multi-modal large language models, we evaluated our benchmark to explore their capacity to decipher social human behaviour.
Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View
As Natural Language Processing (NLP) systems are increasingly employed in intricate social environments, a pressing query emerges: Can these NLP systems mirror human-esque collaborative intelligence, in a multi-agent society consisting of multiple large language models (LLMs)? This paper probes the collaboration mechanisms among contemporary NLP systems by melding practical experiments with theoretical insights. We fabricate four unique `societies' comprised of LLM agents, where each agent is characterized by a specific `trait' (easy-going or overconfident) and engages in collaboration with a distinct `thinking pattern' (debate or reflection). Evaluating these multi-agent societies on three benchmark datasets, we discern that LLM agents navigate tasks by leveraging diverse social behaviors, from active debates to introspective reflections. Notably, certain collaborative strategies only optimize efficiency (using fewer API tokens), but also outshine previous top-tier approaches. Moreover, our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity or majority rule, mirroring foundational Social Psychology theories. In conclusion, we integrate insights from Social Psychology to contextualize the collaboration of LLM agents, inspiring further investigations into the collaboration mechanism for LLMs. We commit to sharing our code and datasets (already submitted in supplementary materials), hoping to catalyze further research in this promising avenue (All code and data are available at https://github.com/zjunlp/MachineSoM.).
Entering Real Social World! Benchmarking the Theory of Mind and Socialization Capabilities of LLMs from a First-person Perspective
In the social world, humans possess the capability to infer and reason about others mental states (such as emotions, beliefs, and intentions), known as the Theory of Mind (ToM). Simultaneously, humans own mental states evolve in response to social situations, a capability we refer to as socialization. Together, these capabilities form the foundation of human social interaction. In the era of artificial intelligence (AI), especially with the development of large language models (LLMs), we raise an intriguing question: How do LLMs perform in terms of ToM and socialization capabilities? And more broadly, can these AI models truly enter and navigate the real social world? Existing research evaluating LLMs ToM and socialization capabilities by positioning LLMs as passive observers from a third person perspective, rather than as active participants. However, compared to the third-person perspective, observing and understanding the world from an egocentric first person perspective is a natural approach for both humans and AI agents. The ToM and socialization capabilities of LLMs from a first person perspective, a crucial attribute for advancing embodied AI agents, remain unexplored. To answer the aforementioned questions and bridge the research gap, we introduce EgoSocialArena, a novel framework designed to evaluate and investigate the ToM and socialization capabilities of LLMs from a first person perspective. It encompasses two evaluation environments: static environment and interactive environment, with seven scenarios: Daily Life, Counterfactual, New World, Blackjack, Number Guessing, and Limit Texas Hold em, totaling 2,195 data entries. With EgoSocialArena, we have conducted a comprehensive evaluation of nine advanced LLMs and observed some key insights regarding the future development of LLMs as well as the capabilities levels of the most advanced LLMs currently available.
SOTOPIA-π: Interactive Learning of Socially Intelligent Language Agents
Humans learn social skills through both imitation and social interaction. This social learning process is largely understudied by existing research on building language agents. Motivated by this gap, we propose an interactive learning method, SOTOPIA-pi, improving the social intelligence of language agents. This method leverages behavior cloning and self-reinforcement training on filtered social interaction data according to large language model (LLM) ratings. We show that our training method allows a 7B LLM to reach the social goal completion ability of an expert model (GPT-4-based agent), while improving the safety of language agents and maintaining general QA ability on the MMLU benchmark. We also find that this training paradigm uncovers some difficulties in LLM-based evaluation of social intelligence: LLM-based evaluators overestimate the abilities of the language agents trained specifically for social interaction.
GPT Models Meet Robotic Applications: Co-Speech Gesturing Chat System
This technical paper introduces a chatting robot system that utilizes recent advancements in large-scale language models (LLMs) such as GPT-3 and ChatGPT. The system is integrated with a co-speech gesture generation system, which selects appropriate gestures based on the conceptual meaning of speech. Our motivation is to explore ways of utilizing the recent progress in LLMs for practical robotic applications, which benefits the development of both chatbots and LLMs. Specifically, it enables the development of highly responsive chatbot systems by leveraging LLMs and adds visual effects to the user interface of LLMs as an additional value. The source code for the system is available on GitHub for our in-house robot (https://github.com/microsoft/LabanotationSuite/tree/master/MSRAbotChatSimulation) and GitHub for Toyota HSR (https://github.com/microsoft/GPT-Enabled-HSR-CoSpeechGestures).
Smart Help: Strategic Opponent Modeling for Proactive and Adaptive Robot Assistance in Households
Despite the significant demand for assistive technology among vulnerable groups (e.g., the elderly, children, and the disabled) in daily tasks, research into advanced AI-driven assistive solutions that genuinely accommodate their diverse needs remains sparse. Traditional human-machine interaction tasks often require machines to simply help without nuanced consideration of human abilities and feelings, such as their opportunity for practice and learning, sense of self-improvement, and self-esteem. Addressing this gap, we define a pivotal and novel challenge Smart Help, which aims to provide proactive yet adaptive support to human agents with diverse disabilities and dynamic goals in various tasks and environments. To establish this challenge, we leverage AI2-THOR to build a new interactive 3D realistic household environment for the Smart Help task. We introduce an innovative opponent modeling module that provides a nuanced understanding of the main agent's capabilities and goals, in order to optimize the assisting agent's helping policy. Rigorous experiments validate the efficacy of our model components and show the superiority of our holistic approach against established baselines. Our findings illustrate the potential of AI-imbued assistive robots in improving the well-being of vulnerable groups.
S^3: Social-network Simulation System with Large Language Model-Empowered Agents
Social network simulation plays a crucial role in addressing various challenges within social science. It offers extensive applications such as state prediction, phenomena explanation, and policy-making support, among others. In this work, we harness the formidable human-like capabilities exhibited by large language models (LLMs) in sensing, reasoning, and behaving, and utilize these qualities to construct the S^3 system (short for Social network Simulation System). Adhering to the widely employed agent-based simulation paradigm, we employ prompt engineering and prompt tuning techniques to ensure that the agent's behavior closely emulates that of a genuine human within the social network. Specifically, we simulate three pivotal aspects: emotion, attitude, and interaction behaviors. By endowing the agent in the system with the ability to perceive the informational environment and emulate human actions, we observe the emergence of population-level phenomena, including the propagation of information, attitudes, and emotions. We conduct an evaluation encompassing two levels of simulation, employing real-world social network data. Encouragingly, the results demonstrate promising accuracy. This work represents an initial step in the realm of social network simulation empowered by LLM-based agents. We anticipate that our endeavors will serve as a source of inspiration for the development of simulation systems within, but not limited to, social science.
An Android Robot Head as Embodied Conversational Agent
This paper describes, how current Machine Learning (ML) techniques combined with simple rule-based animation routines make an android robot head an embodied conversational agent with ChatGPT as its core component. The android robot head is described, technical details are given of how lip-sync animation is being achieved, and general software design decisions are presented. A public presentation of the system revealed improvement opportunities that are reported and that lead our iterative implementation approach.
Fundamentals of Building Autonomous LLM Agents
This paper reviews the architecture and implementation methods of agents powered by large language models (LLMs). Motivated by the limitations of traditional LLMs in real-world tasks, the research aims to explore patterns to develop "agentic" LLMs that can automate complex tasks and bridge the performance gap with human capabilities. Key components include a perception system that converts environmental percepts into meaningful representations; a reasoning system that formulates plans, adapts to feedback, and evaluates actions through different techniques like Chain-of-Thought and Tree-of-Thought; a memory system that retains knowledge through both short-term and long-term mechanisms; and an execution system that translates internal decisions into concrete actions. This paper shows how integrating these systems leads to more capable and generalized software bots that mimic human cognitive processes for autonomous and intelligent behavior.
Let's move on: Topic Change in Robot-Facilitated Group Discussions
Robot-moderated group discussions have the potential to facilitate engaging and productive interactions among human participants. Previous work on topic management in conversational agents has predominantly focused on human engagement and topic personalization, with the agent having an active role in the discussion. Also, studies have shown the usefulness of including robots in groups, yet further exploration is still needed for robots to learn when to change the topic while facilitating discussions. Accordingly, our work investigates the suitability of machine-learning models and audiovisual non-verbal features in predicting appropriate topic changes. We utilized interactions between a robot moderator and human participants, which we annotated and used for extracting acoustic and body language-related features. We provide a detailed analysis of the performance of machine learning approaches using sequential and non-sequential data with different sets of features. The results indicate promising performance in classifying inappropriate topic changes, outperforming rule-based approaches. Additionally, acoustic features exhibited comparable performance and robustness compared to the complete set of multimodal features. Our annotated data is publicly available at https://github.com/ghadj/topic-change-robot-discussions-data-2024.
The Rise and Potential of Large Language Model Based Agents: A Survey
For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are artificial entities that sense their environment, make decisions, and take actions. Many efforts have been made to develop intelligent AI agents since the mid-20th century. However, these efforts have mainly focused on advancement in algorithms or training strategies to enhance specific capabilities or performance on particular tasks. Actually, what the community lacks is a sufficiently general and powerful model to serve as a starting point for designing AI agents that can adapt to diverse scenarios. Due to the versatile and remarkable capabilities they demonstrate, large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI), offering hope for building general AI agents. Many research efforts have leveraged LLMs as the foundation to build AI agents and have achieved significant progress. We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for AI agents. Building upon this, we present a conceptual framework for LLM-based agents, comprising three main components: brain, perception, and action, and the framework can be tailored to suit different applications. Subsequently, we explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation. Following this, we delve into agent societies, exploring the behavior and personality of LLM-based agents, the social phenomena that emerge when they form societies, and the insights they offer for human society. Finally, we discuss a range of key topics and open problems within the field.
Towards Generalist Robots: A Promising Paradigm via Generative Simulation
This document serves as a position paper that outlines the authors' vision for a potential pathway towards generalist robots. The purpose of this document is to share the excitement of the authors with the community and highlight a promising research direction in robotics and AI. The authors believe the proposed paradigm is a feasible path towards accomplishing the long-standing goal of robotics research: deploying robots, or embodied AI agents more broadly, in various non-factory real-world settings to perform diverse tasks. This document presents a specific idea for mining knowledge in the latest large-scale foundation models for robotics research. Instead of directly using or adapting these models to produce low-level policies and actions, it advocates for a fully automated generative pipeline (termed as generative simulation), which uses these models to generate diversified tasks, scenes and training supervisions at scale, thereby scaling up low-level skill learning and ultimately leading to a foundation model for robotics that empowers generalist robots. The authors are actively pursuing this direction, but in the meantime, they recognize that the ambitious goal of building generalist robots with large-scale policy training demands significant resources such as computing power and hardware, and research groups in academia alone may face severe resource constraints in implementing the entire vision. Therefore, the authors believe sharing their thoughts at this early stage could foster discussions, attract interest towards the proposed pathway and related topics from industry groups, and potentially spur significant technical advancements in the field.
Social NCE: Contrastive Learning of Socially-aware Motion Representations
Learning socially-aware motion representations is at the core of recent advances in multi-agent problems, such as human motion forecasting and robot navigation in crowds. Despite promising progress, existing representations learned with neural networks still struggle to generalize in closed-loop predictions (e.g., output colliding trajectories). This issue largely arises from the non-i.i.d. nature of sequential prediction in conjunction with ill-distributed training data. Intuitively, if the training data only comes from human behaviors in safe spaces, i.e., from "positive" examples, it is difficult for learning algorithms to capture the notion of "negative" examples like collisions. In this work, we aim to address this issue by explicitly modeling negative examples through self-supervision: (i) we introduce a social contrastive loss that regularizes the extracted motion representation by discerning the ground-truth positive events from synthetic negative ones; (ii) we construct informative negative samples based on our prior knowledge of rare but dangerous circumstances. Our method substantially reduces the collision rates of recent trajectory forecasting, behavioral cloning and reinforcement learning algorithms, outperforming state-of-the-art methods on several benchmarks. Our code is available at https://github.com/vita-epfl/social-nce.
Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis
Building general-purpose robots that can operate seamlessly, in any environment, with any object, and utilizing various skills to complete diverse tasks has been a long-standing goal in Artificial Intelligence. Unfortunately, however, most existing robotic systems have been constrained - having been designed for specific tasks, trained on specific datasets, and deployed within specific environments. These systems usually require extensively-labeled data, rely on task-specific models, have numerous generalization issues when deployed in real-world scenarios, and struggle to remain robust to distribution shifts. Motivated by the impressive open-set performance and content generation capabilities of web-scale, large-capacity pre-trained models (i.e., foundation models) in research fields such as Natural Language Processing (NLP) and Computer Vision (CV), we devote this survey to exploring (i) how these existing foundation models from NLP and CV can be applied to the field of robotics, and also exploring (ii) what a robotics-specific foundation model would look like. We begin by providing an overview of what constitutes a conventional robotic system and the fundamental barriers to making it universally applicable. Next, we establish a taxonomy to discuss current work exploring ways to leverage existing foundation models for robotics and develop ones catered to robotics. Finally, we discuss key challenges and promising future directions in using foundation models for enabling general-purpose robotic systems. We encourage readers to view our ``living`` GitHub repository of resources, including papers reviewed in this survey as well as related projects and repositories for developing foundation models for robotics.
Enhancing LLM-Based Social Bot via an Adversarial Learning Framework
Developing Large Language Model (LLM) agents that exhibit human-like behavior, encompassing not only individual heterogeneity rooted in unique user profiles but also adaptive response to socially connected neighbors, is a significant research challenge. Social media platforms, with their diverse user data and explicit social structures, provide an ideal testbed for such investigations. This paper introduces EvoBot, an Evolving LLM-based social Bot that significantly enhances human-like generative capabilities through a novel adversarial learning framework. EvoBot is initialized by Supervised Fine-Tuning (SFT) on representative data from social media and then iteratively refines its generation of sophisticated, human-like content via Direct Preference Optimization (DPO). This refinement is guided by feedback from a co-adapting Detector which concurrently improves its ability to distinguish EvoBot from humans, thereby creating an increasingly challenging learning environment for EvoBot. Experiments demonstrate that EvoBot generates content aligned with diverse user profiles, increasingly bypassing the co-adapting Detector through human-like expression. Moreover, it exhibits strong social responsiveness, more accurately modeling real-world opinion dynamics and information spread in multi-agent simulations. The framework also yields a more robust Detector, underscoring its broader utility for both advanced agent development and related detection tasks. The code is available at https://github.com/kfq20/EvoBot.
Alexa, play with robot: Introducing the First Alexa Prize SimBot Challenge on Embodied AI
The Alexa Prize program has empowered numerous university students to explore, experiment, and showcase their talents in building conversational agents through challenges like the SocialBot Grand Challenge and the TaskBot Challenge. As conversational agents increasingly appear in multimodal and embodied contexts, it is important to explore the affordances of conversational interaction augmented with computer vision and physical embodiment. This paper describes the SimBot Challenge, a new challenge in which university teams compete to build robot assistants that complete tasks in a simulated physical environment. This paper provides an overview of the SimBot Challenge, which included both online and offline challenge phases. We describe the infrastructure and support provided to the teams including Alexa Arena, the simulated environment, and the ML toolkit provided to teams to accelerate their building of vision and language models. We summarize the approaches the participating teams took to overcome research challenges and extract key lessons learned. Finally, we provide analysis of the performance of the competing SimBots during the competition.
InteRACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions
In collaborative human-robot manipulation, a robot must predict human intents and adapt its actions accordingly to smoothly execute tasks. However, the human's intent in turn depends on actions the robot takes, creating a chicken-or-egg problem. Prior methods ignore such inter-dependency and instead train marginal intent prediction models independent of robot actions. This is because training conditional models is hard given a lack of paired human-robot interaction datasets. Can we instead leverage large-scale human-human interaction data that is more easily accessible? Our key insight is to exploit a correspondence between human and robot actions that enables transfer learning from human-human to human-robot data. We propose a novel architecture, InteRACT, that pre-trains a conditional intent prediction model on large human-human datasets and fine-tunes on a small human-robot dataset. We evaluate on a set of real-world collaborative human-robot manipulation tasks and show that our conditional model improves over various marginal baselines. We also introduce new techniques to tele-operate a 7-DoF robot arm and collect a diverse range of human-robot collaborative manipulation data, which we open-source.
A Literature Survey of Recent Advances in Chatbots
Chatbots are intelligent conversational computer systems designed to mimic human conversation to enable automated online guidance and support. The increased benefits of chatbots led to their wide adoption by many industries in order to provide virtual assistance to customers. Chatbots utilise methods and algorithms from two Artificial Intelligence domains: Natural Language Processing and Machine Learning. However, there are many challenges and limitations in their application. In this survey we review recent advances on chatbots, where Artificial Intelligence and Natural Language processing are used. We highlight the main challenges and limitations of current work and make recommendations for future research investigation.
Social Agent: Mastering Dyadic Nonverbal Behavior Generation via Conversational LLM Agents
We present Social Agent, a novel framework for synthesizing realistic and contextually appropriate co-speech nonverbal behaviors in dyadic conversations. In this framework, we develop an agentic system driven by a Large Language Model (LLM) to direct the conversation flow and determine appropriate interactive behaviors for both participants. Additionally, we propose a novel dual-person gesture generation model based on an auto-regressive diffusion model, which synthesizes coordinated motions from speech signals. The output of the agentic system is translated into high-level guidance for the gesture generator, resulting in realistic movement at both the behavioral and motion levels. Furthermore, the agentic system periodically examines the movements of interlocutors and infers their intentions, forming a continuous feedback loop that enables dynamic and responsive interactions between the two participants. User studies and quantitative evaluations show that our model significantly improves the quality of dyadic interactions, producing natural, synchronized nonverbal behaviors.
Vision-Language-Action Models: Concepts, Progress, Applications and Challenges
Vision-Language-Action (VLA) models mark a transformative advancement in artificial intelligence, aiming to unify perception, natural language understanding, and embodied action within a single computational framework. This foundational review presents a comprehensive synthesis of recent advancements in Vision-Language-Action models, systematically organized across five thematic pillars that structure the landscape of this rapidly evolving field. We begin by establishing the conceptual foundations of VLA systems, tracing their evolution from cross-modal learning architectures to generalist agents that tightly integrate vision-language models (VLMs), action planners, and hierarchical controllers. Our methodology adopts a rigorous literature review framework, covering over 80 VLA models published in the past three years. Key progress areas include architectural innovations, parameter-efficient training strategies, and real-time inference accelerations. We explore diverse application domains such as humanoid robotics, autonomous vehicles, medical and industrial robotics, precision agriculture, and augmented reality navigation. The review further addresses major challenges across real-time control, multimodal action representation, system scalability, generalization to unseen tasks, and ethical deployment risks. Drawing from the state-of-the-art, we propose targeted solutions including agentic AI adaptation, cross-embodiment generalization, and unified neuro-symbolic planning. In our forward-looking discussion, we outline a future roadmap where VLA models, VLMs, and agentic AI converge to power socially aligned, adaptive, and general-purpose embodied agents. This work serves as a foundational reference for advancing intelligent, real-world robotics and artificial general intelligence. >Vision-language-action, Agentic AI, AI Agents, Vision-language Models
Cultural Evolution of Cooperation among LLM Agents
Large language models (LLMs) provide a compelling foundation for building generally-capable AI agents. These agents may soon be deployed at scale in the real world, representing the interests of individual humans (e.g., AI assistants) or groups of humans (e.g., AI-accelerated corporations). At present, relatively little is known about the dynamics of multiple LLM agents interacting over many generations of iterative deployment. In this paper, we examine whether a "society" of LLM agents can learn mutually beneficial social norms in the face of incentives to defect, a distinctive feature of human sociality that is arguably crucial to the success of civilization. In particular, we study the evolution of indirect reciprocity across generations of LLM agents playing a classic iterated Donor Game in which agents can observe the recent behavior of their peers. We find that the evolution of cooperation differs markedly across base models, with societies of Claude 3.5 Sonnet agents achieving significantly higher average scores than Gemini 1.5 Flash, which, in turn, outperforms GPT-4o. Further, Claude 3.5 Sonnet can make use of an additional mechanism for costly punishment to achieve yet higher scores, while Gemini 1.5 Flash and GPT-4o fail to do so. For each model class, we also observe variation in emergent behavior across random seeds, suggesting an understudied sensitive dependence on initial conditions. We suggest that our evaluation regime could inspire an inexpensive and informative new class of LLM benchmarks, focussed on the implications of LLM agent deployment for the cooperative infrastructure of society.
SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents
Humans are social beings; we pursue social goals in our daily interactions, which is a crucial aspect of social intelligence. Yet, AI systems' abilities in this realm remain elusive. We present SOTOPIA, an open-ended environment to simulate complex social interactions between artificial agents and evaluate their social intelligence. In our environment, agents role-play and interact under a wide variety of scenarios; they coordinate, collaborate, exchange, and compete with each other to achieve complex social goals. We simulate the role-play interaction between LLM-based agents and humans within this task space and evaluate their performance with a holistic evaluation framework called SOTOPIA-Eval. With SOTOPIA, we find significant differences between these models in terms of their social intelligence, and we identify a subset of SOTOPIA scenarios, SOTOPIA-hard, that is generally challenging for all models. We find that on this subset, GPT-4 achieves a significantly lower goal completion rate than humans and struggles to exhibit social commonsense reasoning and strategic communication skills. These findings demonstrate SOTOPIA's promise as a general platform for research on evaluating and improving social intelligence in artificial agents.
MimeQA: Towards Socially-Intelligent Nonverbal Foundation Models
Socially intelligent AI that can understand and interact seamlessly with humans in daily lives is increasingly important as AI becomes more closely integrated with peoples' daily activities. However, current works in artificial social reasoning all rely on language-only, or language-dominant approaches to benchmark and training models, resulting in systems that are improving in verbal communication but struggle with nonverbal social understanding. To address this limitation, we tap into a novel source of data rich in nonverbal and social interactions -- mime videos. Mimes refer to the art of expression through gesture and movement without spoken words, which presents unique challenges and opportunities in interpreting non-verbal social communication. We contribute a new dataset called MimeQA, obtained by sourcing 221 videos from YouTube, through rigorous annotation and verification, resulting in a benchmark with 101 videos and 806 question-answer pairs. Using MimeQA, we evaluate state-of-the-art video large language models (vLLMs) and find that their overall accuracy ranges from 15-30%. Our analysis reveals that vLLMs often fail to ground imagined objects and over-rely on the text prompt while ignoring subtle nonverbal interactions. Our data resources are released at https://github.com/MIT-MI/MimeQA to inspire future work in foundation models that embody true social intelligence capable of interpreting non-verbal human interactions.
LLM-MARS: Large Language Model for Behavior Tree Generation and NLP-enhanced Dialogue in Multi-Agent Robot Systems
This paper introduces LLM-MARS, first technology that utilizes a Large Language Model based Artificial Intelligence for Multi-Agent Robot Systems. LLM-MARS enables dynamic dialogues between humans and robots, allowing the latter to generate behavior based on operator commands and provide informative answers to questions about their actions. LLM-MARS is built on a transformer-based Large Language Model, fine-tuned from the Falcon 7B model. We employ a multimodal approach using LoRa adapters for different tasks. The first LoRa adapter was developed by fine-tuning the base model on examples of Behavior Trees and their corresponding commands. The second LoRa adapter was developed by fine-tuning on question-answering examples. Practical trials on a multi-agent system of two robots within the Eurobot 2023 game rules demonstrate promising results. The robots achieve an average task execution accuracy of 79.28% in compound commands. With commands containing up to two tasks accuracy exceeded 90%. Evaluation confirms the system's answers on operators questions exhibit high accuracy, relevance, and informativeness. LLM-MARS and similar multi-agent robotic systems hold significant potential to revolutionize logistics, enabling autonomous exploration missions and advancing Industry 5.0.
Social World Models
Humans intuitively navigate social interactions by simulating unspoken dynamics and reasoning about others' perspectives, even with limited information. In contrast, AI systems struggle to automatically structure and reason about these implicit social contexts. In this paper, we introduce a novel structured social world representation formalism (S3AP), designed to help AI systems reason more effectively about social dynamics. Following a POMDP-driven design, S3AP represents social interactions as structured tuples, such as state, observation, agent actions, and mental states, which can be automatically induced from free-form narratives or other inputs. We first show S3AP can help LLMs better understand social narratives across 5 social reasoning tasks (e.g., +51% improvement on FANToM's theory-of-mind reasoning with OpenAI's o1), reaching new state-of-the-art (SOTA) performance. We then induce social world models from these structured representations, demonstrating their ability to predict future social dynamics and improve agent decision-making, yielding up to +18% improvement on the SOTOPIA social interaction benchmark. Our findings highlight the promise of S3AP as a powerful, general-purpose representation for social world states, enabling the development of more socially-aware systems that better navigate social interactions.
Vid2Robot: End-to-end Video-conditioned Policy Learning with Cross-Attention Transformers
While large-scale robotic systems typically rely on textual instructions for tasks, this work explores a different approach: can robots infer the task directly from observing humans? This shift necessitates the robot's ability to decode human intent and translate it into executable actions within its physical constraints and environment. We introduce Vid2Robot, a novel end-to-end video-based learning framework for robots. Given a video demonstration of a manipulation task and current visual observations, Vid2Robot directly produces robot actions. This is achieved through a unified representation model trained on a large dataset of human video and robot trajectory. The model leverages cross-attention mechanisms to fuse prompt video features to the robot's current state and generate appropriate actions that mimic the observed task. To further improve policy performance, we propose auxiliary contrastive losses that enhance the alignment between human and robot video representations. We evaluate Vid2Robot on real-world robots, demonstrating a 20% improvement in performance compared to other video-conditioned policies when using human demonstration videos. Additionally, our model exhibits emergent capabilities, such as successfully transferring observed motions from one object to another, and long-horizon composition, thus showcasing its potential for real-world applications. Project website: vid2robot.github.io
The Conversation is the Command: Interacting with Real-World Autonomous Robot Through Natural Language
In recent years, autonomous agents have surged in real-world environments such as our homes, offices, and public spaces. However, natural human-robot interaction remains a key challenge. In this paper, we introduce an approach that synergistically exploits the capabilities of large language models (LLMs) and multimodal vision-language models (VLMs) to enable humans to interact naturally with autonomous robots through conversational dialogue. We leveraged the LLMs to decode the high-level natural language instructions from humans and abstract them into precise robot actionable commands or queries. Further, we utilised the VLMs to provide a visual and semantic understanding of the robot's task environment. Our results with 99.13% command recognition accuracy and 97.96% commands execution success show that our approach can enhance human-robot interaction in real-world applications. The video demonstrations of this paper can be found at https://osf.io/wzyf6 and the code is available at our GitHub repository (https://github.com/LinusNEP/TCC_IRoNL.git).
SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models
In this work, we introduce SMART-LLM, an innovative framework designed for embodied multi-robot task planning. SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models (LLMs), harnesses the power of LLMs to convert high-level task instructions provided as input into a multi-robot task plan. It accomplishes this by executing a series of stages, including task decomposition, coalition formation, and task allocation, all guided by programmatic LLM prompts within the few-shot prompting paradigm. We create a benchmark dataset designed for validating the multi-robot task planning problem, encompassing four distinct categories of high-level instructions that vary in task complexity. Our evaluation experiments span both simulation and real-world scenarios, demonstrating that the proposed model can achieve promising results for generating multi-robot task plans. The experimental videos, code, and datasets from the work can be found at https://sites.google.com/view/smart-llm/.
Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment
With the rapid growth of computing powers and recent advances in deep learning, we have witnessed impressive demonstrations of novel robot capabilities in research settings. Nonetheless, these learning systems exhibit brittle generalization and require excessive training data for practical tasks. To harness the capabilities of state-of-the-art robot learning models while embracing their imperfections, we present Sirius, a principled framework for humans and robots to collaborate through a division of work. In this framework, partially autonomous robots are tasked with handling a major portion of decision-making where they work reliably; meanwhile, human operators monitor the process and intervene in challenging situations. Such a human-robot team ensures safe deployments in complex tasks. Further, we introduce a new learning algorithm to improve the policy's performance on the data collected from the task executions. The core idea is re-weighing training samples with approximated human trust and optimizing the policies with weighted behavioral cloning. We evaluate Sirius in simulation and on real hardware, showing that Sirius consistently outperforms baselines over a collection of contact-rich manipulation tasks, achieving an 8% boost in simulation and 27% on real hardware than the state-of-the-art methods in policy success rate, with twice faster convergence and 85% memory size reduction. Videos and more details are available at https://ut-austin-rpl.github.io/sirius/
Exploiting Proximity-Aware Tasks for Embodied Social Navigation
Learning how to navigate among humans in an occluded and spatially constrained indoor environment, is a key ability required to embodied agent to be integrated into our society. In this paper, we propose an end-to-end architecture that exploits Proximity-Aware Tasks (referred as to Risk and Proximity Compass) to inject into a reinforcement learning navigation policy the ability to infer common-sense social behaviors. To this end, our tasks exploit the notion of immediate and future dangers of collision. Furthermore, we propose an evaluation protocol specifically designed for the Social Navigation Task in simulated environments. This is done to capture fine-grained features and characteristics of the policy by analyzing the minimal unit of human-robot spatial interaction, called Encounter. We validate our approach on Gibson4+ and Habitat-Matterport3D datasets.
What Questions Should Robots Be Able to Answer? A Dataset of User Questions for Explainable Robotics
With the growing use of large language models and conversational interfaces in human-robot interaction, robots' ability to answer user questions is more important than ever. We therefore introduce a dataset of 1,893 user questions for household robots, collected from 100 participants and organized into 12 categories and 70 subcategories. Most work in explainable robotics focuses on why-questions. In contrast, our dataset provides a wide variety of questions, from questions about simple execution details to questions about how the robot would act in hypothetical scenarios -- thus giving roboticists valuable insights into what questions their robot needs to be able to answer. To collect the dataset, we created 15 video stimuli and 7 text stimuli, depicting robots performing varied household tasks. We then asked participants on Prolific what questions they would want to ask the robot in each portrayed situation. In the final dataset, the most frequent categories are questions about task execution details (22.5%), the robot's capabilities (12.7%), and performance assessments (11.3%). Although questions about how robots would handle potentially difficult scenarios and ensure correct behavior are less frequent, users rank them as the most important for robots to be able to answer. Moreover, we find that users who identify as novices in robotics ask different questions than more experienced users. Novices are more likely to inquire about simple facts, such as what the robot did or the current state of the environment. As robots enter environments shared with humans and language becomes central to giving instructions and interaction, this dataset provides a valuable foundation for (i) identifying the information robots need to log and expose to conversational interfaces, (ii) benchmarking question-answering modules, and (iii) designing explanation strategies that align with user expectations.
Don't Trust Generative Agents to Mimic Communication on Social Networks Unless You Benchmarked their Empirical Realism
The ability of Large Language Models (LLMs) to mimic human behavior triggered a plethora of computational social science research, assuming that empirical studies of humans can be conducted with AI agents instead. Since there have been conflicting research findings on whether and when this hypothesis holds, there is a need to better understand the differences in their experimental designs. We focus on replicating the behavior of social network users with the use of LLMs for the analysis of communication on social networks. First, we provide a formal framework for the simulation of social networks, before focusing on the sub-task of imitating user communication. We empirically test different approaches to imitate user behavior on X in English and German. Our findings suggest that social simulations should be validated by their empirical realism measured in the setting in which the simulation components were fitted. With this paper, we argue for more rigor when applying generative-agent-based modeling for social simulation.
SocialCircle: Learning the Angle-based Social Interaction Representation for Pedestrian Trajectory Prediction
Analyzing and forecasting trajectories of agents like pedestrians and cars in complex scenes has become more and more significant in many intelligent systems and applications. The diversity and uncertainty in socially interactive behaviors among a rich variety of agents make this task more challenging than other deterministic computer vision tasks. Researchers have made a lot of efforts to quantify the effects of these interactions on future trajectories through different mathematical models and network structures, but this problem has not been well solved. Inspired by marine animals that localize the positions of their companions underwater through echoes, we build a new anglebased trainable social interaction representation, named SocialCircle, for continuously reflecting the context of social interactions at different angular orientations relative to the target agent. We validate the effect of the proposed SocialCircle by training it along with several newly released trajectory prediction models, and experiments show that the SocialCircle not only quantitatively improves the prediction performance, but also qualitatively helps better simulate social interactions when forecasting pedestrian trajectories in a way that is consistent with human intuitions.
Gemini Robotics: Bringing AI into the Physical World
Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.
Infusing Theory of Mind into Socially Intelligent LLM Agents
Theory of Mind (ToM)-an understanding of the mental states of others-is a key aspect of human social intelligence, yet, chatbots and LLM-based social agents do not typically integrate it. In this work, we demonstrate that LLMs that explicitly use ToM get better at dialogue, achieving goals more effectively. After showing that simply prompting models to generate mental states between dialogue turns already provides significant benefit, we further introduce ToMAgent (ToMA), a ToM-focused dialogue agent. ToMA is trained by pairing ToM with dialogue lookahead to produce mental states that are maximally useful for achieving dialogue goals. Experiments on the Sotopia interactive social evaluation benchmark demonstrate the effectiveness of our method over a range of baselines. Comprehensive analysis shows that ToMA exhibits more strategic, goal-oriented reasoning behaviors, which enable long-horizon adaptation, while maintaining better relationships with their partners. Our results suggest a step forward in integrating ToM for building socially intelligent LLM agents.
LLM-BRAIn: AI-driven Fast Generation of Robot Behaviour Tree based on Large Language Model
This paper presents a novel approach in autonomous robot control, named LLM-BRAIn, that makes possible robot behavior generation, based on operator's commands. LLM-BRAIn is a transformer-based Large Language Model (LLM) fine-tuned from Stanford Alpaca 7B model to generate robot behavior tree (BT) from the text description. We train the LLM-BRAIn on 8,5k instruction-following demonstrations, generated in the style of self-instruct using text-davinchi-003. The developed model accurately builds complex robot behavior while remaining small enough to be run on the robot's onboard microcomputer. The model gives structural and logical correct BTs and can successfully manage instructions that were not presented in training set. The experiment did not reveal any significant subjective differences between BTs generated by LLM-BRAIn and those created by humans (on average, participants were able to correctly distinguish between LLM-BRAIn generated BTs and human-created BTs in only 4.53 out of 10 cases, indicating that their performance was close to random chance). The proposed approach potentially can be applied to mobile robotics, drone operation, robot manipulator systems and Industry 4.0.
TidyBot: Personalized Robot Assistance with Large Language Models
For a robot to personalize physical assistance effectively, it must learn user preferences that can be generally reapplied to future scenarios. In this work, we investigate personalization of household cleanup with robots that can tidy up rooms by picking up objects and putting them away. A key challenge is determining the proper place to put each object, as people's preferences can vary greatly depending on personal taste or cultural background. For instance, one person may prefer storing shirts in the drawer, while another may prefer them on the shelf. We aim to build systems that can learn such preferences from just a handful of examples via prior interactions with a particular person. We show that robots can combine language-based planning and perception with the few-shot summarization capabilities of large language models (LLMs) to infer generalized user preferences that are broadly applicable to future interactions. This approach enables fast adaptation and achieves 91.2% accuracy on unseen objects in our benchmark dataset. We also demonstrate our approach on a real-world mobile manipulator called TidyBot, which successfully puts away 85.0% of objects in real-world test scenarios.
Robot Learning in the Era of Foundation Models: A Survey
The proliferation of Large Language Models (LLMs) has s fueled a shift in robot learning from automation towards general embodied Artificial Intelligence (AI). Adopting foundation models together with traditional learning methods to robot learning has increasingly gained recent interest research community and showed potential for real-life application. However, there are few literatures comprehensively reviewing the relatively new technologies combined with robotics. The purpose of this review is to systematically assess the state-of-the-art foundation model techniques in the robot learning and to identify future potential areas. Specifically, we first summarized the technical evolution of robot learning and identified the necessary preliminary preparations for foundation models including the simulators, datasets, foundation model framework. In addition, we focused on the following four mainstream areas of robot learning including manipulation, navigation, planning, and reasoning and demonstrated how the foundation model techniques can be adopted in the above scenarios. Furthermore, critical issues which are neglected in the current literatures including robot hardware and software decoupling, dynamic data, generalization performance with the presence of human, etc. were discussed. This review highlights the state-of-the-art progress of foundation models in robot learning and future research should focus on multimodal interaction especially dynamics data, exclusive foundation models for robots, and AI alignment, etc.
A Multimodal Social Agent
In recent years, large language models (LLMs) have demonstrated remarkable progress in common-sense reasoning tasks. This ability is fundamental to understanding social dynamics, interactions, and communication. However, the potential of integrating computers with these social capabilities is still relatively unexplored. However, the potential of integrating computers with these social capabilities is still relatively unexplored. This paper introduces MuSA, a multimodal LLM-based agent that analyzes text-rich social content tailored to address selected human-centric content analysis tasks, such as question answering, visual question answering, title generation, and categorization. It uses planning, reasoning, acting, optimizing, criticizing, and refining strategies to complete a task. Our approach demonstrates that MuSA can automate and improve social content analysis, helping decision-making processes across various applications. We have evaluated our agent's capabilities in question answering, title generation, and content categorization tasks. MuSA performs substantially better than our baselines.
AI Agent Behavioral Science
Recent advances in large language models (LLMs) have enabled the development of AI agents that exhibit increasingly human-like behaviors, including planning, adaptation, and social dynamics across diverse, interactive, and open-ended scenarios. These behaviors are not solely the product of the internal architectures of the underlying models, but emerge from their integration into agentic systems operating within specific contexts, where environmental factors, social cues, and interaction feedbacks shape behavior over time. This evolution necessitates a new scientific perspective: AI Agent Behavioral Science. Rather than focusing only on internal mechanisms, this perspective emphasizes the systematic observation of behavior, design of interventions to test hypotheses, and theory-guided interpretation of how AI agents act, adapt, and interact over time. We systematize a growing body of research across individual agent, multi-agent, and human-agent interaction settings, and further demonstrate how this perspective informs responsible AI by treating fairness, safety, interpretability, accountability, and privacy as behavioral properties. By unifying recent findings and laying out future directions, we position AI Agent Behavioral Science as a necessary complement to traditional model-centric approaches, providing essential tools for understanding, evaluating, and governing the real-world behavior of increasingly autonomous AI systems.
GR00T N1: An Open Foundation Model for Generalist Humanoid Robots
General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.
BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments
Large language models (LLMs) and vision-language models (VLMs) have the potential to transform biological research by enabling autonomous experimentation. Yet, their application remains constrained by rigid protocol design, limited adaptability to dynamic lab conditions, inadequate error handling, and high operational complexity. Here we introduce BioMARS (Biological Multi-Agent Robotic System), an intelligent platform that integrates LLMs, VLMs, and modular robotics to autonomously design, plan, and execute biological experiments. BioMARS uses a hierarchical architecture: the Biologist Agent synthesizes protocols via retrieval-augmented generation; the Technician Agent translates them into executable robotic pseudo-code; and the Inspector Agent ensures procedural integrity through multimodal perception and anomaly detection. The system autonomously conducts cell passaging and culture tasks, matching or exceeding manual performance in viability, consistency, and morphological integrity. It also supports context-aware optimization, outperforming conventional strategies in differentiating retinal pigment epithelial cells. A web interface enables real-time human-AI collaboration, while a modular backend allows scalable integration with laboratory hardware. These results highlight the feasibility of generalizable, AI-driven laboratory automation and the transformative role of language-based reasoning in biological research.
Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence, paving the way for advanced intelligent agents capable of sophisticated reasoning, robust perception, and versatile action across diverse domains. As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges. This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture that integrates principles from cognitive science, neuroscience, and computational research. We structure our exploration into four interconnected parts. First, we delve into the modular foundation of intelligent agents, systematically mapping their cognitive, perceptual, and operational modules onto analogous human brain functionalities, and elucidating core components such as memory, world modeling, reward processing, and emotion-like systems. Second, we discuss self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities, adapt to dynamic environments, and achieve continual learning through automated optimization paradigms, including emerging AutoML and LLM-driven optimization strategies. Third, we examine collaborative and evolutionary multi-agent systems, investigating the collective intelligence emerging from agent interactions, cooperation, and societal structures, highlighting parallels to human social dynamics. Finally, we address the critical imperative of building safe, secure, and beneficial AI systems, emphasizing intrinsic and extrinsic security threats, ethical alignment, robustness, and practical mitigation strategies necessary for trustworthy real-world deployment.
A Mobile Robot Generating Video Summaries of Seniors' Indoor Activities
We develop a system which generates summaries from seniors' indoor-activity videos captured by a social robot to help remote family members know their seniors' daily activities at home. Unlike the traditional video summarization datasets, indoor videos captured from a moving robot poses additional challenges, namely, (i) the video sequences are very long (ii) a significant number of video-frames contain no-subject or with subjects at ill-posed locations and scales (iii) most of the well-posed frames contain highly redundant information. To address this problem, we propose to exploit pose estimation for detecting people in frames. This guides the robot to follow the user and capture effective videos. We use person identification to distinguish a target senior from other people. We also make use of action recognition to analyze seniors' major activities at different moments, and develop a video summarization method to select diverse and representative keyframes as summaries.
AgentSociety: Large-Scale Simulation of LLM-Driven Generative Agents Advances Understanding of Human Behaviors and Society
Understanding human behavior and society is a central focus in social sciences, with the rise of generative social science marking a significant paradigmatic shift. By leveraging bottom-up simulations, it replaces costly and logistically challenging traditional experiments with scalable, replicable, and systematic computational approaches for studying complex social dynamics. Recent advances in large language models (LLMs) have further transformed this research paradigm, enabling the creation of human-like generative social agents and realistic simulacra of society. In this paper, we propose AgentSociety, a large-scale social simulator that integrates LLM-driven agents, a realistic societal environment, and a powerful large-scale simulation engine. Based on the proposed simulator, we generate social lives for over 10k agents, simulating their 5 million interactions both among agents and between agents and their environment. Furthermore, we explore the potential of AgentSociety as a testbed for computational social experiments, focusing on four key social issues: polarization, the spread of inflammatory messages, the effects of universal basic income policies, and the impact of external shocks such as hurricanes. These four issues serve as valuable cases for assessing AgentSociety's support for typical research methods -- such as surveys, interviews, and interventions -- as well as for investigating the patterns, causes, and underlying mechanisms of social issues. The alignment between AgentSociety's outcomes and real-world experimental results not only demonstrates its ability to capture human behaviors and their underlying mechanisms, but also underscores its potential as an important platform for social scientists and policymakers.
Rewarding Chatbots for Real-World Engagement with Millions of Users
The emergence of pretrained large language models has led to the deployment of a range of social chatbots for chitchat. Although these chatbots demonstrate language ability and fluency, they are not guaranteed to be engaging and can struggle to retain users. This work investigates the development of social chatbots that prioritize user engagement to enhance retention, specifically examining the use of human feedback to efficiently develop highly engaging chatbots. The proposed approach uses automatic pseudo-labels collected from user interactions to train a reward model that can be used to reject low-scoring sample responses generated by the chatbot model at inference time. Intuitive evaluation metrics, such as mean conversation length (MCL), are introduced as proxies to measure the level of engagement of deployed chatbots. A/B testing on groups of 10,000 new daily chatbot users on the Chai Research platform shows that this approach increases the MCL by up to 70%, which translates to a more than 30% increase in user retention for a GPT-J 6B model. Future work aims to use the reward model to realise a data fly-wheel, where the latest user conversations can be used to alternately fine-tune the language model and the reward model.
Understanding 3D Object Interaction from a Single Image
Humans can easily understand a single image as depicting multiple potential objects permitting interaction. We use this skill to plan our interactions with the world and accelerate understanding new objects without engaging in interaction. In this paper, we would like to endow machines with the similar ability, so that intelligent agents can better explore the 3D scene or manipulate objects. Our approach is a transformer-based model that predicts the 3D location, physical properties and affordance of objects. To power this model, we collect a dataset with Internet videos, egocentric videos and indoor images to train and validate our approach. Our model yields strong performance on our data, and generalizes well to robotics data.
Naturalistic Robot Arm Trajectory Generation via Representation Learning
The integration of manipulator robots in household environments suggests a need for more predictable and human-like robot motion. This holds especially true for wheelchair-mounted assistive robots that can support the independence of people with paralysis. One method of generating naturalistic motion trajectories is via the imitation of human demonstrators. This paper explores a self-supervised imitation learning method using an autoregressive spatio-temporal graph neural network for an assistive drinking task. We address learning from diverse human motion trajectory data that were captured via wearable IMU sensors on a human arm as the action-free task demonstrations. Observed arm motion data from several participants is used to generate natural and functional drinking motion trajectories for a UR5e robot arm.
The Ingredients for Robotic Diffusion Transformers
In recent years roboticists have achieved remarkable progress in solving increasingly general tasks on dexterous robotic hardware by leveraging high capacity Transformer network architectures and generative diffusion models. Unfortunately, combining these two orthogonal improvements has proven surprisingly difficult, since there is no clear and well-understood process for making important design choices. In this paper, we identify, study and improve key architectural design decisions for high-capacity diffusion transformer policies. The resulting models can efficiently solve diverse tasks on multiple robot embodiments, without the excruciating pain of per-setup hyper-parameter tuning. By combining the results of our investigation with our improved model components, we are able to present a novel architecture, named \method, that significantly outperforms the state of the art in solving long-horizon (1500+ time-steps) dexterous tasks on a bi-manual ALOHA robot. In addition, we find that our policies show improved scaling performance when trained on 10 hours of highly multi-modal, language annotated ALOHA demonstration data. We hope this work will open the door for future robot learning techniques that leverage the efficiency of generative diffusion modeling with the scalability of large scale transformer architectures. Code, robot dataset, and videos are available at: https://dit-policy.github.io
π_{0.5}: a Vision-Language-Action Model with Open-World Generalization
In order for robots to be useful, they must perform practically relevant tasks in the real world, outside of the lab. While vision-language-action (VLA) models have demonstrated impressive results for end-to-end robot control, it remains an open question how far such models can generalize in the wild. We describe pi_{0.5}, a new model based on pi_{0} that uses co-training on heterogeneous tasks to enable broad generalization. pi_{0.5}\ uses data from multiple robots, high-level semantic prediction, web data, and other sources to enable broadly generalizable real-world robotic manipulation. Our system uses a combination of co-training and hybrid multi-modal examples that combine image observations, language commands, object detections, semantic subtask prediction, and low-level actions. Our experiments show that this kind of knowledge transfer is essential for effective generalization, and we demonstrate for the first time that an end-to-end learning-enabled robotic system can perform long-horizon and dexterous manipulation skills, such as cleaning a kitchen or bedroom, in entirely new homes.
Time is on my sight: scene graph filtering for dynamic environment perception in an LLM-driven robot
Robots are increasingly being used in dynamic environments like workplaces, hospitals, and homes. As a result, interactions with robots must be simple and intuitive, with robots perception adapting efficiently to human-induced changes. This paper presents a robot control architecture that addresses key challenges in human-robot interaction, with a particular focus on the dynamic creation and continuous update of the robot state representation. The architecture uses Large Language Models to integrate diverse information sources, including natural language commands, robotic skills representation, real-time dynamic semantic mapping of the perceived scene. This enables flexible and adaptive robotic behavior in complex, dynamic environments. Traditional robotic systems often rely on static, pre-programmed instructions and settings, limiting their adaptability to dynamic environments and real-time collaboration. In contrast, this architecture uses LLMs to interpret complex, high-level instructions and generate actionable plans that enhance human-robot collaboration. At its core, the system Perception Module generates and continuously updates a semantic scene graph using RGB-D sensor data, providing a detailed and structured representation of the environment. A particle filter is employed to ensure accurate object localization in dynamic, real-world settings. The Planner Module leverages this up-to-date semantic map to break down high-level tasks into sub-tasks and link them to robotic skills such as navigation, object manipulation (e.g., PICK and PLACE), and movement (e.g., GOTO). By combining real-time perception, state tracking, and LLM-driven communication and task planning, the architecture enhances adaptability, task efficiency, and human-robot collaboration in dynamic environments.
Demographic User Modeling for Social Robotics with Multimodal Pre-trained Models
This paper investigates the performance of multimodal pre-trained models in user profiling tasks based on visual-linguistic demographic data. These models are critical for adapting to the needs and preferences of human users in social robotics, thereby providing personalized responses and enhancing interaction quality. First, we introduce two datasets specifically curated to represent demographic characteristics derived from user facial images. Next, we evaluate the performance of a prominent contrastive multimodal pre-trained model, CLIP, on these datasets, both in its out-of-the-box state and after fine-tuning. Initial results indicate that CLIP performs suboptimal in matching images to demographic descriptions without fine-tuning. Although fine-tuning significantly enhances its predictive capacity, the model continues to exhibit limitations in effectively generalizing subtle demographic nuances. To address this, we propose adopting a masked image modeling strategy to improve generalization and better capture subtle demographic attributes. This approach offers a pathway for enhancing demographic sensitivity in multimodal user modeling tasks.
From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents
Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns. Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies. In this paper, we conduct a comprehensive survey of this field, illustrating the recent progress in simulation driven by LLM-empowered agents. We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Society Simulation, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics. These simulations follow a progression, ranging from detailed individual modeling to large-scale societal phenomena. We provide a detailed discussion of each simulation type, including the architecture or key components of the simulation, the classification of objectives or scenarios and the evaluation method. Afterward, we summarize commonly used datasets and benchmarks. Finally, we discuss the trends across these three types of simulation. A repository for the related sources is at {https://github.com/FudanDISC/SocialAgent}.
Foundation Model based Open Vocabulary Task Planning and Executive System for General Purpose Service Robots
This paper describes a strategy for implementing a robotic system capable of performing General Purpose Service Robot (GPSR) tasks in robocup@home. The GPSR task is that a real robot hears a variety of commands in spoken language and executes a task in a daily life environment. To achieve the task, we integrate foundation models based inference system and a state machine task executable. The foundation models plan the task and detect objects with open vocabulary, and a state machine task executable manages each robot's actions. This system works stable, and we took first place in the RoboCup@home Japan Open 2022's GPSR with 130 points, more than 85 points ahead of the other teams.
Robot Utility Models: General Policies for Zero-Shot Deployment in New Environments
Robot models, particularly those trained with large amounts of data, have recently shown a plethora of real-world manipulation and navigation capabilities. Several independent efforts have shown that given sufficient training data in an environment, robot policies can generalize to demonstrated variations in that environment. However, needing to finetune robot models to every new environment stands in stark contrast to models in language or vision that can be deployed zero-shot for open-world problems. In this work, we present Robot Utility Models (RUMs), a framework for training and deploying zero-shot robot policies that can directly generalize to new environments without any finetuning. To create RUMs efficiently, we develop new tools to quickly collect data for mobile manipulation tasks, integrate such data into a policy with multi-modal imitation learning, and deploy policies on-device on Hello Robot Stretch, a cheap commodity robot, with an external mLLM verifier for retrying. We train five such utility models for opening cabinet doors, opening drawers, picking up napkins, picking up paper bags, and reorienting fallen objects. Our system, on average, achieves 90% success rate in unseen, novel environments interacting with unseen objects. Moreover, the utility models can also succeed in different robot and camera set-ups with no further data, training, or fine-tuning. Primary among our lessons are the importance of training data over training algorithm and policy class, guidance about data scaling, necessity for diverse yet high-quality demonstrations, and a recipe for robot introspection and retrying to improve performance on individual environments. Our code, data, models, hardware designs, as well as our experiment and deployment videos are open sourced and can be found on our project website: https://robotutilitymodels.com
π_0: A Vision-Language-Action Flow Model for General Robot Control
Robot learning holds tremendous promise to unlock the full potential of flexible, general, and dexterous robot systems, as well as to address some of the deepest questions in artificial intelligence. However, bringing robot learning to the level of generality required for effective real-world systems faces major obstacles in terms of data, generalization, and robustness. In this paper, we discuss how generalist robot policies (i.e., robot foundation models) can address these challenges, and how we can design effective generalist robot policies for complex and highly dexterous tasks. We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge. We then discuss how this model can be trained on a large and diverse dataset from multiple dexterous robot platforms, including single-arm robots, dual-arm robots, and mobile manipulators. We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people and from a high-level VLM policy, and its ability to acquire new skills via fine-tuning. Our results cover a wide variety of tasks, such as laundry folding, table cleaning, and assembling boxes.
Zero-shot Persuasive Chatbots with LLM-Generated Strategies and Information Retrieval
Persuasion plays a pivotal role in a wide range of applications from health intervention to the promotion of social good. Persuasive chatbots can accelerate the positive effects of persuasion in such applications. Existing methods rely on fine-tuning persuasive chatbots with task-specific training data which is costly, if not infeasible, to collect. To address this issue, we propose a method to leverage the generalizability and inherent persuasive abilities of large language models (LLMs) in creating effective and truthful persuasive chatbot for any given domain in a zero-shot manner. Unlike previous studies which used pre-defined persuasion strategies, our method first uses an LLM to generate responses, then extracts the strategies used on the fly, and replaces any unsubstantiated claims in the response with retrieved facts supporting the strategies. We applied our chatbot, PersuaBot, to three significantly different domains needing persuasion skills: donation solicitation, recommendations, and health intervention. Our experiments on simulated and human conversations show that our zero-shot approach is more persuasive than prior work, while achieving factual accuracy surpassing state-of-the-art knowledge-oriented chatbots. Our study demonstrated that when persuasive chatbots are employed responsibly for social good, it is an enabler of positive individual and social change.
Redefining Robot Generalization Through Interactive Intelligence
Recent advances in large-scale machine learning have produced high-capacity foundation models capable of adapting to a broad array of downstream tasks. While such models hold great promise for robotics, the prevailing paradigm still portrays robots as single, autonomous decision-makers, performing tasks like manipulation and navigation, with limited human involvement. However, a large class of real-world robotic systems, including wearable robotics (e.g., prostheses, orthoses, exoskeletons), teleoperation, and neural interfaces, are semiautonomous, and require ongoing interactive coordination with human partners, challenging single-agent assumptions. In this position paper, we argue that robot foundation models must evolve to an interactive multi-agent perspective in order to handle the complexities of real-time human-robot co-adaptation. We propose a generalizable, neuroscience-inspired architecture encompassing four modules: (1) a multimodal sensing module informed by sensorimotor integration principles, (2) an ad-hoc teamwork model reminiscent of joint-action frameworks in cognitive science, (3) a predictive world belief model grounded in internal model theories of motor control, and (4) a memory/feedback mechanism that echoes concepts of Hebbian and reinforcement-based plasticity. Although illustrated through the lens of cyborg systems, where wearable devices and human physiology are inseparably intertwined, the proposed framework is broadly applicable to robots operating in semi-autonomous or interactive contexts. By moving beyond single-agent designs, our position emphasizes how foundation models in robotics can achieve a more robust, personalized, and anticipatory level of performance.
ChatGPT for Robotics: Design Principles and Model Abilities
This paper presents an experimental study regarding the use of OpenAI's ChatGPT for robotics applications. We outline a strategy that combines design principles for prompt engineering and the creation of a high-level function library which allows ChatGPT to adapt to different robotics tasks, simulators, and form factors. We focus our evaluations on the effectiveness of different prompt engineering techniques and dialog strategies towards the execution of various types of robotics tasks. We explore ChatGPT's ability to use free-form dialog, parse XML tags, and to synthesize code, in addition to the use of task-specific prompting functions and closed-loop reasoning through dialogues. Our study encompasses a range of tasks within the robotics domain, from basic logical, geometrical, and mathematical reasoning all the way to complex domains such as aerial navigation, manipulation, and embodied agents. We show that ChatGPT can be effective at solving several of such tasks, while allowing users to interact with it primarily via natural language instructions. In addition to these studies, we introduce an open-sourced research tool called PromptCraft, which contains a platform where researchers can collaboratively upload and vote on examples of good prompting schemes for robotics applications, as well as a sample robotics simulator with ChatGPT integration, making it easier for users to get started with using ChatGPT for robotics.
SDPO: Segment-Level Direct Preference Optimization for Social Agents
Social agents powered by large language models (LLMs) can simulate human social behaviors but fall short in handling complex goal-oriented social dialogues. Direct Preference Optimization (DPO) has proven effective in aligning LLM behavior with human preferences across a variety of agent tasks. Existing DPO-based approaches for multi-turn interactions are divided into turn-level and session-level methods. The turn-level method is overly fine-grained, focusing exclusively on individual turns, while session-level methods are too coarse-grained, often introducing training noise. To address these limitations, we propose Segment-Level Direct Preference Optimization (SDPO), which focuses on specific key segments within interactions to optimize multi-turn agent behavior while minimizing training noise. Evaluations on the SOTOPIA benchmark demonstrate that SDPO-tuned agents consistently outperform both existing DPO-based methods and proprietary LLMs like GPT-4o, underscoring SDPO's potential to advance the social intelligence of LLM-based agents. We release our code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/SDPO.
Addressing Data Scarcity in Multimodal User State Recognition by Combining Semi-Supervised and Supervised Learning
Detecting mental states of human users is crucial for the development of cooperative and intelligent robots, as it enables the robot to understand the user's intentions and desires. Despite their importance, it is difficult to obtain a large amount of high quality data for training automatic recognition algorithms as the time and effort required to collect and label such data is prohibitively high. In this paper we present a multimodal machine learning approach for detecting dis-/agreement and confusion states in a human-robot interaction environment, using just a small amount of manually annotated data. We collect a data set by conducting a human-robot interaction study and develop a novel preprocessing pipeline for our machine learning approach. By combining semi-supervised and supervised architectures, we are able to achieve an average F1-score of 81.1\% for dis-/agreement detection with a small amount of labeled data and a large unlabeled data set, while simultaneously increasing the robustness of the model compared to the supervised approach.
REVERIE: Remote Embodied Visual Referring Expression in Real Indoor Environments
One of the long-term challenges of robotics is to enable robots to interact with humans in the visual world via natural language, as humans are visual animals that communicate through language. Overcoming this challenge requires the ability to perform a wide variety of complex tasks in response to multifarious instructions from humans. In the hope that it might drive progress towards more flexible and powerful human interactions with robots, we propose a dataset of varied and complex robot tasks, described in natural language, in terms of objects visible in a large set of real images. Given an instruction, success requires navigating through a previously-unseen environment to identify an object. This represents a practical challenge, but one that closely reflects one of the core visual problems in robotics. Several state-of-the-art vision-and-language navigation, and referring-expression models are tested to verify the difficulty of this new task, but none of them show promising results because there are many fundamental differences between our task and previous ones. A novel Interactive Navigator-Pointer model is also proposed that provides a strong baseline on the task. The proposed model especially achieves the best performance on the unseen test split, but still leaves substantial room for improvement compared to the human performance.
Spontaneous Emergence of Agent Individuality through Social Interactions in LLM-Based Communities
We study the emergence of agency from scratch by using Large Language Model (LLM)-based agents. In previous studies of LLM-based agents, each agent's characteristics, including personality and memory, have traditionally been predefined. We focused on how individuality, such as behavior, personality, and memory, can be differentiated from an undifferentiated state. The present LLM agents engage in cooperative communication within a group simulation, exchanging context-based messages in natural language. By analyzing this multi-agent simulation, we report valuable new insights into how social norms, cooperation, and personality traits can emerge spontaneously. This paper demonstrates that autonomously interacting LLM-powered agents generate hallucinations and hashtags to sustain communication, which, in turn, increases the diversity of words within their interactions. Each agent's emotions shift through communication, and as they form communities, the personalities of the agents emerge and evolve accordingly. This computational modeling approach and its findings will provide a new method for analyzing collective artificial intelligence.
EgoZero: Robot Learning from Smart Glasses
Despite recent progress in general purpose robotics, robot policies still lag far behind basic human capabilities in the real world. Humans interact constantly with the physical world, yet this rich data resource remains largely untapped in robot learning. We propose EgoZero, a minimal system that learns robust manipulation policies from human demonstrations captured with Project Aria smart glasses, and zero robot data. EgoZero enables: (1) extraction of complete, robot-executable actions from in-the-wild, egocentric, human demonstrations, (2) compression of human visual observations into morphology-agnostic state representations, and (3) closed-loop policy learning that generalizes morphologically, spatially, and semantically. We deploy EgoZero policies on a gripper Franka Panda robot and demonstrate zero-shot transfer with 70% success rate over 7 manipulation tasks and only 20 minutes of data collection per task. Our results suggest that in-the-wild human data can serve as a scalable foundation for real-world robot learning - paving the way toward a future of abundant, diverse, and naturalistic training data for robots. Code and videos are available at https://egozero-robot.github.io.
EMMOE: A Comprehensive Benchmark for Embodied Mobile Manipulation in Open Environments
Developing autonomous home robots controlled by natural language has long been a pursuit of human. While advancements in large language models (LLMs) and embodied intelligence make this goal closer, several challenges persist: the lack of a unified benchmark for more complex robot tasks, limited evaluation methods and metrics, data incompatibility between LLMs and mobile manipulation trajectories. To address these issues, we introduce Embodied Mobile Manipulation in Open Environments (EMMOE), which requires agents to interpret user instructions and execute long-horizon everyday tasks in continuous space. EMMOE seamlessly integrates high-level and low-level embodied tasks into a unified framework, along with three new metrics for more diverse assessment. Additionally, we collect EMMOE-100, which features in various task attributes, detailed process annotations, re-plans after failures, and two sub-datasets for LLM training. Furthermore, we design HomieBot, a sophisticated agent system consists of LLM with Direct Preference Optimization (DPO), light weighted navigation and manipulation models, and multiple error detection mechanisms. Finally, we demonstrate HomieBot's performance and the evaluation of different models and policies.
RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete
Recent advancements in Multimodal Large Language Models (MLLMs) have shown remarkable capabilities across various multimodal contexts. However, their application in robotic scenarios, particularly for long-horizon manipulation tasks, reveals significant limitations. These limitations arise from the current MLLMs lacking three essential robotic brain capabilities: Planning Capability, which involves decomposing complex manipulation instructions into manageable sub-tasks; Affordance Perception, the ability to recognize and interpret the affordances of interactive objects; and Trajectory Prediction, the foresight to anticipate the complete manipulation trajectory necessary for successful execution. To enhance the robotic brain's core capabilities from abstract to concrete, we introduce ShareRobot, a high-quality heterogeneous dataset that labels multi-dimensional information such as task planning, object affordance, and end-effector trajectory. ShareRobot's diversity and accuracy have been meticulously refined by three human annotators. Building on this dataset, we developed RoboBrain, an MLLM-based model that combines robotic and general multi-modal data, utilizes a multi-stage training strategy, and incorporates long videos and high-resolution images to improve its robotic manipulation capabilities. Extensive experiments demonstrate that RoboBrain achieves state-of-the-art performance across various robotic tasks, highlighting its potential to advance robotic brain capabilities.
Generating Robot Constitutions & Benchmarks for Semantic Safety
Until recently, robotics safety research was predominantly about collision avoidance and hazard reduction in the immediate vicinity of a robot. Since the advent of large vision and language models (VLMs), robots are now also capable of higher-level semantic scene understanding and natural language interactions with humans. Despite their known vulnerabilities (e.g. hallucinations or jail-breaking), VLMs are being handed control of robots capable of physical contact with the real world. This can lead to dangerous behaviors, making semantic safety for robots a matter of immediate concern. Our contributions in this paper are two fold: first, to address these emerging risks, we release the ASIMOV Benchmark, a large-scale and comprehensive collection of datasets for evaluating and improving semantic safety of foundation models serving as robot brains. Our data generation recipe is highly scalable: by leveraging text and image generation techniques, we generate undesirable situations from real-world visual scenes and human injury reports from hospitals. Secondly, we develop a framework to automatically generate robot constitutions from real-world data to steer a robot's behavior using Constitutional AI mechanisms. We propose a novel auto-amending process that is able to introduce nuances in written rules of behavior; this can lead to increased alignment with human preferences on behavior desirability and safety. We explore trade-offs between generality and specificity across a diverse set of constitutions of different lengths, and demonstrate that a robot is able to effectively reject unconstitutional actions. We measure a top alignment rate of 84.3% on the ASIMOV Benchmark using generated constitutions, outperforming no-constitution baselines and human-written constitutions. Data is available at asimov-benchmark.github.io
Harmonic Mobile Manipulation
Recent advancements in robotics have enabled robots to navigate complex scenes or manipulate diverse objects independently. However, robots are still impotent in many household tasks requiring coordinated behaviors such as opening doors. The factorization of navigation and manipulation, while effective for some tasks, fails in scenarios requiring coordinated actions. To address this challenge, we introduce, HarmonicMM, an end-to-end learning method that optimizes both navigation and manipulation, showing notable improvement over existing techniques in everyday tasks. This approach is validated in simulated and real-world environments and adapts to novel unseen settings without additional tuning. Our contributions include a new benchmark for mobile manipulation and the successful deployment with only RGB visual observation in a real unseen apartment, demonstrating the potential for practical indoor robot deployment in daily life. More results are on our project site: https://rchalyang.github.io/HarmonicMM/
A Survey on Large Language Model based Autonomous Agents
Autonomous agents have long been a prominent research focus in both academic and industry communities. Previous research in this field often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and thus makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of web knowledge, large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence. This has sparked an upsurge in studies investigating LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of the field of LLM-based autonomous agents from a holistic perspective. More specifically, we first discuss the construction of LLM-based autonomous agents, for which we propose a unified framework that encompasses a majority of the previous work. Then, we present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field. To keep track of this field and continuously update our survey, we maintain a repository of relevant references at https://github.com/Paitesanshi/LLM-Agent-Survey.
Multimodal Safety Evaluation in Generative Agent Social Simulations
Can generative agents be trusted in multimodal environments? Despite advances in large language and vision-language models that enable agents to act autonomously and pursue goals in rich settings, their ability to reason about safety, coherence, and trust across modalities remains limited. We introduce a reproducible simulation framework for evaluating agents along three dimensions: (1) safety improvement over time, including iterative plan revisions in text-visual scenarios; (2) detection of unsafe activities across multiple categories of social situations; and (3) social dynamics, measured as interaction counts and acceptance ratios of social exchanges. Agents are equipped with layered memory, dynamic planning, multimodal perception, and are instrumented with SocialMetrics, a suite of behavioral and structural metrics that quantifies plan revisions, unsafe-to-safe conversions, and information diffusion across networks. Experiments show that while agents can detect direct multimodal contradictions, they often fail to align local revisions with global safety, reaching only a 55 percent success rate in correcting unsafe plans. Across eight simulation runs with three models - Claude, GPT-4o mini, and Qwen-VL - five agents achieved average unsafe-to-safe conversion rates of 75, 55, and 58 percent, respectively. Overall performance ranged from 20 percent in multi-risk scenarios with GPT-4o mini to 98 percent in localized contexts such as fire/heat with Claude. Notably, 45 percent of unsafe actions were accepted when paired with misleading visuals, showing a strong tendency to overtrust images. These findings expose critical limitations in current architectures and provide a reproducible platform for studying multimodal safety, coherence, and social dynamics.
Training Socially Aligned Language Models in Simulated Human Society
Social alignment in AI systems aims to ensure that these models behave according to established societal values. However, unlike humans, who derive consensus on value judgments through social interaction, current language models (LMs) are trained to rigidly replicate their training corpus in isolation, leading to subpar generalization in unfamiliar scenarios and vulnerability to adversarial attacks. This work presents a novel training paradigm that permits LMs to learn from simulated social interactions. In comparison to existing methodologies, our approach is considerably more scalable and efficient, demonstrating superior performance in alignment benchmarks and human evaluations. This paradigm shift in the training of LMs brings us a step closer to developing AI systems that can robustly and accurately reflect societal norms and values.
GRAPHIA: Harnessing Social Graph Data to Enhance LLM-Based Social Simulation
Large language models (LLMs) have shown promise in simulating human-like social behaviors. Social graphs provide high-quality supervision signals that encode both local interactions and global network structure, yet they remain underutilized for LLM training. To address this gap, we propose Graphia, the first general LLM-based social graph simulation framework that leverages graph data as supervision for LLM post-training via reinforcement learning. With GNN-based structural rewards, Graphia trains specialized agents to predict whom to interact with (destination selection) and how to interact (edge generation), followed by designed graph generation pipelines. We evaluate Graphia under two settings: Transductive Dynamic Graph Generation (TDGG), a micro-level task with our proposed node-wise interaction alignment metrics; and Inductive Dynamic Graph Generation (IDGG), a macro-level task with our proposed metrics for aligning emergent network properties. On three real-world networks, Graphia improves micro-level alignment by 6.1% in the composite destination selection score, 12% in edge classification accuracy, and 27.9% in edge content BERTScore over the strongest baseline. For macro-level alignment, it achieves 41.11% higher structural similarity and 32.98% better replication of social phenomena such as power laws and echo chambers. Graphia also supports counterfactual simulation, generating plausible behavioral shifts under platform incentives. Our results show that social graphs can serve as high-quality supervision signals for LLM post-training, closing the gap between agent behaviors and network dynamics for LLM-based simulation. Code is available at https://github.com/Ji-Cather/Graphia.git.
Scalable Multi-Robot Collaboration with Large Language Models: Centralized or Decentralized Systems?
A flurry of recent work has demonstrated that pre-trained large language models (LLMs) can be effective task planners for a variety of single-robot tasks. The planning performance of LLMs is significantly improved via prompting techniques, such as in-context learning or re-prompting with state feedback, placing new importance on the token budget for the context window. An under-explored but natural next direction is to investigate LLMs as multi-robot task planners. However, long-horizon, heterogeneous multi-robot planning introduces new challenges of coordination while also pushing up against the limits of context window length. It is therefore critical to find token-efficient LLM planning frameworks that are also able to reason about the complexities of multi-robot coordination. In this work, we compare the task success rate and token efficiency of four multi-agent communication frameworks (centralized, decentralized, and two hybrid) as applied to four coordination-dependent multi-agent 2D task scenarios for increasing numbers of agents. We find that a hybrid framework achieves better task success rates across all four tasks and scales better to more agents. We further demonstrate the hybrid frameworks in 3D simulations where the vision-to-text problem and dynamical errors are considered. See our project website https://yongchao98.github.io/MIT-REALM-Multi-Robot/ for prompts, videos, and code.
Trinity: A Modular Humanoid Robot AI System
In recent years, research on humanoid robots has garnered increasing attention. With breakthroughs in various types of artificial intelligence algorithms, embodied intelligence, exemplified by humanoid robots, has been highly anticipated. The advancements in reinforcement learning (RL) algorithms have significantly improved the motion control and generalization capabilities of humanoid robots. Simultaneously, the groundbreaking progress in large language models (LLM) and visual language models (VLM) has brought more possibilities and imagination to humanoid robots. LLM enables humanoid robots to understand complex tasks from language instructions and perform long-term task planning, while VLM greatly enhances the robots' understanding and interaction with their environment. This paper introduces magenta{Trinity}, a novel AI system for humanoid robots that integrates RL, LLM, and VLM. By combining these technologies, Trinity enables efficient control of humanoid robots in complex environments. This innovative approach not only enhances the capabilities but also opens new avenues for future research and applications of humanoid robotics.
TUTORING: Instruction-Grounded Conversational Agent for Language Learners
In this paper, we propose Tutoring bot, a generative chatbot trained on a large scale of tutor-student conversations for English-language learning. To mimic a human tutor's behavior in language education, the tutor bot leverages diverse educational instructions and grounds to each instruction as additional input context for the tutor response generation. As a single instruction generally involves multiple dialogue turns to give the student sufficient speaking practice, the tutor bot is required to monitor and capture when the current instruction should be kept or switched to the next instruction. For that, the tutor bot is learned to not only generate responses but also infer its teaching action and progress on the current conversation simultaneously by a multi-task learning scheme. Our Tutoring bot is deployed under a non-commercial use license at https://tutoringai.com.
Interactive Planning Using Large Language Models for Partially Observable Robotics Tasks
Designing robotic agents to perform open vocabulary tasks has been the long-standing goal in robotics and AI. Recently, Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks. However, planning for these tasks in the presence of uncertainties is challenging as it requires chain-of-thought reasoning, aggregating information from the environment, updating state estimates, and generating actions based on the updated state estimates. In this paper, we present an interactive planning technique for partially observable tasks using LLMs. In the proposed method, an LLM is used to collect missing information from the environment using a robot and infer the state of the underlying problem from collected observations while guiding the robot to perform the required actions. We also use a fine-tuned Llama 2 model via self-instruct and compare its performance against a pre-trained LLM like GPT-4. Results are demonstrated on several tasks in simulation as well as real-world environments. A video describing our work along with some results could be found here.
LEXI: Large Language Models Experimentation Interface
The recent developments in Large Language Models (LLM), mark a significant moment in the research and development of social interactions with artificial agents. These agents are widely deployed in a variety of settings, with potential impact on users. However, the study of social interactions with agents powered by LLM is still emerging, limited by access to the technology and to data, the absence of standardised interfaces, and challenges to establishing controlled experimental setups using the currently available business-oriented platforms. To answer these gaps, we developed LEXI, LLMs Experimentation Interface, an open-source tool enabling the deployment of artificial agents powered by LLM in social interaction behavioural experiments. Using a graphical interface, LEXI allows researchers to build agents, and deploy them in experimental setups along with forms and questionnaires while collecting interaction logs and self-reported data. The outcomes of usability testing indicate LEXI's broad utility, high usability and minimum mental workload requirement, with distinctive benefits observed across disciplines. A proof-of-concept study exploring the tool's efficacy in evaluating social HAIs was conducted, resulting in high-quality data. A comparison of empathetic versus neutral agents indicated that people perceive empathetic agents as more social, and write longer and more positive messages towards them.
Evaluating and Modeling Social Intelligence: A Comparative Study of Human and AI Capabilities
Facing the current debate on whether Large Language Models (LLMs) attain near-human intelligence levels (Mitchell & Krakauer, 2023; Bubeck et al., 2023; Kosinski, 2023; Shiffrin & Mitchell, 2023; Ullman, 2023), the current study introduces a benchmark for evaluating social intelligence, one of the most distinctive aspects of human cognition. We developed a comprehensive theoretical framework for social dynamics and introduced two evaluation tasks: Inverse Reasoning (IR) and Inverse Inverse Planning (IIP). Our approach also encompassed a computational model based on recursive Bayesian inference, adept at elucidating diverse human behavioral patterns. Extensive experiments and detailed analyses revealed that humans surpassed the latest GPT models in overall performance, zero-shot learning, one-shot generalization, and adaptability to multi-modalities. Notably, GPT models demonstrated social intelligence only at the most basic order (order = 0), in stark contrast to human social intelligence (order >= 2). Further examination indicated a propensity of LLMs to rely on pattern recognition for shortcuts, casting doubt on their possession of authentic human-level social intelligence. Our codes, dataset, appendix and human data are released at https://github.com/bigai-ai/Evaluate-n-Model-Social-Intelligence.
HumanAgencyBench: Scalable Evaluation of Human Agency Support in AI Assistants
As humans delegate more tasks and decisions to artificial intelligence (AI), we risk losing control of our individual and collective futures. Relatively simple algorithmic systems already steer human decision-making, such as social media feed algorithms that lead people to unintentionally and absent-mindedly scroll through engagement-optimized content. In this paper, we develop the idea of human agency by integrating philosophical and scientific theories of agency with AI-assisted evaluation methods: using large language models (LLMs) to simulate and validate user queries and to evaluate AI responses. We develop HumanAgencyBench (HAB), a scalable and adaptive benchmark with six dimensions of human agency based on typical AI use cases. HAB measures the tendency of an AI assistant or agent to Ask Clarifying Questions, Avoid Value Manipulation, Correct Misinformation, Defer Important Decisions, Encourage Learning, and Maintain Social Boundaries. We find low-to-moderate agency support in contemporary LLM-based assistants and substantial variation across system developers and dimensions. For example, while Anthropic LLMs most support human agency overall, they are the least supportive LLMs in terms of Avoid Value Manipulation. Agency support does not appear to consistently result from increasing LLM capabilities or instruction-following behavior (e.g., RLHF), and we encourage a shift towards more robust safety and alignment targets.
Predicting the Impact of Generative AI Using an Agent-Based Model
Generative artificial intelligence (AI) systems have transformed various industries by autonomously generating content that mimics human creativity. However, concerns about their social and economic consequences arise with widespread adoption. This paper employs agent-based modeling (ABM) to explore these implications, predicting the impact of generative AI on societal frameworks. The ABM integrates individual, business, and governmental agents to simulate dynamics such as education, skills acquisition, AI adoption, and regulatory responses. This study enhances understanding of AI's complex interactions and provides insights for policymaking. The literature review underscores ABM's effectiveness in forecasting AI impacts, revealing AI adoption, employment, and regulation trends with potential policy implications. Future research will refine the model, assess long-term implications and ethical considerations, and deepen understanding of generative AI's societal effects.
Long-Term Planning Around Humans in Domestic Environments with 3D Scene Graphs
Long-term planning for robots operating in domestic environments poses unique challenges due to the interactions between humans, objects, and spaces. Recent advancements in trajectory planning have leveraged vision-language models (VLMs) to extract contextual information for robots operating in real-world environments. While these methods achieve satisfying performance, they do not explicitly model human activities. Such activities influence surrounding objects and reshape spatial constraints. This paper presents a novel approach to trajectory planning that integrates human preferences, activities, and spatial context through an enriched 3D scene graph (3DSG) representation. By incorporating activity-based relationships, our method captures the spatial impact of human actions, leading to more context-sensitive trajectory adaptation. Preliminary results demonstrate that our approach effectively assigns costs to spaces influenced by human activities, ensuring that the robot trajectory remains contextually appropriate and sensitive to the ongoing environment. This balance between task efficiency and social appropriateness enhances context-aware human-robot interactions in domestic settings. Future work includes implementing a full planning pipeline and conducting user studies to evaluate trajectory acceptability.
Investigating the Impact of Direct Punishment on the Emergence of Cooperation in Multi-Agent Reinforcement Learning Systems
Solving the problem of cooperation is fundamentally important for the creation and maintenance of functional societies. Problems of cooperation are omnipresent within human society, with examples ranging from navigating busy road junctions to negotiating treaties. As the use of AI becomes more pervasive throughout society, the need for socially intelligent agents capable of navigating these complex cooperative dilemmas is becoming increasingly evident. Direct punishment is a ubiquitous social mechanism that has been shown to foster the emergence of cooperation in both humans and non-humans. In the natural world, direct punishment is often strongly coupled with partner selection and reputation and used in conjunction with third-party punishment. The interactions between these mechanisms could potentially enhance the emergence of cooperation within populations. However, no previous work has evaluated the learning dynamics and outcomes emerging from Multi-Agent Reinforcement Learning (MARL) populations that combine these mechanisms. This paper addresses this gap. It presents a comprehensive analysis and evaluation of the behaviors and learning dynamics associated with direct punishment, third-party punishment, partner selection, and reputation. Finally, we discuss the implications of using these mechanisms on the design of cooperative AI systems.
Pretrained AI Models: Performativity, Mobility, and Change
The paradigm of pretrained deep learning models has recently emerged in artificial intelligence practice, allowing deployment in numerous societal settings with limited computational resources, but also embedding biases and enabling unintended negative uses. In this paper, we treat pretrained models as objects of study and discuss the ethical impacts of their sociological position. We discuss how pretrained models are developed and compared under the common task framework, but that this may make self-regulation inadequate. Further how pretrained models may have a performative effect on society that exacerbates biases. We then discuss how pretrained models move through actor networks as a kind of computationally immutable mobile, but that users also act as agents of technological change by reinterpreting them via fine-tuning and transfer. We further discuss how users may use pretrained models in malicious ways, drawing a novel connection between the responsible innovation and user-centered innovation literatures. We close by discussing how this sociological understanding of pretrained models can inform AI governance frameworks for fairness, accountability, and transparency.
SmartAgent: Chain-of-User-Thought for Embodied Personalized Agent in Cyber World
Recent advances in embodied agents with multimodal perception and reasoning capabilities based on large vision-language models (LVLMs), excel in autonomously interacting either real or cyber worlds, helping people make intelligent decisions in complex environments. However, the current works are normally optimized by golden action trajectories or ideal task-oriented solutions toward a definitive goal. This paradigm considers limited user-oriented factors, which could be the reason for their performance reduction in a wide range of personal assistant applications. To address this, we propose Chain-of-User-Thought (COUT), a novel embodied reasoning paradigm that takes a chain of thought from basic action thinking to explicit and implicit personalized preference thought to incorporate personalized factors into autonomous agent learning. To target COUT, we introduce SmartAgent, an agent framework perceiving cyber environments and reasoning personalized requirements as 1) interacting with GUI to access an item pool, 2) generating users' explicit requirements implied by previous actions, and 3) recommending items to fulfill users' implicit requirements. To demonstrate SmartAgent's capabilities, we also create a brand-new dataset SmartSpot that offers a full-stage personalized action-involved environment. To our best knowledge, our work is the first to formulate the COUT process, serving as a preliminary attempt towards embodied personalized agent learning. Our extensive experiments on SmartSpot illuminate SmartAgent's functionality among a series of embodied and personalized sub-tasks. We will release code and data upon paper notification at https://github.com/tsinghua-fib-lab/SmartAgent.
A Careful Examination of Large Behavior Models for Multitask Dexterous Manipulation
Robot manipulation has seen tremendous progress in recent years, with imitation learning policies enabling successful performance of dexterous and hard-to-model tasks. Concurrently, scaling data and model size has led to the development of capable language and vision foundation models, motivating large-scale efforts to create general-purpose robot foundation models. While these models have garnered significant enthusiasm and investment, meaningful evaluation of real-world performance remains a challenge, limiting both the pace of development and inhibiting a nuanced understanding of current capabilities. In this paper, we rigorously evaluate multitask robot manipulation policies, referred to as Large Behavior Models (LBMs), by extending the Diffusion Policy paradigm across a corpus of simulated and real-world robot data. We propose and validate an evaluation pipeline to rigorously analyze the capabilities of these models with statistical confidence. We compare against single-task baselines through blind, randomized trials in a controlled setting, using both simulation and real-world experiments. We find that multi-task pretraining makes the policies more successful and robust, and enables teaching complex new tasks more quickly, using a fraction of the data when compared to single-task baselines. Moreover, performance predictably increases as pretraining scale and diversity grows. Project page: https://toyotaresearchinstitute.github.io/lbm1/
Introduction to Latent Variable Energy-Based Models: A Path Towards Autonomous Machine Intelligence
Current automated systems have crucial limitations that need to be addressed before artificial intelligence can reach human-like levels and bring new technological revolutions. Among others, our societies still lack Level 5 self-driving cars, domestic robots, and virtual assistants that learn reliable world models, reason, and plan complex action sequences. In these notes, we summarize the main ideas behind the architecture of autonomous intelligence of the future proposed by Yann LeCun. In particular, we introduce energy-based and latent variable models and combine their advantages in the building block of LeCun's proposal, that is, in the hierarchical joint embedding predictive architecture (H-JEPA).
From Text to Motion: Grounding GPT-4 in a Humanoid Robot "Alter3"
We report the development of Alter3, a humanoid robot capable of generating spontaneous motion using a Large Language Model (LLM), specifically GPT-4. This achievement was realized by integrating GPT-4 into our proprietary android, Alter3, thereby effectively grounding the LLM with Alter's bodily movement. Typically, low-level robot control is hardware-dependent and falls outside the scope of LLM corpora, presenting challenges for direct LLM-based robot control. However, in the case of humanoid robots like Alter3, direct control is feasible by mapping the linguistic expressions of human actions onto the robot's body through program code. Remarkably, this approach enables Alter3 to adopt various poses, such as a 'selfie' stance or 'pretending to be a ghost,' and generate sequences of actions over time without explicit programming for each body part. This demonstrates the robot's zero-shot learning capabilities. Additionally, verbal feedback can adjust poses, obviating the need for fine-tuning. A video of Alter3's generated motions is available at https://tnoinkwms.github.io/ALTER-LLM/
Interpretable Robot Control via Structured Behavior Trees and Large Language Models
As intelligent robots become more integrated into human environments, there is a growing need for intuitive and reliable Human-Robot Interaction (HRI) interfaces that are adaptable and more natural to interact with. Traditional robot control methods often require users to adapt to interfaces or memorize predefined commands, limiting usability in dynamic, unstructured environments. This paper presents a novel framework that bridges natural language understanding and robotic execution by combining Large Language Models (LLMs) with Behavior Trees. This integration enables robots to interpret natural language instructions given by users and translate them into executable actions by activating domain-specific plugins. The system supports scalable and modular integration, with a primary focus on perception-based functionalities, such as person tracking and hand gesture recognition. To evaluate the system, a series of real-world experiments was conducted across diverse environments. Experimental results demonstrate that the proposed approach is practical in real-world scenarios, with an average cognition-to-execution accuracy of approximately 94%, making a significant contribution to HRI systems and robots. The complete source code of the framework is publicly available at https://github.com/snt-arg/robot_suite.
Graph Neural Networks for Decentralized Multi-Robot Path Planning
Effective communication is key to successful, decentralized, multi-robot path planning. Yet, it is far from obvious what information is crucial to the task at hand, and how and when it must be shared among robots. To side-step these issues and move beyond hand-crafted heuristics, we propose a combined model that automatically synthesizes local communication and decision-making policies for robots navigating in constrained workspaces. Our architecture is composed of a convolutional neural network (CNN) that extracts adequate features from local observations, and a graph neural network (GNN) that communicates these features among robots. We train the model to imitate an expert algorithm, and use the resulting model online in decentralized planning involving only local communication and local observations. We evaluate our method in simulations {by navigating teams of robots to their destinations in 2D} cluttered workspaces. We measure the success rates and sum of costs over the planned paths. The results show a performance close to that of our expert algorithm, demonstrating the validity of our approach. In particular, we show our model's capability to generalize to previously unseen cases (involving larger environments and larger robot teams).
ChatGPT Empowered Long-Step Robot Control in Various Environments: A Case Application
This paper demonstrates how OpenAI's ChatGPT can be used in a few-shot setting to convert natural language instructions into a sequence of executable robot actions. The paper proposes easy-to-customize input prompts for ChatGPT that meet common requirements in practical applications, such as easy integration with robot execution systems and applicability to various environments while minimizing the impact of ChatGPT's token limit. The prompts encourage ChatGPT to output a sequence of predefined robot actions, represent the operating environment in a formalized style, and infer the updated state of the operating environment. Experiments confirmed that the proposed prompts enable ChatGPT to act according to requirements in various environments, and users can adjust ChatGPT's output with natural language feedback for safe and robust operation. The proposed prompts and source code are open-source and publicly available at https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts
CognitiveOS: Large Multimodal Model based System to Endow Any Type of Robot with Generative AI
This paper introduces CognitiveOS, a disruptive system based on multiple transformer-based models, endowing robots of various types with cognitive abilities not only for communication with humans but also for task resolution through physical interaction with the environment. The system operates smoothly on different robotic platforms without extra tuning. It autonomously makes decisions for task execution by analyzing the environment and using information from its long-term memory. The system underwent testing on various platforms, including quadruped robots and manipulator robots, showcasing its capability to formulate behavioral plans even for robots whose behavioral examples were absent in the training dataset. Experimental results revealed the system's high performance in advanced task comprehension and adaptability, emphasizing its potential for real-world applications. The chapters of this paper describe the key components of the system and the dataset structure. The dataset for fine-tuning step generation model is provided at the following link: link coming soon
