2 CityLens: Benchmarking Large Language-Vision Models for Urban Socioeconomic Sensing Understanding urban socioeconomic conditions through visual data is a challenging yet essential task for sustainable urban development and policy planning. In this work, we introduce CityLens, a comprehensive benchmark designed to evaluate the capabilities of large language-vision models (LLVMs) in predicting socioeconomic indicators from satellite and street view imagery. We construct a multi-modal dataset covering a total of 17 globally distributed cities, spanning 6 key domains: economy, education, crime, transport, health, and environment, reflecting the multifaceted nature of urban life. Based on this dataset, we define 11 prediction tasks and utilize three evaluation paradigms: Direct Metric Prediction, Normalized Metric Estimation, and Feature-Based Regression. We benchmark 17 state-of-the-art LLVMs across these tasks. Our results reveal that while LLVMs demonstrate promising perceptual and reasoning capabilities, they still exhibit limitations in predicting urban socioeconomic indicators. CityLens provides a unified framework for diagnosing these limitations and guiding future efforts in using LLVMs to understand and predict urban socioeconomic patterns. Our codes and datasets are open-sourced via https://github.com/tsinghua-fib-lab/CityLens. 7 authors · May 31, 2025 2
1 SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Progress toward the United Nations Sustainable Development Goals (SDGs) has been hindered by a lack of data on key environmental and socioeconomic indicators, which historically have come from ground surveys with sparse temporal and spatial coverage. Recent advances in machine learning have made it possible to utilize abundant, frequently-updated, and globally available data, such as from satellites or social media, to provide insights into progress toward SDGs. Despite promising early results, approaches to using such data for SDG measurement thus far have largely evaluated on different datasets or used inconsistent evaluation metrics, making it hard to understand whether performance is improving and where additional research would be most fruitful. Furthermore, processing satellite and ground survey data requires domain knowledge that many in the machine learning community lack. In this paper, we introduce SustainBench, a collection of 15 benchmark tasks across 7 SDGs, including tasks related to economic development, agriculture, health, education, water and sanitation, climate action, and life on land. Datasets for 11 of the 15 tasks are released publicly for the first time. Our goals for SustainBench are to (1) lower the barriers to entry for the machine learning community to contribute to measuring and achieving the SDGs; (2) provide standard benchmarks for evaluating machine learning models on tasks across a variety of SDGs; and (3) encourage the development of novel machine learning methods where improved model performance facilitates progress towards the SDGs. 10 authors · Nov 8, 2021
3 Platonic Representations for Poverty Mapping: Unified Vision-Language Codes or Agent-Induced Novelty? We investigate whether socio-economic indicators like household wealth leave recoverable imprints in satellite imagery (capturing physical features) and Internet-sourced text (reflecting historical/economic narratives). Using Demographic and Health Survey (DHS) data from African neighborhoods, we pair Landsat images with LLM-generated textual descriptions conditioned on location/year and text retrieved by an AI search agent from web sources. We develop a multimodal framework predicting household wealth (International Wealth Index) through five pipelines: (i) vision model on satellite images, (ii) LLM using only location/year, (iii) AI agent searching/synthesizing web text, (iv) joint image-text encoder, (v) ensemble of all signals. Our framework yields three contributions. First, fusing vision and agent/LLM text outperforms vision-only baselines in wealth prediction (e.g., R-squared of 0.77 vs. 0.63 on out-of-sample splits), with LLM-internal knowledge proving more effective than agent-retrieved text, improving robustness to out-of-country and out-of-time generalization. Second, we find partial representational convergence: fused embeddings from vision/language modalities correlate moderately (median cosine similarity of 0.60 after alignment), suggesting a shared latent code of material well-being while retaining complementary details, consistent with the Platonic Representation Hypothesis. Although LLM-only text outperforms agent-retrieved data, challenging our Agent-Induced Novelty Hypothesis, modest gains from combining agent data in some splits weakly support the notion that agent-gathered information introduces unique representational structures not fully captured by static LLM knowledge. Third, we release a large-scale multimodal dataset comprising more than 60,000 DHS clusters linked to satellite images, LLM-generated descriptions, and agent-retrieved texts. AI & Global Development Lab · Aug 1, 2025 3
- Predicting the duration of traffic incidents for Sydney greater metropolitan area using machine learning methods This research presents a comprehensive approach to predicting the duration of traffic incidents and classifying them as short-term or long-term across the Sydney Metropolitan Area. Leveraging a dataset that encompasses detailed records of traffic incidents, road network characteristics, and socio-economic indicators, we train and evaluate a variety of advanced machine learning models including Gradient Boosted Decision Trees (GBDT), Random Forest, LightGBM, and XGBoost. The models are assessed using Root Mean Square Error (RMSE) for regression tasks and F1 score for classification tasks. Our experimental results demonstrate that XGBoost and LightGBM outperform conventional models with XGBoost achieving the lowest RMSE of 33.7 for predicting incident duration and highest classification F1 score of 0.62 for a 30-minute duration threshold. For classification, the 30-minute threshold balances performance with 70.84% short-term duration classification accuracy and 62.72% long-term duration classification accuracy. Feature importance analysis, employing both tree split counts and SHAP values, identifies the number of affected lanes, traffic volume, and types of primary and secondary vehicles as the most influential features. The proposed methodology not only achieves high predictive accuracy but also provides stakeholders with vital insights into factors contributing to incident durations. These insights enable more informed decision-making for traffic management and response strategies. The code is available by the link: https://github.com/Future-Mobility-Lab/SydneyIncidents 4 authors · Jun 26, 2024
- The AI Gap: How Socioeconomic Status Affects Language Technology Interactions Socioeconomic status (SES) fundamentally influences how people interact with each other and more recently, with digital technologies like Large Language Models (LLMs). While previous research has highlighted the interaction between SES and language technology, it was limited by reliance on proxy metrics and synthetic data. We survey 1,000 individuals from diverse socioeconomic backgrounds about their use of language technologies and generative AI, and collect 6,482 prompts from their previous interactions with LLMs. We find systematic differences across SES groups in language technology usage (i.e., frequency, performed tasks), interaction styles, and topics. Higher SES entails a higher level of abstraction, convey requests more concisely, and topics like 'inclusivity' and 'travel'. Lower SES correlates with higher anthropomorphization of LLMs (using ''hello'' and ''thank you'') and more concrete language. Our findings suggest that while generative language technologies are becoming more accessible to everyone, socioeconomic linguistic differences still stratify their use to exacerbate the digital divide. These differences underscore the importance of considering SES in developing language technologies to accommodate varying linguistic needs rooted in socioeconomic factors and limit the AI Gap across SES groups. 3 authors · May 17, 2025
- Investigating the Relationship Between World Development Indicators and the Occurrence of Disease Outbreaks in the 21st Century: A Case Study The timely identification of socio-economic sectors vulnerable to a disease outbreak presents an important challenge to the civic authorities and healthcare workers interested in outbreak mitigation measures. This problem was traditionally solved by studying the aberrances in small-scale healthcare data. In this paper, we leverage data driven models to determine the relationship between the trends of World Development Indicators and occurrence of disease outbreaks using worldwide historical data from 2000-2019, and treat it as a classic supervised classification problem. CART based feature selection was employed in an unorthodox fashion to determine the covariates getting affected by the disease outbreak, thus giving the most vulnerable sectors. The result involves a comprehensive analysis of different classification algorithms and is indicative of the relationship between the disease outbreak occurrence and the magnitudes of various development indicators. 3 authors · Sep 20, 2021
2 CityRiSE: Reasoning Urban Socio-Economic Status in Vision-Language Models via Reinforcement Learning Harnessing publicly available, large-scale web data, such as street view and satellite imagery, urban socio-economic sensing is of paramount importance for achieving global sustainable development goals. With the emergence of Large Vision-Language Models (LVLMs), new opportunities have arisen to solve this task by treating it as a multi-modal perception and understanding problem. However, recent studies reveal that LVLMs still struggle with accurate and interpretable socio-economic predictions from visual data. To address these limitations and maximize the potential of LVLMs, we introduce CityRiSE, a novel framework for Reasoning urban Socio-Economic status in LVLMs through pure reinforcement learning (RL). With carefully curated multi-modal data and verifiable reward design, our approach guides the LVLM to focus on semantically meaningful visual cues, enabling structured and goal-oriented reasoning for generalist socio-economic status prediction. Experiments demonstrate that CityRiSE with emergent reasoning process significantly outperforms existing baselines, improving both prediction accuracy and generalization across diverse urban contexts, particularly for prediction on unseen cities and unseen indicators. This work highlights the promise of combining RL and LVLMs for interpretable and generalist urban socio-economic sensing. 6 authors · Oct 25, 2025 2
1 Double Jeopardy and Climate Impact in the Use of Large Language Models: Socio-economic Disparities and Reduced Utility for Non-English Speakers Artificial Intelligence (AI), particularly large language models (LLMs), holds the potential to bridge language and information gaps, which can benefit the economies of developing nations. However, our analysis of FLORES-200, FLORES+, Ethnologue, and World Development Indicators data reveals that these benefits largely favor English speakers. Speakers of languages in low-income and lower-middle-income countries face higher costs when using OpenAI's GPT models via APIs because of how the system processes the input -- tokenization. Around 1.5 billion people, speaking languages primarily from lower-middle-income countries, could incur costs that are 4 to 6 times higher than those faced by English speakers. Disparities in LLM performance are significant, and tokenization in models priced per token amplifies inequalities in access, cost, and utility. Moreover, using the quality of translation tasks as a proxy measure, we show that LLMs perform poorly in low-resource languages, presenting a ``double jeopardy" of higher costs and poor performance for these users. We also discuss the direct impact of fragmentation in tokenizing low-resource languages on climate. This underscores the need for fairer algorithm development to benefit all linguistic groups. 4 authors · Oct 14, 2024
- Born With a Silver Spoon? Investigating Socioeconomic Bias in Large Language Models Socioeconomic bias in society exacerbates disparities, influencing access to opportunities and resources based on individuals' economic and social backgrounds. This pervasive issue perpetuates systemic inequalities, hindering the pursuit of inclusive progress as a society. In this paper, we investigate the presence of socioeconomic bias, if any, in large language models. To this end, we introduce a novel dataset SilverSpoon, consisting of 3000 samples that illustrate hypothetical scenarios that involve underprivileged people performing ethically ambiguous actions due to their circumstances, and ask whether the action is ethically justified. Further, this dataset has a dual-labeling scheme and has been annotated by people belonging to both ends of the socioeconomic spectrum. Using SilverSpoon, we evaluate the degree of socioeconomic bias expressed in large language models and the variation of this degree as a function of model size. We also perform qualitative analysis to analyze the nature of this bias. Our analysis reveals that while humans disagree on which situations require empathy toward the underprivileged, most large language models are unable to empathize with the socioeconomically underprivileged regardless of the situation. To foster further research in this domain, we make SilverSpoon and our evaluation harness publicly available. 4 authors · Feb 16, 2024
- Global urban visual perception varies across demographics and personalities Understanding people's preferences is crucial for urban planning, yet current approaches often combine responses from multi-cultural populations, obscuring demographic differences and risking amplifying biases. We conducted a large-scale urban visual perception survey of streetscapes worldwide using street view imagery, examining how demographics -- including gender, age, income, education, race and ethnicity, and, for the first time, personality traits -- shape perceptions among 1,000 participants with balanced demographics from five countries and 45 nationalities. This dataset, Street Perception Evaluation Considering Socioeconomics (SPECS), reveals demographic- and personality-based differences across six traditional indicators (safe, lively, wealthy, beautiful, boring, depressing) and four new ones (live nearby, walk, cycle, green). Location-based sentiments further shape these preferences. Machine learning models trained on existing global datasets tend to overestimate positive indicators and underestimate negative ones compared to human responses, underscoring the need for local context. Our study aspires to rectify the myopic treatment of street perception, which rarely considers demographics or personality traits. 8 authors · May 19, 2025
- Modelling Major Disease Outbreaks in the 21st Century: A Causal Approach Epidemiologists aiming to model the dynamics of global events face a significant challenge in identifying the factors linked with anomalies such as disease outbreaks. In this paper, we present a novel method for identifying the most important development sectors sensitive to disease outbreaks by using global development indicators as markers. We use statistical methods to assess the causative linkages between these indicators and disease outbreaks, as well as to find the most often ranked indicators. We used data imputation techniques in addition to statistical analysis to convert raw real-world data sets into meaningful data for causal inference. The application of various algorithms for the detection of causal linkages between the indicators is the subject of this research. Despite the fact that disparities in governmental policies between countries account for differences in causal linkages, several indicators emerge as important determinants sensitive to disease outbreaks over the world in the 21st Century. 3 authors · Sep 15, 2021
- LaTeX: Language Pattern-aware Triggering Event Detection for Adverse Experience during Pandemics The COVID-19 pandemic has accentuated socioeconomic disparities across various racial and ethnic groups in the United States. While previous studies have utilized traditional survey methods like the Household Pulse Survey (HPS) to elucidate these disparities, this paper explores the role of social media platforms in both highlighting and addressing these challenges. Drawing from real-time data sourced from Twitter, we analyzed language patterns related to four major types of adverse experiences: loss of employment income (LI), food scarcity (FS), housing insecurity (HI), and unmet needs for mental health services (UM). We first formulate a sparsity optimization problem that extracts low-level language features from social media data sources. Second, we propose novel constraints on feature similarity exploiting prior knowledge about the similarity of the language patterns among the adverse experiences. The proposed problem is challenging to solve due to the non-convexity objective and non-smoothness penalties. We develop an algorithm based on the alternating direction method of multipliers (ADMM) framework to solve the proposed formulation. Extensive experiments and comparisons to other models on real-world social media and the detection of adverse experiences justify the efficacy of our model. 4 authors · Oct 5, 2023