new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 4

Visual Dexterity: In-Hand Reorientation of Novel and Complex Object Shapes

In-hand object reorientation is necessary for performing many dexterous manipulation tasks, such as tool use in less structured environments that remain beyond the reach of current robots. Prior works built reorientation systems assuming one or many of the following: reorienting only specific objects with simple shapes, limited range of reorientation, slow or quasistatic manipulation, simulation-only results, the need for specialized and costly sensor suites, and other constraints which make the system infeasible for real-world deployment. We present a general object reorientation controller that does not make these assumptions. It uses readings from a single commodity depth camera to dynamically reorient complex and new object shapes by any rotation in real-time, with the median reorientation time being close to seven seconds. The controller is trained using reinforcement learning in simulation and evaluated in the real world on new object shapes not used for training, including the most challenging scenario of reorienting objects held in the air by a downward-facing hand that must counteract gravity during reorientation. Our hardware platform only uses open-source components that cost less than five thousand dollars. Although we demonstrate the ability to overcome assumptions in prior work, there is ample scope for improving absolute performance. For instance, the challenging duck-shaped object not used for training was dropped in 56 percent of the trials. When it was not dropped, our controller reoriented the object within 0.4 radians (23 degrees) 75 percent of the time. Videos are available at: https://taochenshh.github.io/projects/visual-dexterity.

  • 6 authors
·
Nov 21, 2022

Knowledge-Aware Artifact Image Synthesis with LLM-Enhanced Prompting and Multi-Source Supervision

Ancient artifacts are an important medium for cultural preservation and restoration. However, many physical copies of artifacts are either damaged or lost, leaving a blank space in archaeological and historical studies that calls for artifact image generation techniques. Despite the significant advancements in open-domain text-to-image synthesis, existing approaches fail to capture the important domain knowledge presented in the textual description, resulting in errors in recreated images such as incorrect shapes and patterns. In this paper, we propose a novel knowledge-aware artifact image synthesis approach that brings lost historical objects accurately into their visual forms. We use a pretrained diffusion model as backbone and introduce three key techniques to enhance the text-to-image generation framework: 1) we construct prompts with explicit archaeological knowledge elicited from large language models (LLMs); 2) we incorporate additional textual guidance to correlated historical expertise in a contrastive manner; 3) we introduce further visual-semantic constraints on edge and perceptual features that enable our model to learn more intricate visual details of the artifacts. Compared to existing approaches, our proposed model produces higher-quality artifact images that align better with the implicit details and historical knowledge contained within written documents, thus achieving significant improvements across automatic metrics and in human evaluation. Our code and data are available at https://github.com/danielwusg/artifact_diffusion.

  • 3 authors
·
Dec 13, 2023

LLM See, LLM Do: Guiding Data Generation to Target Non-Differentiable Objectives

The widespread adoption of synthetic data raises new questions about how models generating the data can influence other large language models (LLMs) via distilled data. To start, our work exhaustively characterizes the impact of passive inheritance of model properties by systematically studying the consequences of synthetic data integration. We provide one of the most comprehensive studies to-date of how the source of synthetic data shapes models' internal biases, calibration and generations' textual attributes and preferences. We find that models are surprisingly sensitive towards certain attributes even when the synthetic data prompts appear "neutral". which invites the question whether this sensitivity can be exploited for good. Our findings invite the question can we explicitly steer the models towards the properties we want at test time by exploiting the data generation process? This would have historically been considered infeasible due to the cost of collecting data with a specific characteristic or objective in mind. However, improvement in the quality of synthetic data, as well as a shift towards general-purpose models designed to follow a diverse way of instructions, means this question is timely. We propose active inheritance as a term to describe intentionally constraining synthetic data according to a non-differentiable objective. We demonstrate how active inheritance can steer the generation profiles of models towards desirable non-differentiable attributes, e.g. high lexical diversity or low toxicity.

  • 5 authors
·
Jul 1, 2024

Make-A-Shape: a Ten-Million-scale 3D Shape Model

Significant progress has been made in training large generative models for natural language and images. Yet, the advancement of 3D generative models is hindered by their substantial resource demands for training, along with inefficient, non-compact, and less expressive representations. This paper introduces Make-A-Shape, a new 3D generative model designed for efficient training on a vast scale, capable of utilizing 10 millions publicly-available shapes. Technical-wise, we first innovate a wavelet-tree representation to compactly encode shapes by formulating the subband coefficient filtering scheme to efficiently exploit coefficient relations. We then make the representation generatable by a diffusion model by devising the subband coefficients packing scheme to layout the representation in a low-resolution grid. Further, we derive the subband adaptive training strategy to train our model to effectively learn to generate coarse and detail wavelet coefficients. Last, we extend our framework to be controlled by additional input conditions to enable it to generate shapes from assorted modalities, e.g., single/multi-view images, point clouds, and low-resolution voxels. In our extensive set of experiments, we demonstrate various applications, such as unconditional generation, shape completion, and conditional generation on a wide range of modalities. Our approach not only surpasses the state of the art in delivering high-quality results but also efficiently generates shapes within a few seconds, often achieving this in just 2 seconds for most conditions.

  • 7 authors
·
Jan 19, 2024 1

Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation

This report presents a comprehensive framework for generating high-quality 3D shapes and textures from diverse input prompts, including single images, multi-view images, and text descriptions. The framework consists of 3D shape generation and texture generation. (1). The 3D shape generation pipeline employs a Variational Autoencoder (VAE) to encode implicit 3D geometries into a latent space and a diffusion network to generate latents conditioned on input prompts, with modifications to enhance model capacity. An alternative Artist-Created Mesh (AM) generation approach is also explored, yielding promising results for simpler geometries. (2). Texture generation involves a multi-stage process starting with frontal images generation followed by multi-view images generation, RGB-to-PBR texture conversion, and high-resolution multi-view texture refinement. A consistency scheduler is plugged into every stage, to enforce pixel-wise consistency among multi-view textures during inference, ensuring seamless integration. The pipeline demonstrates effective handling of diverse input formats, leveraging advanced neural architectures and novel methodologies to produce high-quality 3D content. This report details the system architecture, experimental results, and potential future directions to improve and expand the framework. The source code and pretrained weights are released at: https://github.com/Tencent/Tencent-XR-3DGen.

Michelangelo: Conditional 3D Shape Generation based on Shape-Image-Text Aligned Latent Representation

We present a novel alignment-before-generation approach to tackle the challenging task of generating general 3D shapes based on 2D images or texts. Directly learning a conditional generative model from images or texts to 3D shapes is prone to producing inconsistent results with the conditions because 3D shapes have an additional dimension whose distribution significantly differs from that of 2D images and texts. To bridge the domain gap among the three modalities and facilitate multi-modal-conditioned 3D shape generation, we explore representing 3D shapes in a shape-image-text-aligned space. Our framework comprises two models: a Shape-Image-Text-Aligned Variational Auto-Encoder (SITA-VAE) and a conditional Aligned Shape Latent Diffusion Model (ASLDM). The former model encodes the 3D shapes into the shape latent space aligned to the image and text and reconstructs the fine-grained 3D neural fields corresponding to given shape embeddings via the transformer-based decoder. The latter model learns a probabilistic mapping function from the image or text space to the latent shape space. Our extensive experiments demonstrate that our proposed approach can generate higher-quality and more diverse 3D shapes that better semantically conform to the visual or textural conditional inputs, validating the effectiveness of the shape-image-text-aligned space for cross-modality 3D shape generation.

  • 10 authors
·
Jun 29, 2023

Mosaic-SDF for 3D Generative Models

Current diffusion or flow-based generative models for 3D shapes divide to two: distilling pre-trained 2D image diffusion models, and training directly on 3D shapes. When training a diffusion or flow models on 3D shapes a crucial design choice is the shape representation. An effective shape representation needs to adhere three design principles: it should allow an efficient conversion of large 3D datasets to the representation form; it should provide a good tradeoff of approximation power versus number of parameters; and it should have a simple tensorial form that is compatible with existing powerful neural architectures. While standard 3D shape representations such as volumetric grids and point clouds do not adhere to all these principles simultaneously, we advocate in this paper a new representation that does. We introduce Mosaic-SDF (M-SDF): a simple 3D shape representation that approximates the Signed Distance Function (SDF) of a given shape by using a set of local grids spread near the shape's boundary. The M-SDF representation is fast to compute for each shape individually making it readily parallelizable; it is parameter efficient as it only covers the space around the shape's boundary; and it has a simple matrix form, compatible with Transformer-based architectures. We demonstrate the efficacy of the M-SDF representation by using it to train a 3D generative flow model including class-conditioned generation with the 3D Warehouse dataset, and text-to-3D generation using a dataset of about 600k caption-shape pairs.

  • 5 authors
·
Dec 14, 2023 4

OReX: Object Reconstruction from Planar Cross-sections Using Neural Fields

Reconstructing 3D shapes from planar cross-sections is a challenge inspired by downstream applications like medical imaging and geographic informatics. The input is an in/out indicator function fully defined on a sparse collection of planes in space, and the output is an interpolation of the indicator function to the entire volume. Previous works addressing this sparse and ill-posed problem either produce low quality results, or rely on additional priors such as target topology, appearance information, or input normal directions. In this paper, we present OReX, a method for 3D shape reconstruction from slices alone, featuring a Neural Field as the interpolation prior. A modest neural network is trained on the input planes to return an inside/outside estimate for a given 3D coordinate, yielding a powerful prior that induces smoothness and self-similarities. The main challenge for this approach is high-frequency details, as the neural prior is overly smoothing. To alleviate this, we offer an iterative estimation architecture and a hierarchical input sampling scheme that encourage coarse-to-fine training, allowing the training process to focus on high frequencies at later stages. In addition, we identify and analyze a ripple-like effect stemming from the mesh extraction step. We mitigate it by regularizing the spatial gradients of the indicator function around input in/out boundaries during network training, tackling the problem at the root. Through extensive qualitative and quantitative experimentation, we demonstrate our method is robust, accurate, and scales well with the size of the input. We report state-of-the-art results compared to previous approaches and recent potential solutions, and demonstrate the benefit of our individual contributions through analysis and ablation studies.

  • 3 authors
·
Nov 23, 2022

CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design

Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.

  • 5 authors
·
Jul 13

NAISR: A 3D Neural Additive Model for Interpretable Shape Representation

Deep implicit functions (DIFs) have emerged as a powerful paradigm for many computer vision tasks such as 3D shape reconstruction, generation, registration, completion, editing, and understanding. However, given a set of 3D shapes with associated covariates there is at present no shape representation method which allows to precisely represent the shapes while capturing the individual dependencies on each covariate. Such a method would be of high utility to researchers to discover knowledge hidden in a population of shapes. For scientific shape discovery, we propose a 3D Neural Additive Model for Interpretable Shape Representation (NAISR) which describes individual shapes by deforming a shape atlas in accordance to the effect of disentangled covariates. Our approach captures shape population trends and allows for patient-specific predictions through shape transfer. NAISR is the first approach to combine the benefits of deep implicit shape representations with an atlas deforming according to specified covariates. We evaluate NAISR with respect to shape reconstruction, shape disentanglement, shape evolution, and shape transfer on three datasets: 1) Starman, a simulated 2D shape dataset; 2) the ADNI hippocampus 3D shape dataset; and 3) a pediatric airway 3D shape dataset. Our experiments demonstrate that Starman achieves excellent shape reconstruction performance while retaining interpretability. Our code is available at https://github.com/uncbiag/NAISR{https://github.com/uncbiag/NAISR}.

  • 11 authors
·
Mar 16, 2023

OpenECAD: An Efficient Visual Language Model for Editable 3D-CAD Design

Computer-aided design (CAD) tools are utilized in the manufacturing industry for modeling everything from cups to spacecraft. These programs are complex to use and typically require years of training and experience to master. Structured and well-constrained 2D sketches and 3D constructions are crucial components of CAD modeling. A well-executed CAD model can be seamlessly integrated into the manufacturing process, thereby enhancing production efficiency. Deep generative models of 3D shapes and 3D object reconstruction models have garnered significant research interest. However, most of these models produce discrete forms of 3D objects that are not editable. Moreover, the few models based on CAD operations often have substantial input restrictions. In this work, we fine-tuned pre-trained models to create OpenECAD models (0.55B, 0.89B, 2.4B and 3.1B), leveraging the visual, logical, coding, and general capabilities of visual language models. OpenECAD models can process images of 3D designs as input and generate highly structured 2D sketches and 3D construction commands, ensuring that the designs are editable. These outputs can be directly used with existing CAD tools' APIs to generate project files. To train our network, we created a series of OpenECAD datasets. These datasets are derived from existing public CAD datasets, adjusted and augmented to meet the specific requirements of vision language model (VLM) training. Additionally, we have introduced an approach that utilizes dependency relationships to define and generate sketches, further enriching the content and functionality of the datasets.

  • 3 authors
·
Jun 14, 2024

FontStudio: Shape-Adaptive Diffusion Model for Coherent and Consistent Font Effect Generation

Recently, the application of modern diffusion-based text-to-image generation models for creating artistic fonts, traditionally the domain of professional designers, has garnered significant interest. Diverging from the majority of existing studies that concentrate on generating artistic typography, our research aims to tackle a novel and more demanding challenge: the generation of text effects for multilingual fonts. This task essentially requires generating coherent and consistent visual content within the confines of a font-shaped canvas, as opposed to a traditional rectangular canvas. To address this task, we introduce a novel shape-adaptive diffusion model capable of interpreting the given shape and strategically planning pixel distributions within the irregular canvas. To achieve this, we curate a high-quality shape-adaptive image-text dataset and incorporate the segmentation mask as a visual condition to steer the image generation process within the irregular-canvas. This approach enables the traditionally rectangle canvas-based diffusion model to produce the desired concepts in accordance with the provided geometric shapes. Second, to maintain consistency across multiple letters, we also present a training-free, shape-adaptive effect transfer method for transferring textures from a generated reference letter to others. The key insights are building a font effect noise prior and propagating the font effect information in a concatenated latent space. The efficacy of our FontStudio system is confirmed through user preference studies, which show a marked preference (78% win-rates on aesthetics) for our system even when compared to the latest unrivaled commercial product, Adobe Firefly.

  • 8 authors
·
Jun 12, 2024

Generating Images with 3D Annotations Using Diffusion Models

Diffusion models have emerged as a powerful generative method, capable of producing stunning photo-realistic images from natural language descriptions. However, these models lack explicit control over the 3D structure in the generated images. Consequently, this hinders our ability to obtain detailed 3D annotations for the generated images or to craft instances with specific poses and distances. In this paper, we propose 3D Diffusion Style Transfer (3D-DST), which incorporates 3D geometry control into diffusion models. Our method exploits ControlNet, which extends diffusion models by using visual prompts in addition to text prompts. We generate images of the 3D objects taken from 3D shape repositories (e.g., ShapeNet and Objaverse), render them from a variety of poses and viewing directions, compute the edge maps of the rendered images, and use these edge maps as visual prompts to generate realistic images. With explicit 3D geometry control, we can easily change the 3D structures of the objects in the generated images and obtain ground-truth 3D annotations automatically. This allows us to improve a wide range of vision tasks, e.g., classification and 3D pose estimation, in both in-distribution (ID) and out-of-distribution (OOD) settings. We demonstrate the effectiveness of our method through extensive experiments on ImageNet-100/200, ImageNet-R, PASCAL3D+, ObjectNet3D, and OOD-CV. The results show that our method significantly outperforms existing methods, e.g., 3.8 percentage points on ImageNet-100 using DeiT-B.

  • 14 authors
·
Jun 13, 2023

Fourier Contour Embedding for Arbitrary-Shaped Text Detection

One of the main challenges for arbitrary-shaped text detection is to design a good text instance representation that allows networks to learn diverse text geometry variances. Most of existing methods model text instances in image spatial domain via masks or contour point sequences in the Cartesian or the polar coordinate system. However, the mask representation might lead to expensive post-processing, while the point sequence one may have limited capability to model texts with highly-curved shapes. To tackle these problems, we model text instances in the Fourier domain and propose one novel Fourier Contour Embedding (FCE) method to represent arbitrary shaped text contours as compact signatures. We further construct FCENet with a backbone, feature pyramid networks (FPN) and a simple post-processing with the Inverse Fourier Transformation (IFT) and Non-Maximum Suppression (NMS). Different from previous methods, FCENet first predicts compact Fourier signatures of text instances, and then reconstructs text contours via IFT and NMS during test. Extensive experiments demonstrate that FCE is accurate and robust to fit contours of scene texts even with highly-curved shapes, and also validate the effectiveness and the good generalization of FCENet for arbitrary-shaped text detection. Furthermore, experimental results show that our FCENet is superior to the state-of-the-art (SOTA) methods on CTW1500 and Total-Text, especially on challenging highly-curved text subset.

  • 6 authors
·
Apr 21, 2021

ArtiScene: Language-Driven Artistic 3D Scene Generation Through Image Intermediary

Designing 3D scenes is traditionally a challenging task that demands both artistic expertise and proficiency with complex software. Recent advances in text-to-3D generation have greatly simplified this process by letting users create scenes based on simple text descriptions. However, as these methods generally require extra training or in-context learning, their performance is often hindered by the limited availability of high-quality 3D data. In contrast, modern text-to-image models learned from web-scale images can generate scenes with diverse, reliable spatial layouts and consistent, visually appealing styles. Our key insight is that instead of learning directly from 3D scenes, we can leverage generated 2D images as an intermediary to guide 3D synthesis. In light of this, we introduce ArtiScene, a training-free automated pipeline for scene design that integrates the flexibility of free-form text-to-image generation with the diversity and reliability of 2D intermediary layouts. First, we generate 2D images from a scene description, then extract the shape and appearance of objects to create 3D models. These models are assembled into the final scene using geometry, position, and pose information derived from the same intermediary image. Being generalizable to a wide range of scenes and styles, ArtiScene outperforms state-of-the-art benchmarks by a large margin in layout and aesthetic quality by quantitative metrics. It also averages a 74.89% winning rate in extensive user studies and 95.07% in GPT-4o evaluation. Project page: https://artiscene-cvpr.github.io/

  • 9 authors
·
May 31

Shape-for-Motion: Precise and Consistent Video Editing with 3D Proxy

Recent advances in deep generative modeling have unlocked unprecedented opportunities for video synthesis. In real-world applications, however, users often seek tools to faithfully realize their creative editing intentions with precise and consistent control. Despite the progress achieved by existing methods, ensuring fine-grained alignment with user intentions remains an open and challenging problem. In this work, we present Shape-for-Motion, a novel framework that incorporates a 3D proxy for precise and consistent video editing. Shape-for-Motion achieves this by converting the target object in the input video to a time-consistent mesh, i.e., a 3D proxy, allowing edits to be performed directly on the proxy and then inferred back to the video frames. To simplify the editing process, we design a novel Dual-Propagation Strategy that allows users to perform edits on the 3D mesh of a single frame, and the edits are then automatically propagated to the 3D meshes of the other frames. The 3D meshes for different frames are further projected onto the 2D space to produce the edited geometry and texture renderings, which serve as inputs to a decoupled video diffusion model for generating edited results. Our framework supports various precise and physically-consistent manipulations across the video frames, including pose editing, rotation, scaling, translation, texture modification, and object composition. Our approach marks a key step toward high-quality, controllable video editing workflows. Extensive experiments demonstrate the superiority and effectiveness of our approach. Project page: https://shapeformotion.github.io/

  • 5 authors
·
Jun 27 1

TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models

Recent advancements in diffusion techniques have propelled image and video generation to unprece- dented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data process- ing, and insufficient exploration of advanced tech- niques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capa- bility, and alignment with input conditions. We present TripoSG, a new streamlined shape diffu- sion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high- quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high- quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D gen- erative models. Through comprehensive experi- ments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit en- hanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input im- ages. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong gen- eralization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.

  • 11 authors
·
Feb 10 4

Surf-D: High-Quality Surface Generation for Arbitrary Topologies using Diffusion Models

In this paper, we present Surf-D, a novel method for generating high-quality 3D shapes as Surfaces with arbitrary topologies using Diffusion models. Specifically, we adopt Unsigned Distance Field (UDF) as the surface representation, as it excels in handling arbitrary topologies, enabling the generation of complex shapes. While the prior methods explored shape generation with different representations, they suffer from limited topologies and geometry details. Moreover, it's non-trivial to directly extend prior diffusion models to UDF because they lack spatial continuity due to the discrete volume structure. However, UDF requires accurate gradients for mesh extraction and learning. To tackle the issues, we first leverage a point-based auto-encoder to learn a compact latent space, which supports gradient querying for any input point through differentiation to effectively capture intricate geometry at a high resolution. Since the learning difficulty for various shapes can differ, a curriculum learning strategy is employed to efficiently embed various surfaces, enhancing the whole embedding process. With pretrained shape latent space, we employ a latent diffusion model to acquire the distribution of various shapes. Our approach demonstrates superior performance in shape generation across multiple modalities and conducts extensive experiments in unconditional generation, category conditional generation, 3D reconstruction from images, and text-to-shape tasks.

  • 12 authors
·
Nov 28, 2023

MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedback

  • 157 authors
·
Aug 30, 2023

GenCorres: Consistent Shape Matching via Coupled Implicit-Explicit Shape Generative Models

This paper introduces GenCorres, a novel unsupervised joint shape matching (JSM) approach. Our key idea is to learn a mesh generator to fit an unorganized deformable shape collection while constraining deformations between adjacent synthetic shapes to preserve geometric structures such as local rigidity and local conformality. GenCorres presents three appealing advantages over existing JSM techniques. First, GenCorres performs JSM among a synthetic shape collection whose size is much bigger than the input shapes and fully leverages the datadriven power of JSM. Second, GenCorres unifies consistent shape matching and pairwise matching (i.e., by enforcing deformation priors between adjacent synthetic shapes). Third, the generator provides a concise encoding of consistent shape correspondences. However, learning a mesh generator from an unorganized shape collection is challenging, requiring a good initialization. GenCorres addresses this issue by learning an implicit generator from the input shapes, which provides intermediate shapes between two arbitrary shapes. We introduce a novel approach for computing correspondences between adjacent implicit surfaces, which we use to regularize the implicit generator. Synthetic shapes of the implicit generator then guide initial fittings (i.e., via template-based deformation) for learning the mesh generator. Experimental results show that GenCorres considerably outperforms state-of-the-art JSM techniques. The synthetic shapes of GenCorres also achieve salient performance gains against state-of-the-art deformable shape generators.

  • 5 authors
·
Apr 20, 2023

Volume Rendering of Neural Implicit Surfaces

Neural volume rendering became increasingly popular recently due to its success in synthesizing novel views of a scene from a sparse set of input images. So far, the geometry learned by neural volume rendering techniques was modeled using a generic density function. Furthermore, the geometry itself was extracted using an arbitrary level set of the density function leading to a noisy, often low fidelity reconstruction. The goal of this paper is to improve geometry representation and reconstruction in neural volume rendering. We achieve that by modeling the volume density as a function of the geometry. This is in contrast to previous work modeling the geometry as a function of the volume density. In more detail, we define the volume density function as Laplace's cumulative distribution function (CDF) applied to a signed distance function (SDF) representation. This simple density representation has three benefits: (i) it provides a useful inductive bias to the geometry learned in the neural volume rendering process; (ii) it facilitates a bound on the opacity approximation error, leading to an accurate sampling of the viewing ray. Accurate sampling is important to provide a precise coupling of geometry and radiance; and (iii) it allows efficient unsupervised disentanglement of shape and appearance in volume rendering. Applying this new density representation to challenging scene multiview datasets produced high quality geometry reconstructions, outperforming relevant baselines. Furthermore, switching shape and appearance between scenes is possible due to the disentanglement of the two.

  • 4 authors
·
Jun 22, 2021

Category-Aware 3D Object Composition with Disentangled Texture and Shape Multi-view Diffusion

In this paper, we tackle a new task of 3D object synthesis, where a 3D model is composited with another object category to create a novel 3D model. However, most existing text/image/3D-to-3D methods struggle to effectively integrate multiple content sources, often resulting in inconsistent textures and inaccurate shapes. To overcome these challenges, we propose a straightforward yet powerful approach, category+3D-to-3D (C33D), for generating novel and structurally coherent 3D models. Our method begins by rendering multi-view images and normal maps from the input 3D model, then generating a novel 2D object using adaptive text-image harmony (ATIH) with the front-view image and a text description from another object category as inputs. To ensure texture consistency, we introduce texture multi-view diffusion, which refines the textures of the remaining multi-view RGB images based on the novel 2D object. For enhanced shape accuracy, we propose shape multi-view diffusion to improve the 2D shapes of both the multi-view RGB images and the normal maps, also conditioned on the novel 2D object. Finally, these outputs are used to reconstruct a complete and novel 3D model. Extensive experiments demonstrate the effectiveness of our method, yielding impressive 3D creations, such as shark(3D)-crocodile(text) in the first row of Fig. 1. A project page is available at: https://xzr52.github.io/C33D/

  • 7 authors
·
Sep 2

SVGCraft: Beyond Single Object Text-to-SVG Synthesis with Comprehensive Canvas Layout

Generating VectorArt from text prompts is a challenging vision task, requiring diverse yet realistic depictions of the seen as well as unseen entities. However, existing research has been mostly limited to the generation of single objects, rather than comprehensive scenes comprising multiple elements. In response, this work introduces SVGCraft, a novel end-to-end framework for the creation of vector graphics depicting entire scenes from textual descriptions. Utilizing a pre-trained LLM for layout generation from text prompts, this framework introduces a technique for producing masked latents in specified bounding boxes for accurate object placement. It introduces a fusion mechanism for integrating attention maps and employs a diffusion U-Net for coherent composition, speeding up the drawing process. The resulting SVG is optimized using a pre-trained encoder and LPIPS loss with opacity modulation to maximize similarity. Additionally, this work explores the potential of primitive shapes in facilitating canvas completion in constrained environments. Through both qualitative and quantitative assessments, SVGCraft is demonstrated to surpass prior works in abstraction, recognizability, and detail, as evidenced by its performance metrics (CLIP-T: 0.4563, Cosine Similarity: 0.6342, Confusion: 0.66, Aesthetic: 6.7832). The code will be available at https://github.com/ayanban011/SVGCraft.

  • 5 authors
·
Mar 30, 2024

Hunyuan3D 2.0: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation

We present Hunyuan3D 2.0, an advanced large-scale 3D synthesis system for generating high-resolution textured 3D assets. This system includes two foundation components: a large-scale shape generation model -- Hunyuan3D-DiT, and a large-scale texture synthesis model -- Hunyuan3D-Paint. The shape generative model, built on a scalable flow-based diffusion transformer, aims to create geometry that properly aligns with a given condition image, laying a solid foundation for downstream applications. The texture synthesis model, benefiting from strong geometric and diffusion priors, produces high-resolution and vibrant texture maps for either generated or hand-crafted meshes. Furthermore, we build Hunyuan3D-Studio -- a versatile, user-friendly production platform that simplifies the re-creation process of 3D assets. It allows both professional and amateur users to manipulate or even animate their meshes efficiently. We systematically evaluate our models, showing that Hunyuan3D 2.0 outperforms previous state-of-the-art models, including the open-source models and closed-source models in geometry details, condition alignment, texture quality, and etc. Hunyuan3D 2.0 is publicly released in order to fill the gaps in the open-source 3D community for large-scale foundation generative models. The code and pre-trained weights of our models are available at: https://github.com/Tencent/Hunyuan3D-2

  • 71 authors
·
Jan 21 10

Ghost on the Shell: An Expressive Representation of General 3D Shapes

The creation of photorealistic virtual worlds requires the accurate modeling of 3D surface geometry for a wide range of objects. For this, meshes are appealing since they 1) enable fast physics-based rendering with realistic material and lighting, 2) support physical simulation, and 3) are memory-efficient for modern graphics pipelines. Recent work on reconstructing and statistically modeling 3D shape, however, has critiqued meshes as being topologically inflexible. To capture a wide range of object shapes, any 3D representation must be able to model solid, watertight, shapes as well as thin, open, surfaces. Recent work has focused on the former, and methods for reconstructing open surfaces do not support fast reconstruction with material and lighting or unconditional generative modelling. Inspired by the observation that open surfaces can be seen as islands floating on watertight surfaces, we parameterize open surfaces by defining a manifold signed distance field on watertight templates. With this parameterization, we further develop a grid-based and differentiable representation that parameterizes both watertight and non-watertight meshes of arbitrary topology. Our new representation, called Ghost-on-the-Shell (G-Shell), enables two important applications: differentiable rasterization-based reconstruction from multiview images and generative modelling of non-watertight meshes. We empirically demonstrate that G-Shell achieves state-of-the-art performance on non-watertight mesh reconstruction and generation tasks, while also performing effectively for watertight meshes.

  • 7 authors
·
Oct 23, 2023

BrightDreamer: Generic 3D Gaussian Generative Framework for Fast Text-to-3D Synthesis

Text-to-3D synthesis has recently seen intriguing advances by combining the text-to-image models with 3D representation methods, e.g., Gaussian Splatting (GS), via Score Distillation Sampling (SDS). However, a hurdle of existing methods is the low efficiency, per-prompt optimization for a single 3D object. Therefore, it is imperative for a paradigm shift from per-prompt optimization to one-stage generation for any unseen text prompts, which yet remains challenging. A hurdle is how to directly generate a set of millions of 3D Gaussians to represent a 3D object. This paper presents BrightDreamer, an end-to-end single-stage approach that can achieve generalizable and fast (77 ms) text-to-3D generation. Our key idea is to formulate the generation process as estimating the 3D deformation from an anchor shape with predefined positions. For this, we first propose a Text-guided Shape Deformation (TSD) network to predict the deformed shape and its new positions, used as the centers (one attribute) of 3D Gaussians. To estimate the other four attributes (i.e., scaling, rotation, opacity, and SH coefficient), we then design a novel Text-guided Triplane Generator (TTG) to generate a triplane representation for a 3D object. The center of each Gaussian enables us to transform the triplane feature into the four attributes. The generated 3D Gaussians can be finally rendered at 705 frames per second. Extensive experiments demonstrate the superiority of our method over existing methods. Also, BrightDreamer possesses a strong semantic understanding capability even for complex text prompts. The project code is available at https://vlislab22.github.io/BrightDreamer.

  • 2 authors
·
Mar 17, 2024

SketchDream: Sketch-based Text-to-3D Generation and Editing

Existing text-based 3D generation methods generate attractive results but lack detailed geometry control. Sketches, known for their conciseness and expressiveness, have contributed to intuitive 3D modeling but are confined to producing texture-less mesh models within predefined categories. Integrating sketch and text simultaneously for 3D generation promises enhanced control over geometry and appearance but faces challenges from 2D-to-3D translation ambiguity and multi-modal condition integration. Moreover, further editing of 3D models in arbitrary views will give users more freedom to customize their models. However, it is difficult to achieve high generation quality, preserve unedited regions, and manage proper interactions between shape components. To solve the above issues, we propose a text-driven 3D content generation and editing method, SketchDream, which supports NeRF generation from given hand-drawn sketches and achieves free-view sketch-based local editing. To tackle the 2D-to-3D ambiguity challenge, we introduce a sketch-based multi-view image generation diffusion model, which leverages depth guidance to establish spatial correspondence. A 3D ControlNet with a 3D attention module is utilized to control multi-view images and ensure their 3D consistency. To support local editing, we further propose a coarse-to-fine editing approach: the coarse phase analyzes component interactions and provides 3D masks to label edited regions, while the fine stage generates realistic results with refined details by local enhancement. Extensive experiments validate that our method generates higher-quality results compared with a combination of 2D ControlNet and image-to-3D generation techniques and achieves detailed control compared with existing diffusion-based 3D editing approaches.

  • 4 authors
·
May 10, 2024

PartGen: Part-level 3D Generation and Reconstruction with Multi-View Diffusion Models

Text- or image-to-3D generators and 3D scanners can now produce 3D assets with high-quality shapes and textures. These assets typically consist of a single, fused representation, like an implicit neural field, a Gaussian mixture, or a mesh, without any useful structure. However, most applications and creative workflows require assets to be made of several meaningful parts that can be manipulated independently. To address this gap, we introduce PartGen, a novel approach that generates 3D objects composed of meaningful parts starting from text, an image, or an unstructured 3D object. First, given multiple views of a 3D object, generated or rendered, a multi-view diffusion model extracts a set of plausible and view-consistent part segmentations, dividing the object into parts. Then, a second multi-view diffusion model takes each part separately, fills in the occlusions, and uses those completed views for 3D reconstruction by feeding them to a 3D reconstruction network. This completion process considers the context of the entire object to ensure that the parts integrate cohesively. The generative completion model can make up for the information missing due to occlusions; in extreme cases, it can hallucinate entirely invisible parts based on the input 3D asset. We evaluate our method on generated and real 3D assets and show that it outperforms segmentation and part-extraction baselines by a large margin. We also showcase downstream applications such as 3D part editing.

  • 7 authors
·
Dec 24, 2024 2

Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures

Text-guided image generation has progressed rapidly in recent years, inspiring major breakthroughs in text-guided shape generation. Recently, it has been shown that using score distillation, one can successfully text-guide a NeRF model to generate a 3D object. We adapt the score distillation to the publicly available, and computationally efficient, Latent Diffusion Models, which apply the entire diffusion process in a compact latent space of a pretrained autoencoder. As NeRFs operate in image space, a naive solution for guiding them with latent score distillation would require encoding to the latent space at each guidance step. Instead, we propose to bring the NeRF to the latent space, resulting in a Latent-NeRF. Analyzing our Latent-NeRF, we show that while Text-to-3D models can generate impressive results, they are inherently unconstrained and may lack the ability to guide or enforce a specific 3D structure. To assist and direct the 3D generation, we propose to guide our Latent-NeRF using a Sketch-Shape: an abstract geometry that defines the coarse structure of the desired object. Then, we present means to integrate such a constraint directly into a Latent-NeRF. This unique combination of text and shape guidance allows for increased control over the generation process. We also show that latent score distillation can be successfully applied directly on 3D meshes. This allows for generating high-quality textures on a given geometry. Our experiments validate the power of our different forms of guidance and the efficiency of using latent rendering. Implementation is available at https://github.com/eladrich/latent-nerf

  • 5 authors
·
Nov 14, 2022

Sketch and Text Guided Diffusion Model for Colored Point Cloud Generation

Diffusion probabilistic models have achieved remarkable success in text guided image generation. However, generating 3D shapes is still challenging due to the lack of sufficient data containing 3D models along with their descriptions. Moreover, text based descriptions of 3D shapes are inherently ambiguous and lack details. In this paper, we propose a sketch and text guided probabilistic diffusion model for colored point cloud generation that conditions the denoising process jointly with a hand drawn sketch of the object and its textual description. We incrementally diffuse the point coordinates and color values in a joint diffusion process to reach a Gaussian distribution. Colored point cloud generation thus amounts to learning the reverse diffusion process, conditioned by the sketch and text, to iteratively recover the desired shape and color. Specifically, to learn effective sketch-text embedding, our model adaptively aggregates the joint embedding of text prompt and the sketch based on a capsule attention network. Our model uses staged diffusion to generate the shape and then assign colors to different parts conditioned on the appearance prompt while preserving precise shapes from the first stage. This gives our model the flexibility to extend to multiple tasks, such as appearance re-editing and part segmentation. Experimental results demonstrate that our model outperforms recent state-of-the-art in point cloud generation.

  • 5 authors
·
Aug 5, 2023

CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner

We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan

  • 7 authors
·
May 23, 2024 2

CHORD: Category-level Hand-held Object Reconstruction via Shape Deformation

In daily life, humans utilize hands to manipulate objects. Modeling the shape of objects that are manipulated by the hand is essential for AI to comprehend daily tasks and to learn manipulation skills. However, previous approaches have encountered difficulties in reconstructing the precise shapes of hand-held objects, primarily owing to a deficiency in prior shape knowledge and inadequate data for training. As illustrated, given a particular type of tool, such as a mug, despite its infinite variations in shape and appearance, humans have a limited number of 'effective' modes and poses for its manipulation. This can be attributed to the fact that humans have mastered the shape prior of the 'mug' category, and can quickly establish the corresponding relations between different mug instances and the prior, such as where the rim and handle are located. In light of this, we propose a new method, CHORD, for Category-level Hand-held Object Reconstruction via shape Deformation. CHORD deforms a categorical shape prior for reconstructing the intra-class objects. To ensure accurate reconstruction, we empower CHORD with three types of awareness: appearance, shape, and interacting pose. In addition, we have constructed a new dataset, COMIC, of category-level hand-object interaction. COMIC contains a rich array of object instances, materials, hand interactions, and viewing directions. Extensive evaluation shows that CHORD outperforms state-of-the-art approaches in both quantitative and qualitative measures. Code, model, and datasets are available at https://kailinli.github.io/CHORD.

  • 9 authors
·
Aug 21, 2023

Gaussian Splatting with NeRF-based Color and Opacity

Neural Radiance Fields (NeRFs) have demonstrated the remarkable potential of neural networks to capture the intricacies of 3D objects. By encoding the shape and color information within neural network weights, NeRFs excel at producing strikingly sharp novel views of 3D objects. Recently, numerous generalizations of NeRFs utilizing generative models have emerged, expanding its versatility. In contrast, Gaussian Splatting (GS) offers a similar render quality with faster training and inference as it does not need neural networks to work. It encodes information about the 3D objects in the set of Gaussian distributions that can be rendered in 3D similarly to classical meshes. Unfortunately, GS are difficult to condition since they usually require circa hundred thousand Gaussian components. To mitigate the caveats of both models, we propose a hybrid model Viewing Direction Gaussian Splatting (VDGS) that uses GS representation of the 3D object's shape and NeRF-based encoding of color and opacity. Our model uses Gaussian distributions with trainable positions (i.e. means of Gaussian), shape (i.e. covariance of Gaussian), color and opacity, and a neural network that takes Gaussian parameters and viewing direction to produce changes in the said color and opacity. As a result, our model better describes shadows, light reflections, and the transparency of 3D objects without adding additional texture and light components.

  • 5 authors
·
Dec 21, 2023

ShapeFusion: A 3D diffusion model for localized shape editing

In the realm of 3D computer vision, parametric models have emerged as a ground-breaking methodology for the creation of realistic and expressive 3D avatars. Traditionally, they rely on Principal Component Analysis (PCA), given its ability to decompose data to an orthonormal space that maximally captures shape variations. However, due to the orthogonality constraints and the global nature of PCA's decomposition, these models struggle to perform localized and disentangled editing of 3D shapes, which severely affects their use in applications requiring fine control such as face sculpting. In this paper, we leverage diffusion models to enable diverse and fully localized edits on 3D meshes, while completely preserving the un-edited regions. We propose an effective diffusion masking training strategy that, by design, facilitates localized manipulation of any shape region, without being limited to predefined regions or to sparse sets of predefined control vertices. Following our framework, a user can explicitly set their manipulation region of choice and define an arbitrary set of vertices as handles to edit a 3D mesh. Compared to the current state-of-the-art our method leads to more interpretable shape manipulations than methods relying on latent code state, greater localization and generation diversity while offering faster inference than optimization based approaches. Project page: https://rolpotamias.github.io/Shapefusion/

  • 4 authors
·
Mar 28, 2024

Neural 4D Evolution under Large Topological Changes from 2D Images

In the literature, it has been shown that the evolution of the known explicit 3D surface to the target one can be learned from 2D images using the instantaneous flow field, where the known and target 3D surfaces may largely differ in topology. We are interested in capturing 4D shapes whose topology changes largely over time. We encounter that the straightforward extension of the existing 3D-based method to the desired 4D case performs poorly. In this work, we address the challenges in extending 3D neural evolution to 4D under large topological changes by proposing two novel modifications. More precisely, we introduce (i) a new architecture to discretize and encode the deformation and learn the SDF and (ii) a technique to impose the temporal consistency. (iii) Also, we propose a rendering scheme for color prediction based on Gaussian splatting. Furthermore, to facilitate learning directly from 2D images, we propose a learning framework that can disentangle the geometry and appearance from RGB images. This method of disentanglement, while also useful for the 4D evolution problem that we are concentrating on, is also novel and valid for static scenes. Our extensive experiments on various data provide awesome results and, most importantly, open a new approach toward reconstructing challenging scenes with significant topological changes and deformations. Our source code and the dataset are publicly available at https://github.com/insait-institute/N4DE.

  • 5 authors
·
Nov 22, 2024

Zero-Shot 3D Shape Correspondence

We propose a novel zero-shot approach to computing correspondences between 3D shapes. Existing approaches mainly focus on isometric and near-isometric shape pairs (e.g., human vs. human), but less attention has been given to strongly non-isometric and inter-class shape matching (e.g., human vs. cow). To this end, we introduce a fully automatic method that exploits the exceptional reasoning capabilities of recent foundation models in language and vision to tackle difficult shape correspondence problems. Our approach comprises multiple stages. First, we classify the 3D shapes in a zero-shot manner by feeding rendered shape views to a language-vision model (e.g., BLIP2) to generate a list of class proposals per shape. These proposals are unified into a single class per shape by employing the reasoning capabilities of ChatGPT. Second, we attempt to segment the two shapes in a zero-shot manner, but in contrast to the co-segmentation problem, we do not require a mutual set of semantic regions. Instead, we propose to exploit the in-context learning capabilities of ChatGPT to generate two different sets of semantic regions for each shape and a semantic mapping between them. This enables our approach to match strongly non-isometric shapes with significant differences in geometric structure. Finally, we employ the generated semantic mapping to produce coarse correspondences that can further be refined by the functional maps framework to produce dense point-to-point maps. Our approach, despite its simplicity, produces highly plausible results in a zero-shot manner, especially between strongly non-isometric shapes.

  • 4 authors
·
Jun 5, 2023

Sharp-It: A Multi-view to Multi-view Diffusion Model for 3D Synthesis and Manipulation

Advancements in text-to-image diffusion models have led to significant progress in fast 3D content creation. One common approach is to generate a set of multi-view images of an object, and then reconstruct it into a 3D model. However, this approach bypasses the use of a native 3D representation of the object and is hence prone to geometric artifacts and limited in controllability and manipulation capabilities. An alternative approach involves native 3D generative models that directly produce 3D representations. These models, however, are typically limited in their resolution, resulting in lower quality 3D objects. In this work, we bridge the quality gap between methods that directly generate 3D representations and ones that reconstruct 3D objects from multi-view images. We introduce a multi-view to multi-view diffusion model called Sharp-It, which takes a 3D consistent set of multi-view images rendered from a low-quality object and enriches its geometric details and texture. The diffusion model operates on the multi-view set in parallel, in the sense that it shares features across the generated views. A high-quality 3D model can then be reconstructed from the enriched multi-view set. By leveraging the advantages of both 2D and 3D approaches, our method offers an efficient and controllable method for high-quality 3D content creation. We demonstrate that Sharp-It enables various 3D applications, such as fast synthesis, editing, and controlled generation, while attaining high-quality assets.

  • 4 authors
·
Dec 3, 2024

MagicClay: Sculpting Meshes With Generative Neural Fields

The recent developments in neural fields have brought phenomenal capabilities to the field of shape generation, but they lack crucial properties, such as incremental control - a fundamental requirement for artistic work. Triangular meshes, on the other hand, are the representation of choice for most geometry related tasks, offering efficiency and intuitive control, but do not lend themselves to neural optimization. To support downstream tasks, previous art typically proposes a two-step approach, where first a shape is generated using neural fields, and then a mesh is extracted for further processing. Instead, in this paper we introduce a hybrid approach that maintains both a mesh and a Signed Distance Field (SDF) representations consistently. Using this representation, we introduce MagicClay - an artist friendly tool for sculpting regions of a mesh according to textual prompts while keeping other regions untouched. Our framework carefully and efficiently balances consistency between the representations and regularizations in every step of the shape optimization; Relying on the mesh representation, we show how to render the SDF at higher resolutions and faster. In addition, we employ recent work in differentiable mesh reconstruction to adaptively allocate triangles in the mesh where required, as indicated by the SDF. Using an implemented prototype, we demonstrate superior generated geometry compared to the state-of-the-art, and novel consistent control, allowing sequential prompt-based edits to the same mesh for the first time.

  • 5 authors
·
Mar 4, 2024 1

LATTE: Improving Latex Recognition for Tables and Formulae with Iterative Refinement

Portable Document Format (PDF) files are dominantly used for storing and disseminating scientific research, legal documents, and tax information. LaTeX is a popular application for creating PDF documents. Despite its advantages, LaTeX is not WYSWYG -- what you see is what you get, i.e., the LaTeX source and rendered PDF images look drastically different, especially for formulae and tables. This gap makes it hard to modify or export LaTeX sources for formulae and tables from PDF images, and existing work is still limited. First, prior work generates LaTeX sources in a single iteration and struggles with complex LaTeX formulae. Second, existing work mainly recognizes and extracts LaTeX sources for formulae; and is incapable or ineffective for tables. This paper proposes LATTE, the first iterative refinement framework for LaTeX recognition. Specifically, we propose delta-view as feedback, which compares and pinpoints the differences between a pair of rendered images of the extracted LaTeX source and the expected correct image. Such delta-view feedback enables our fault localization model to localize the faulty parts of the incorrect recognition more accurately and enables our LaTeX refinement model to repair the incorrect extraction more accurately. LATTE improves the LaTeX source extraction accuracy of both LaTeX formulae and tables, outperforming existing techniques as well as GPT-4V by at least 7.07% of exact match, with a success refinement rate of 46.08% (formula) and 25.51% (table).

  • 5 authors
·
Sep 21, 2024

En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D Synthetic Data

We present En3D, an enhanced generative scheme for sculpting high-quality 3D human avatars. Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalanced viewing angles and imprecise pose priors, our approach aims to develop a zero-shot 3D generative scheme capable of producing visually realistic, geometrically accurate and content-wise diverse 3D humans without relying on pre-existing 3D or 2D assets. To address this challenge, we introduce a meticulously crafted workflow that implements accurate physical modeling to learn the enhanced 3D generative model from synthetic 2D data. During inference, we integrate optimization modules to bridge the gap between realistic appearances and coarse 3D shapes. Specifically, En3D comprises three modules: a 3D generator that accurately models generalizable 3D humans with realistic appearance from synthesized balanced, diverse, and structured human images; a geometry sculptor that enhances shape quality using multi-view normal constraints for intricate human anatomy; and a texturing module that disentangles explicit texture maps with fidelity and editability, leveraging semantical UV partitioning and a differentiable rasterizer. Experimental results show that our approach significantly outperforms prior works in terms of image quality, geometry accuracy and content diversity. We also showcase the applicability of our generated avatars for animation and editing, as well as the scalability of our approach for content-style free adaptation.

  • 6 authors
·
Jan 2, 2024 9

CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced Multimodal LLMs

Computer-aided design (CAD) significantly enhances the efficiency, accuracy, and innovation of design processes by enabling precise 2D and 3D modeling, extensive analysis, and optimization. Existing methods for creating CAD models rely on latent vectors or point clouds, which are difficult to obtain and costly to store. Recent advances in Multimodal Large Language Models (MLLMs) have inspired researchers to use natural language instructions and images for CAD model construction. However, these models still struggle with inferring accurate 3D spatial location and orientation, leading to inaccuracies in determining the spatial 3D starting points and extrusion directions for constructing geometries. This work introduces CAD-GPT, a CAD synthesis method with spatial reasoning-enhanced MLLM that takes either a single image or a textual description as input. To achieve precise spatial inference, our approach introduces a 3D Modeling Spatial Mechanism. This method maps 3D spatial positions and 3D sketch plane rotation angles into a 1D linguistic feature space using a specialized spatial unfolding mechanism, while discretizing 2D sketch coordinates into an appropriate planar space to enable precise determination of spatial starting position, sketch orientation, and 2D sketch coordinate translations. Extensive experiments demonstrate that CAD-GPT consistently outperforms existing state-of-the-art methods in CAD model synthesis, both quantitatively and qualitatively.

  • 7 authors
·
Dec 27, 2024

DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data

We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets (represented by Neural Radiance Fields) from text prompts. Unlike recent 3D generative models that rely on clean and well-aligned 3D data, limiting them to single or few-class generation, our model is directly trained on extensive noisy and unaligned `in-the-wild' 3D assets, mitigating the key challenge (i.e., data scarcity) in large-scale 3D generation. In particular, DIRECT-3D is a tri-plane diffusion model that integrates two innovations: 1) A novel learning framework where noisy data are filtered and aligned automatically during the training process. Specifically, after an initial warm-up phase using a small set of clean data, an iterative optimization is introduced in the diffusion process to explicitly estimate the 3D pose of objects and select beneficial data based on conditional density. 2) An efficient 3D representation that is achieved by disentangling object geometry and color features with two separate conditional diffusion models that are optimized hierarchically. Given a prompt input, our model generates high-quality, high-resolution, realistic, and complex 3D objects with accurate geometric details in seconds. We achieve state-of-the-art performance in both single-class generation and text-to-3D generation. We also demonstrate that DIRECT-3D can serve as a useful 3D geometric prior of objects, for example to alleviate the well-known Janus problem in 2D-lifting methods such as DreamFusion. The code and models are available for research purposes at: https://github.com/qihao067/direct3d.

  • 5 authors
·
Jun 6, 2024

Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning

Data heterogeneity in federated learning, characterized by a significant misalignment between local and global distributions, leads to divergent local optimization directions and hinders global model training. Existing studies mainly focus on optimizing local updates or global aggregation, but these indirect approaches demonstrate instability when handling highly heterogeneous data distributions, especially in scenarios where label skew and domain skew coexist. To address this, we propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally. We first introduce the concept of the geometric shape of an embedding distribution and then address the challenge of obtaining global geometric shapes under privacy constraints. Subsequently, we propose GGEUR, which leverages global geometric shapes to guide the generation of new samples, enabling a closer approximation to the ideal global distribution. In single-domain scenarios, we augment samples based on global geometric shapes to enhance model generalization; in multi-domain scenarios, we further employ class prototypes to simulate the global distribution across domains. Extensive experimental results demonstrate that our method significantly enhances the performance of existing approaches in handling highly heterogeneous data, including scenarios with label skew, domain skew, and their coexistence. Code published at: https://github.com/WeiDai-David/2025CVPR_GGEUR

  • 4 authors
·
Mar 9

Symbol as Points: Panoptic Symbol Spotting via Point-based Representation

This work studies the problem of panoptic symbol spotting, which is to spot and parse both countable object instances (windows, doors, tables, etc.) and uncountable stuff (wall, railing, etc.) from computer-aided design (CAD) drawings. Existing methods typically involve either rasterizing the vector graphics into images and using image-based methods for symbol spotting, or directly building graphs and using graph neural networks for symbol recognition. In this paper, we take a different approach, which treats graphic primitives as a set of 2D points that are locally connected and use point cloud segmentation methods to tackle it. Specifically, we utilize a point transformer to extract the primitive features and append a mask2former-like spotting head to predict the final output. To better use the local connection information of primitives and enhance their discriminability, we further propose the attention with connection module (ACM) and contrastive connection learning scheme (CCL). Finally, we propose a KNN interpolation mechanism for the mask attention module of the spotting head to better handle primitive mask downsampling, which is primitive-level in contrast to pixel-level for the image. Our approach, named SymPoint, is simple yet effective, outperforming recent state-of-the-art method GAT-CADNet by an absolute increase of 9.6% PQ and 10.4% RQ on the FloorPlanCAD dataset. The source code and models will be available at https://github.com/nicehuster/SymPoint.

  • 5 authors
·
Jan 19, 2024

EpiGRAF: Rethinking training of 3D GANs

A very recent trend in generative modeling is building 3D-aware generators from 2D image collections. To induce the 3D bias, such models typically rely on volumetric rendering, which is expensive to employ at high resolutions. During the past months, there appeared more than 10 works that address this scaling issue by training a separate 2D decoder to upsample a low-resolution image (or a feature tensor) produced from a pure 3D generator. But this solution comes at a cost: not only does it break multi-view consistency (i.e. shape and texture change when the camera moves), but it also learns the geometry in a low fidelity. In this work, we show that it is possible to obtain a high-resolution 3D generator with SotA image quality by following a completely different route of simply training the model patch-wise. We revisit and improve this optimization scheme in two ways. First, we design a location- and scale-aware discriminator to work on patches of different proportions and spatial positions. Second, we modify the patch sampling strategy based on an annealed beta distribution to stabilize training and accelerate the convergence. The resulted model, named EpiGRAF, is an efficient, high-resolution, pure 3D generator, and we test it on four datasets (two introduced in this work) at 256^2 and 512^2 resolutions. It obtains state-of-the-art image quality, high-fidelity geometry and trains {approx} 2.5 times faster than the upsampler-based counterparts. Project website: https://universome.github.io/epigraf.

  • 4 authors
·
Jun 21, 2022

Garment3DGen: 3D Garment Stylization and Texture Generation

We introduce Garment3DGen a new method to synthesize 3D garment assets from a base mesh given a single input image as guidance. Our proposed approach allows users to generate 3D textured clothes based on both real and synthetic images, such as those generated by text prompts. The generated assets can be directly draped and simulated on human bodies. First, we leverage the recent progress of image to 3D diffusion methods to generate 3D garment geometries. However, since these geometries cannot be utilized directly for downstream tasks, we propose to use them as pseudo ground-truth and set up a mesh deformation optimization procedure that deforms a base template mesh to match the generated 3D target. Second, we introduce carefully designed losses that allow the input base mesh to freely deform towards the desired target, yet preserve mesh quality and topology such that they can be simulated. Finally, a texture estimation module generates high-fidelity texture maps that are globally and locally consistent and faithfully capture the input guidance, allowing us to render the generated 3D assets. With Garment3DGen users can generate the textured 3D garment of their choice without the need of artist intervention. One can provide a textual prompt describing the garment they desire to generate a simulation-ready 3D asset. We present a plethora of quantitative and qualitative comparisons on various assets both real and generated and provide use-cases of how one can generate simulation-ready 3D garments.

  • 6 authors
·
Mar 27, 2024 3

StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Translation

Generating images that fit a given text description using machine learning has improved greatly with the release of technologies such as the CLIP image-text encoder model; however, current methods lack artistic control of the style of image to be generated. We present an approach for generating styled drawings for a given text description where a user can specify a desired drawing style using a sample image. Inspired by a theory in art that style and content are generally inseparable during the creative process, we propose a coupled approach, known here as StyleCLIPDraw, whereby the drawing is generated by optimizing for style and content simultaneously throughout the process as opposed to applying style transfer after creating content in a sequence. Based on human evaluation, the styles of images generated by StyleCLIPDraw are strongly preferred to those by the sequential approach. Although the quality of content generation degrades for certain styles, overall considering both content and style, StyleCLIPDraw is found far more preferred, indicating the importance of style, look, and feel of machine generated images to people as well as indicating that style is coupled in the drawing process itself. Our code (https://github.com/pschaldenbrand/StyleCLIPDraw), a demonstration (https://replicate.com/pschaldenbrand/style-clip-draw), and style evaluation data (https://www.kaggle.com/pittsburghskeet/drawings-with-style-evaluation-styleclipdraw) are publicly available.

  • 3 authors
·
Feb 24, 2022

DrawingSpinUp: 3D Animation from Single Character Drawings

Animating various character drawings is an engaging visual content creation task. Given a single character drawing, existing animation methods are limited to flat 2D motions and thus lack 3D effects. An alternative solution is to reconstruct a 3D model from a character drawing as a proxy and then retarget 3D motion data onto it. However, the existing image-to-3D methods could not work well for amateur character drawings in terms of appearance and geometry. We observe the contour lines, commonly existing in character drawings, would introduce significant ambiguity in texture synthesis due to their view-dependence. Additionally, thin regions represented by single-line contours are difficult to reconstruct (e.g., slim limbs of a stick figure) due to their delicate structures. To address these issues, we propose a novel system, DrawingSpinUp, to produce plausible 3D animations and breathe life into character drawings, allowing them to freely spin up, leap, and even perform a hip-hop dance. For appearance improvement, we adopt a removal-then-restoration strategy to first remove the view-dependent contour lines and then render them back after retargeting the reconstructed character. For geometry refinement, we develop a skeleton-based thinning deformation algorithm to refine the slim structures represented by the single-line contours. The experimental evaluations and a perceptual user study show that our proposed method outperforms the existing 2D and 3D animation methods and generates high-quality 3D animations from a single character drawing. Please refer to our project page (https://lordliang.github.io/DrawingSpinUp) for the code and generated animations.

  • 4 authors
·
Sep 13, 2024 2

The MAMe Dataset: On the relevance of High Resolution and Variable Shape image properties

In the image classification task, the most common approach is to resize all images in a dataset to a unique shape, while reducing their precision to a size which facilitates experimentation at scale. This practice has benefits from a computational perspective, but it entails negative side-effects on performance due to loss of information and image deformation. In this work we introduce the MAMe dataset, an image classification dataset with remarkable high resolution and variable shape properties. The goal of MAMe is to provide a tool for studying the impact of such properties in image classification, while motivating research in the field. The MAMe dataset contains thousands of artworks from three different museums, and proposes a classification task consisting on differentiating between 29 mediums (i.e. materials and techniques) supervised by art experts. After reviewing the singularity of MAMe in the context of current image classification tasks, a thorough description of the task is provided, together with dataset statistics. Experiments are conducted to evaluate the impact of using high resolution images, variable shape inputs and both properties at the same time. Results illustrate the positive impact in performance when using high resolution images, while highlighting the lack of solutions to exploit variable shapes. An additional experiment exposes the distinctiveness between the MAMe dataset and the prototypical ImageNet dataset. Finally, the baselines are inspected using explainability methods and expert knowledge, to gain insights on the challenges that remain ahead.

  • 7 authors
·
Jul 27, 2020

Unleashing Vecset Diffusion Model for Fast Shape Generation

3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.

  • 13 authors
·
Mar 20 4

LucidDreaming: Controllable Object-Centric 3D Generation

With the recent development of generative models, Text-to-3D generations have also seen significant growth. Nonetheless, achieving precise control over 3D generation continues to be an arduous task, as using text to control often leads to missing objects and imprecise locations. Contemporary strategies for enhancing controllability in 3D generation often entail the introduction of additional parameters, such as customized diffusion models. This often induces hardness in adapting to different diffusion models or creating distinct objects. In this paper, we present LucidDreaming as an effective pipeline capable of fine-grained control over 3D generation. It requires only minimal input of 3D bounding boxes, which can be deduced from a simple text prompt using a Large Language Model. Specifically, we propose clipped ray sampling to separately render and optimize objects with user specifications. We also introduce object-centric density blob bias, fostering the separation of generated objects. With individual rendering and optimizing of objects, our method excels not only in controlled content generation from scratch but also within the pre-trained NeRF scenes. In such scenarios, existing generative approaches often disrupt the integrity of the original scene, and current editing methods struggle to synthesize new content in empty spaces. We show that our method exhibits remarkable adaptability across a spectrum of mainstream Score Distillation Sampling-based 3D generation frameworks, and achieves superior alignment of 3D content when compared to baseline approaches. We also provide a dataset of prompts with 3D bounding boxes, benchmarking 3D spatial controllability.

  • 3 authors
·
Nov 30, 2023

Block and Detail: Scaffolding Sketch-to-Image Generation

We introduce a novel sketch-to-image tool that aligns with the iterative refinement process of artists. Our tool lets users sketch blocking strokes to coarsely represent the placement and form of objects and detail strokes to refine their shape and silhouettes. We develop a two-pass algorithm for generating high-fidelity images from such sketches at any point in the iterative process. In the first pass we use a ControlNet to generate an image that strictly follows all the strokes (blocking and detail) and in the second pass we add variation by renoising regions surrounding blocking strokes. We also present a dataset generation scheme that, when used to train a ControlNet architecture, allows regions that do not contain strokes to be interpreted as not-yet-specified regions rather than empty space. We show that this partial-sketch-aware ControlNet can generate coherent elements from partial sketches that only contain a small number of strokes. The high-fidelity images produced by our approach serve as scaffolds that can help the user adjust the shape and proportions of objects or add additional elements to the composition. We demonstrate the effectiveness of our approach with a variety of examples and evaluative comparisons. Quantitatively, evaluative user feedback indicates that novice viewers prefer the quality of images from our algorithm over a baseline Scribble ControlNet for 84% of the pairs and found our images had less distortion in 81% of the pairs.

  • 5 authors
·
Feb 28, 2024

Learning Mesh Representations via Binary Space Partitioning Tree Networks

Polygonal meshes are ubiquitous, but have only played a relatively minor role in the deep learning revolution. State-of-the-art neural generative models for 3D shapes learn implicit functions and generate meshes via expensive iso-surfacing. We overcome these challenges by employing a classical spatial data structure from computer graphics, Binary Space Partitioning (BSP), to facilitate 3D learning. The core operation of BSP involves recursive subdivision of 3D space to obtain convex sets. By exploiting this property, we devise BSP-Net, a network that learns to represent a 3D shape via convex decomposition without supervision. The network is trained to reconstruct a shape using a set of convexes obtained from a BSP-tree built over a set of planes, where the planes and convexes are both defined by learned network weights. BSP-Net directly outputs polygonal meshes from the inferred convexes. The generated meshes are watertight, compact (i.e., low-poly), and well suited to represent sharp geometry. We show that the reconstruction quality by BSP-Net is competitive with those from state-of-the-art methods while using much fewer primitives. We also explore variations to BSP-Net including using a more generic decoder for reconstruction, more general primitives than planes, as well as training a generative model with variational auto-encoders. Code is available at https://github.com/czq142857/BSP-NET-original.

  • 3 authors
·
Jun 27, 2021

GeoGen: Geometry-Aware Generative Modeling via Signed Distance Functions

We introduce a new generative approach for synthesizing 3D geometry and images from single-view collections. Most existing approaches predict volumetric density to render multi-view consistent images. By employing volumetric rendering using neural radiance fields, they inherit a key limitation: the generated geometry is noisy and unconstrained, limiting the quality and utility of the output meshes. To address this issue, we propose GeoGen, a new SDF-based 3D generative model trained in an end-to-end manner. Initially, we reinterpret the volumetric density as a Signed Distance Function (SDF). This allows us to introduce useful priors to generate valid meshes. However, those priors prevent the generative model from learning details, limiting the applicability of the method to real-world scenarios. To alleviate that problem, we make the transformation learnable and constrain the rendered depth map to be consistent with the zero-level set of the SDF. Through the lens of adversarial training, we encourage the network to produce higher fidelity details on the output meshes. For evaluation, we introduce a synthetic dataset of human avatars captured from 360-degree camera angles, to overcome the challenges presented by real-world datasets, which often lack 3D consistency and do not cover all camera angles. Our experiments on multiple datasets show that GeoGen produces visually and quantitatively better geometry than the previous generative models based on neural radiance fields.

  • 9 authors
·
Jun 6, 2024

CNN based Cuneiform Sign Detection Learned from Annotated 3D Renderings and Mapped Photographs with Illumination Augmentation

Motivated by the challenges of the Digital Ancient Near Eastern Studies (DANES) community, we develop digital tools for processing cuneiform script being a 3D script imprinted into clay tablets used for more than three millennia and at least eight major languages. It consists of thousands of characters that have changed over time and space. Photographs are the most common representations usable for machine learning, while ink drawings are prone to interpretation. Best suited 3D datasets that are becoming available. We created and used the HeiCuBeDa and MaiCuBeDa datasets, which consist of around 500 annotated tablets. For our novel OCR-like approach to mixed image data, we provide an additional mapping tool for transferring annotations between 3D renderings and photographs. Our sign localization uses a RepPoints detector to predict the locations of characters as bounding boxes. We use image data from GigaMesh's MSII (curvature, see https://gigamesh.eu) based rendering, Phong-shaded 3D models, and photographs as well as illumination augmentation. The results show that using rendered 3D images for sign detection performs better than other work on photographs. In addition, our approach gives reasonably good results for photographs only, while it is best used for mixed datasets. More importantly, the Phong renderings, and especially the MSII renderings, improve the results on photographs, which is the largest dataset on a global scale.

  • 3 authors
·
Aug 22, 2023

StyleTex: Style Image-Guided Texture Generation for 3D Models

Style-guided texture generation aims to generate a texture that is harmonious with both the style of the reference image and the geometry of the input mesh, given a reference style image and a 3D mesh with its text description. Although diffusion-based 3D texture generation methods, such as distillation sampling, have numerous promising applications in stylized games and films, it requires addressing two challenges: 1) decouple style and content completely from the reference image for 3D models, and 2) align the generated texture with the color tone, style of the reference image, and the given text prompt. To this end, we introduce StyleTex, an innovative diffusion-model-based framework for creating stylized textures for 3D models. Our key insight is to decouple style information from the reference image while disregarding content in diffusion-based distillation sampling. Specifically, given a reference image, we first decompose its style feature from the image CLIP embedding by subtracting the embedding's orthogonal projection in the direction of the content feature, which is represented by a text CLIP embedding. Our novel approach to disentangling the reference image's style and content information allows us to generate distinct style and content features. We then inject the style feature into the cross-attention mechanism to incorporate it into the generation process, while utilizing the content feature as a negative prompt to further dissociate content information. Finally, we incorporate these strategies into StyleTex to obtain stylized textures. The resulting textures generated by StyleTex retain the style of the reference image, while also aligning with the text prompts and intrinsic details of the given 3D mesh. Quantitative and qualitative experiments show that our method outperforms existing baseline methods by a significant margin.

  • 7 authors
·
Nov 1, 2024

Spice-E : Structural Priors in 3D Diffusion using Cross-Entity Attention

We are witnessing rapid progress in automatically generating and manipulating 3D assets due to the availability of pretrained text-image diffusion models. However, time-consuming optimization procedures are required for synthesizing each sample, hindering their potential for democratizing 3D content creation. Conversely, 3D diffusion models now train on million-scale 3D datasets, yielding high-quality text-conditional 3D samples within seconds. In this work, we present Spice-E - a neural network that adds structural guidance to 3D diffusion models, extending their usage beyond text-conditional generation. At its core, our framework introduces a cross-entity attention mechanism that allows for multiple entities (in particular, paired input and guidance 3D shapes) to interact via their internal representations within the denoising network. We utilize this mechanism for learning task-specific structural priors in 3D diffusion models from auxiliary guidance shapes. We show that our approach supports a variety of applications, including 3D stylization, semantic shape editing and text-conditional abstraction-to-3D, which transforms primitive-based abstractions into highly-expressive shapes. Extensive experiments demonstrate that Spice-E achieves SOTA performance over these tasks while often being considerably faster than alternative methods. Importantly, this is accomplished without tailoring our approach for any specific task.

  • 4 authors
·
Nov 29, 2023

Objaverse++: Curated 3D Object Dataset with Quality Annotations

This paper presents Objaverse++, a curated subset of Objaverse enhanced with detailed attribute annotations by human experts. Recent advances in 3D content generation have been driven by large-scale datasets such as Objaverse, which contains over 800,000 3D objects collected from the Internet. Although Objaverse represents the largest available 3D asset collection, its utility is limited by the predominance of low-quality models. To address this limitation, we manually annotate 10,000 3D objects with detailed attributes, including aesthetic quality scores, texture color classifications, multi-object composition flags, transparency characteristics, etc. Then, we trained a neural network capable of annotating the tags for the rest of the Objaverse dataset. Through experiments and a user study on generation results, we demonstrate that models pre-trained on our quality-focused subset achieve better performance than those trained on the larger dataset of Objaverse in image-to-3D generation tasks. In addition, by comparing multiple subsets of training data filtered by our tags, our results show that the higher the data quality, the faster the training loss converges. These findings suggest that careful curation and rich annotation can compensate for the raw dataset size, potentially offering a more efficient path to develop 3D generative models. We release our enhanced dataset of approximately 500,000 curated 3D models to facilitate further research on various downstream tasks in 3D computer vision. In the near future, we aim to extend our annotations to cover the entire Objaverse dataset.

  • 9 authors
·
Apr 9