Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeStutter-TTS: Controlled Synthesis and Improved Recognition of Stuttered Speech
Stuttering is a speech disorder where the natural flow of speech is interrupted by blocks, repetitions or prolongations of syllables, words and phrases. The majority of existing automatic speech recognition (ASR) interfaces perform poorly on utterances with stutter, mainly due to lack of matched training data. Synthesis of speech with stutter thus presents an opportunity to improve ASR for this type of speech. We describe Stutter-TTS, an end-to-end neural text-to-speech model capable of synthesizing diverse types of stuttering utterances. We develop a simple, yet effective prosody-control strategy whereby additional tokens are introduced into source text during training to represent specific stuttering characteristics. By choosing the position of the stutter tokens, Stutter-TTS allows word-level control of where stuttering occurs in the synthesized utterance. We are able to synthesize stutter events with high accuracy (F1-scores between 0.63 and 0.84, depending on stutter type). By fine-tuning an ASR model on synthetic stuttered speech we are able to reduce word error by 5.7% relative on stuttered utterances, with only minor (<0.2% relative) degradation for fluent utterances.
EDM3: Event Detection as Multi-task Text Generation
Event detection refers to identifying event occurrences in a text and comprises of two subtasks; event identification and classification. We present EDM3, a novel approach for Event Detection that formulates three generative tasks: identification, classification, and combined detection. We show that EDM3 helps to learn transferable knowledge that can be leveraged to perform Event Detection and its subtasks concurrently, mitigating the error propagation inherent in pipelined approaches. Unlike previous dataset- or domain-specific approaches, EDM3 utilizes the existing knowledge of language models, allowing it to be trained over any classification schema. We evaluate EDM3 on multiple event detection datasets: RAMS, WikiEvents, MAVEN, and MLEE, showing that EDM3 outperforms 1) single-task performance by 8.4% on average and 2) multi-task performance without instructional prompts by 2.4% on average. We obtain SOTA results on RAMS (71.3% vs. 65.1% F-1) and competitive performance on other datasets. We analyze our approach to demonstrate its efficacy in low-resource and multi-sentence settings. We also show the effectiveness of this approach on non-standard event configurations such as multi-word and multi-class event triggers. Overall, our results show that EDM3 is a promising approach for Event Detection that has the potential for real-world applications.
Retrieval-Enhanced Few-Shot Prompting for Speech Event Extraction
Speech Event Extraction (SpeechEE) is a challenging task that lies at the intersection of Automatic Speech Recognition (ASR) and Natural Language Processing (NLP), requiring the identification of structured event information from spoken language. In this work, we present a modular, pipeline-based SpeechEE framework that integrates high-performance ASR with semantic search-enhanced prompting of Large Language Models (LLMs). Our system first classifies speech segments likely to contain events using a hybrid filtering mechanism including rule-based, BERT-based, and LLM-based models. It then employs few-shot LLM prompting, dynamically enriched via semantic similarity retrieval, to identify event triggers and extract corresponding arguments. We evaluate the pipeline using multiple LLMs (Llama3-8B, GPT-4o-mini, and o1-mini) highlighting significant performance gains with o1-mini, which achieves 63.3% F1 on trigger classification and 27.8% F1 on argument classification, outperforming prior benchmarks. Our results demonstrate that pipeline approaches, when empowered by retrieval-augmented LLMs, can rival or exceed end-to-end systems while maintaining interpretability and modularity. This work provides practical insights into LLM-driven event extraction and opens pathways for future hybrid models combining textual and acoustic features.
Features and Kernels for Audio Event Recognition
One of the most important problems in audio event detection research is absence of benchmark results for comparison with any proposed method. Different works consider different sets of events and datasets which makes it difficult to comprehensively analyze any novel method with an existing one. In this paper we propose to establish results for audio event recognition on two recent publicly-available datasets. In particular we use Gaussian Mixture model based feature representation and combine them with linear as well as non-linear kernel Support Vector Machines.
AVA-Speech: A Densely Labeled Dataset of Speech Activity in Movies
Speech activity detection (or endpointing) is an important processing step for applications such as speech recognition, language identification and speaker diarization. Both audio- and vision-based approaches have been used for this task in various settings, often tailored toward end applications. However, much of the prior work reports results in synthetic settings, on task-specific datasets, or on datasets that are not openly available. This makes it difficult to compare approaches and understand their strengths and weaknesses. In this paper, we describe a new dataset which we will release publicly containing densely labeled speech activity in YouTube videos, with the goal of creating a shared, available dataset for this task. The labels in the dataset annotate three different speech activity conditions: clean speech, speech co-occurring with music, and speech co-occurring with noise, which enable analysis of model performance in more challenging conditions based on the presence of overlapping noise. We report benchmark performance numbers on AVA-Speech using off-the-shelf, state-of-the-art audio and vision models that serve as a baseline to facilitate future research.
Boli: A dataset for understanding stuttering experience and analyzing stuttered speech
There is a growing need for diverse, high-quality stuttered speech data, particularly in the context of Indian languages. This paper introduces Project Boli, a multi-lingual stuttered speech dataset designed to advance scientific understanding and technology development for individuals who stutter, particularly in India. The dataset constitutes (a) anonymized metadata (gender, age, country, mother tongue) and responses to a questionnaire about how stuttering affects their daily lives, (b) captures both read speech (using the Rainbow Passage) and spontaneous speech (through image description tasks) for each participant and (c) includes detailed annotations of five stutter types: blocks, prolongations, interjections, sound repetitions and word repetitions. We present a comprehensive analysis of the dataset, including the data collection procedure, experience summarization of people who stutter, severity assessment of stuttering events and technical validation of the collected data. The dataset is released as an open access to further speech technology development.
Fine-tune the pretrained ATST model for sound event detection
Sound event detection (SED) often suffers from the data deficiency problem. The recent baseline system in the DCASE2023 challenge task 4 leverages the large pretrained self-supervised learning (SelfSL) models to mitigate such restriction, where the pretrained models help to produce more discriminative features for SED. However, the pretrained models are regarded as a frozen feature extractor in the challenge baseline system and most of the challenge submissions, and fine-tuning of the pretrained models has been rarely studied. In this work, we study the fine-tuning method of the pretrained models for SED. We first introduce ATST-Frame, our newly proposed SelfSL model, to the SED system. ATST-Frame was especially designed for learning frame-level representations of audio signals and obtained state-of-the-art (SOTA) performances on a series of downstream tasks. We then propose a fine-tuning method for ATST-Frame using both (in-domain) unlabelled and labelled SED data. Our experiments show that, the proposed method overcomes the overfitting problem when fine-tuning the large pretrained network, and our SED system obtains new SOTA results of 0.587/0.812 PSDS1/PSDS2 scores on the DCASE challenge task 4 dataset.
Effective Pre-Training of Audio Transformers for Sound Event Detection
We propose a pre-training pipeline for audio spectrogram transformers for frame-level sound event detection tasks. On top of common pre-training steps, we add a meticulously designed training routine on AudioSet frame-level annotations. This includes a balanced sampler, aggressive data augmentation, and ensemble knowledge distillation. For five transformers, we obtain a substantial performance improvement over previously available checkpoints both on AudioSet frame-level predictions and on frame-level sound event detection downstream tasks, confirming our pipeline's effectiveness. We publish the resulting checkpoints that researchers can directly fine-tune to build high-performance models for sound event detection tasks.
FLAM: Frame-Wise Language-Audio Modeling
Recent multi-modal audio-language models (ALMs) excel at text-audio retrieval but struggle with frame-wise audio understanding. Prior works use temporal-aware labels or unsupervised training to improve frame-wise capabilities, but they still lack fine-grained labeling capability to pinpoint when an event occurs. While traditional sound event detection models can precisely localize events, they are limited to pre-defined categories, making them ineffective for real-world scenarios with out-of-distribution events. In this work, we introduce FLAM, an open-vocabulary contrastive audio-language model capable of localizing specific sound events. FLAM employs a memory-efficient and calibrated frame-wise objective with logit adjustment to address spurious correlations, such as event dependencies and label imbalances during training. To enable frame-wise supervision, we leverage a large-scale dataset with diverse audio events, LLM-generated captions and simulation. Experimental results and case studies demonstrate that FLAM significantly improves the open-vocabulary localization capability while maintaining strong performance in global retrieval and downstream tasks.
EventVAD: Training-Free Event-Aware Video Anomaly Detection
Video Anomaly Detection~(VAD) focuses on identifying anomalies within videos. Supervised methods require an amount of in-domain training data and often struggle to generalize to unseen anomalies. In contrast, training-free methods leverage the intrinsic world knowledge of large language models (LLMs) to detect anomalies but face challenges in localizing fine-grained visual transitions and diverse events. Therefore, we propose EventVAD, an event-aware video anomaly detection framework that combines tailored dynamic graph architectures and multimodal LLMs through temporal-event reasoning. Specifically, EventVAD first employs dynamic spatiotemporal graph modeling with time-decay constraints to capture event-aware video features. Then, it performs adaptive noise filtering and uses signal ratio thresholding to detect event boundaries via unsupervised statistical features. The statistical boundary detection module reduces the complexity of processing long videos for MLLMs and improves their temporal reasoning through event consistency. Finally, it utilizes a hierarchical prompting strategy to guide MLLMs in performing reasoning before determining final decisions. We conducted extensive experiments on the UCF-Crime and XD-Violence datasets. The results demonstrate that EventVAD with a 7B MLLM achieves state-of-the-art (SOTA) in training-free settings, outperforming strong baselines that use 7B or larger MLLMs.
Overview and Evaluation of Sound Event Localization and Detection in DCASE 2019
Sound event localization and detection is a novel area of research that emerged from the combined interest of analyzing the acoustic scene in terms of the spatial and temporal activity of sounds of interest. This paper presents an overview of the first international evaluation on sound event localization and detection, organized as a task of the DCASE 2019 Challenge. A large-scale realistic dataset of spatialized sound events was generated for the challenge, to be used for training of learning-based approaches, and for evaluation of the submissions in an unlabeled subset. The overview presents in detail how the systems were evaluated and ranked and the characteristics of the best-performing systems. Common strategies in terms of input features, model architectures, training approaches, exploitation of prior knowledge, and data augmentation are discussed. Since ranking in the challenge was based on individually evaluating localization and event classification performance, part of the overview focuses on presenting metrics for the joint measurement of the two, together with a reevaluation of submissions using these new metrics. The new analysis reveals submissions that performed better on the joint task of detecting the correct type of event close to its original location than some of the submissions that were ranked higher in the challenge. Consequently, ranking of submissions which performed strongly when evaluated separately on detection or localization, but not jointly on both, was affected negatively.
Description and Discussion on DCASE 2023 Challenge Task 2: First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring
We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2023 Challenge Task 2: ``First-shot unsupervised anomalous sound detection (ASD) for machine condition monitoring''. The main goal is to enable rapid deployment of ASD systems for new kinds of machines without the need for hyperparameter tuning. In the past ASD tasks, developed methods tuned hyperparameters for each machine type, as the development and evaluation datasets had the same machine types. However, collecting normal and anomalous data as the development dataset can be infeasible in practice. In 2023 Task 2, we focus on solving the first-shot problem, which is the challenge of training a model on a completely novel machine type. Specifically, (i) each machine type has only one section (a subset of machine type) and (ii) machine types in the development and evaluation datasets are completely different. Analysis of 86 submissions from 23 teams revealed that the keys to outperform baselines were: 1) sampling techniques for dealing with class imbalances across different domains and attributes, 2) generation of synthetic samples for robust detection, and 3) use of multiple large pre-trained models to extract meaningful embeddings for the anomaly detector.
FlexSED: Towards Open-Vocabulary Sound Event Detection
Despite recent progress in large-scale sound event detection (SED) systems capable of handling hundreds of sound classes, existing multi-class classification frameworks remain fundamentally limited. They cannot process free-text sound queries, which enable more flexible and user-friendly interaction, and they lack zero-shot capabilities and offer poor few-shot adaptability. Although text-query-based separation methods have been explored, they primarily focus on source separation and are ill-suited for SED tasks that require precise temporal localization and efficient detection across large and diverse sound vocabularies. In this paper, we propose FlexSED, an open-vocabulary sound event detection system. FlexSED builds on a pretrained audio SSL model and the CLAP text encoder, introducing an encoder-decoder composition and an adaptive fusion strategy to enable effective continuous training from pretrained weights. To ensure robust supervision, it also employs large language models (LLMs) to assist in event query selection during training, addressing challenges related to missing labels. As a result, FlexSED achieves superior performance compared to vanilla SED models on AudioSet-Strong, while demonstrating strong zero-shot and few-shot capabilities. We release the code and pretrained models to support future research and applications based on FlexSED.
CrisperWhisper: Accurate Timestamps on Verbatim Speech Transcriptions
We demonstrate that carefully adjusting the tokenizer of the Whisper speech recognition model significantly improves the precision of word-level timestamps when applying dynamic time warping to the decoder's cross-attention scores. We fine-tune the model to produce more verbatim speech transcriptions and employ several techniques to increase robustness against multiple speakers and background noise. These adjustments achieve state-of-the-art performance on benchmarks for verbatim speech transcription, word segmentation, and the timed detection of filler events, and can further mitigate transcription hallucinations. The code is available open https://github.com/nyrahealth/CrisperWhisper.
Extensively Matching for Few-shot Learning Event Detection
Current event detection models under super-vised learning settings fail to transfer to newevent types. Few-shot learning has not beenexplored in event detection even though it al-lows a model to perform well with high gener-alization on new event types. In this work, weformulate event detection as a few-shot learn-ing problem to enable to extend event detec-tion to new event types. We propose two novelloss factors that matching examples in the sup-port set to provide more training signals to themodel. Moreover, these training signals can beapplied in many metric-based few-shot learn-ing models. Our extensive experiments on theACE-2005 dataset (under a few-shot learningsetting) show that the proposed method can im-prove the performance of few-shot learning
Impact of Acoustic Event Tagging on Scene Classification in a Multi-Task Learning Framework
Acoustic events are sounds with well-defined spectro-temporal characteristics which can be associated with the physical objects generating them. Acoustic scenes are collections of such acoustic events in no specific temporal order. Given this natural linkage between events and scenes, a common belief is that the ability to classify events must help in the classification of scenes. This has led to several efforts attempting to do well on Acoustic Event Tagging (AET) and Acoustic Scene Classification (ASC) using a multi-task network. However, in these efforts, improvement in one task does not guarantee an improvement in the other, suggesting a tension between ASC and AET. It is unclear if improvements in AET translates to improvements in ASC. We explore this conundrum through an extensive empirical study and show that under certain conditions, using AET as an auxiliary task in the multi-task network consistently improves ASC performance. Additionally, ASC performance further improves with the AET data-set size and is not sensitive to the choice of events or the number of events in the AET data-set. We conclude that this improvement in ASC performance comes from the regularization effect of using AET and not from the network's improved ability to discern between acoustic events.
Knowledge Transfer from Weakly Labeled Audio using Convolutional Neural Network for Sound Events and Scenes
In this work we propose approaches to effectively transfer knowledge from weakly labeled web audio data. We first describe a convolutional neural network (CNN) based framework for sound event detection and classification using weakly labeled audio data. Our model trains efficiently from audios of variable lengths; hence, it is well suited for transfer learning. We then propose methods to learn representations using this model which can be effectively used for solving the target task. We study both transductive and inductive transfer learning tasks, showing the effectiveness of our methods for both domain and task adaptation. We show that the learned representations using the proposed CNN model generalizes well enough to reach human level accuracy on ESC-50 sound events dataset and set state of art results on this dataset. We further use them for acoustic scene classification task and once again show that our proposed approaches suit well for this task as well. We also show that our methods are helpful in capturing semantic meanings and relations as well. Moreover, in this process we also set state-of-art results on Audioset dataset, relying on balanced training set.
Multi-Iteration Multi-Stage Fine-Tuning of Transformers for Sound Event Detection with Heterogeneous Datasets
A central problem in building effective sound event detection systems is the lack of high-quality, strongly annotated sound event datasets. For this reason, Task 4 of the DCASE 2024 challenge proposes learning from two heterogeneous datasets, including audio clips labeled with varying annotation granularity and with different sets of possible events. We propose a multi-iteration, multi-stage procedure for fine-tuning Audio Spectrogram Transformers on the joint DESED and MAESTRO Real datasets. The first stage closely matches the baseline system setup and trains a CRNN model while keeping the pre-trained transformer model frozen. In the second stage, both CRNN and transformer are fine-tuned using heavily weighted self-supervised losses. After the second stage, we compute strong pseudo-labels for all audio clips in the training set using an ensemble of fine-tuned transformers. Then, in a second iteration, we repeat the two-stage training process and include a distillation loss based on the pseudo-labels, achieving a new single-model, state-of-the-art performance on the public evaluation set of DESED with a PSDS1 of 0.692. A single model and an ensemble, both based on our proposed training procedure, ranked first in Task 4 of the DCASE Challenge 2024.
Towards Event-oriented Long Video Understanding
With the rapid development of video Multimodal Large Language Models (MLLMs), numerous benchmarks have been proposed to assess their video understanding capability. However, due to the lack of rich events in the videos, these datasets may suffer from the short-cut bias that the answers can be deduced from a few frames, without the need to watch the entire video. To address this issue, we introduce Event-Bench, an event-oriented long video understanding benchmark built on existing datasets and human annotations. Event-Bench includes six event-related tasks and 2,190 test instances to comprehensively evaluate video event understanding ability. Additionally, we propose Video Instruction Merging~(VIM), a cost-effective method that enhances video MLLMs using merged, event-intensive video instructions, addressing the scarcity of human-annotated, event-intensive data. Extensive experiments show that the best-performing model, GPT-4o, achieves an overall accuracy of 53.33, significantly outperforming the best open-source model by 41.42%. Leveraging an effective instruction synthesis method and an adaptive model architecture, VIM surpasses both state-of-the-art open-source models and GPT-4V on the Event-Bench. All code, data, and models are publicly available at https://github.com/RUCAIBox/Event-Bench.
SkiM: Skipping Memory LSTM for Low-Latency Real-Time Continuous Speech Separation
Continuous speech separation for meeting pre-processing has recently become a focused research topic. Compared to the data in utterance-level speech separation, the meeting-style audio stream lasts longer, has an uncertain number of speakers. We adopt the time-domain speech separation method and the recently proposed Graph-PIT to build a super low-latency online speech separation model, which is very important for the real application. The low-latency time-domain encoder with a small stride leads to an extremely long feature sequence. We proposed a simple yet efficient model named Skipping Memory (SkiM) for the long sequence modeling. Experimental results show that SkiM achieves on par or even better separation performance than DPRNN. Meanwhile, the computational cost of SkiM is reduced by 75% compared to DPRNN. The strong long sequence modeling capability and low computational cost make SkiM a suitable model for online CSS applications. Our fastest real-time model gets 17.1 dB signal-to-distortion (SDR) improvement with less than 1-millisecond latency in the simulated meeting-style evaluation.
Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings
Spiking Neural Networks (SNNs) are a promising research direction for building power-efficient information processing systems, especially for temporal tasks such as speech recognition. In SNNs, delays refer to the time needed for one spike to travel from one neuron to another. These delays matter because they influence the spike arrival times, and it is well-known that spiking neurons respond more strongly to coincident input spikes. More formally, it has been shown theoretically that plastic delays greatly increase the expressivity in SNNs. Yet, efficient algorithms to learn these delays have been lacking. Here, we propose a new discrete-time algorithm that addresses this issue in deep feedforward SNNs using backpropagation, in an offline manner. To simulate delays between consecutive layers, we use 1D convolutions across time. The kernels contain only a few non-zero weights - one per synapse - whose positions correspond to the delays. These positions are learned together with the weights using the recently proposed Dilated Convolution with Learnable Spacings (DCLS). We evaluated our method on three datasets: the Spiking Heidelberg Dataset (SHD), the Spiking Speech Commands (SSC) and its non-spiking version Google Speech Commands v0.02 (GSC) benchmarks, which require detecting temporal patterns. We used feedforward SNNs with two or three hidden fully connected layers, and vanilla leaky integrate-and-fire neurons. We showed that fixed random delays help and that learning them helps even more. Furthermore, our method outperformed the state-of-the-art in the three datasets without using recurrent connections and with substantially fewer parameters. Our work demonstrates the potential of delay learning in developing accurate and precise models for temporal data processing. Our code is based on PyTorch / SpikingJelly and available at: https://github.com/Thvnvtos/SNN-delays
VoxLingua107: a Dataset for Spoken Language Recognition
This paper investigates the use of automatically collected web audio data for the task of spoken language recognition. We generate semi-random search phrases from language-specific Wikipedia data that are then used to retrieve videos from YouTube for 107 languages. Speech activity detection and speaker diarization are used to extract segments from the videos that contain speech. Post-filtering is used to remove segments from the database that are likely not in the given language, increasing the proportion of correctly labeled segments to 98%, based on crowd-sourced verification. The size of the resulting training set (VoxLingua107) is 6628 hours (62 hours per language on the average) and it is accompanied by an evaluation set of 1609 verified utterances. We use the data to build language recognition models for several spoken language identification tasks. Experiments show that using the automatically retrieved training data gives competitive results to using hand-labeled proprietary datasets. The dataset is publicly available.
LAST SToP For Modeling Asynchronous Time Series
We present a novel prompt design for Large Language Models (LLMs) tailored to Asynchronous Time Series. Unlike regular time series, which assume values at evenly spaced time points, asynchronous time series consist of timestamped events occurring at irregular intervals, each described in natural language. Our approach effectively utilizes the rich natural language of event descriptions, allowing LLMs to benefit from their broad world knowledge for reasoning across different domains and tasks. This allows us to extend the scope of asynchronous time series analysis beyond forecasting to include tasks like anomaly detection and data imputation. We further introduce Stochastic Soft Prompting, a novel prompt-tuning mechanism that significantly improves model performance, outperforming existing fine-tuning methods such as QLoRA. Through extensive experiments on real world datasets, we demonstrate that our approach achieves state-of-the-art performance across different tasks and datasets.
Sound Event Detection Using Spatial Features and Convolutional Recurrent Neural Network
This paper proposes to use low-level spatial features extracted from multichannel audio for sound event detection. We extend the convolutional recurrent neural network to handle more than one type of these multichannel features by learning from each of them separately in the initial stages. We show that instead of concatenating the features of each channel into a single feature vector the network learns sound events in multichannel audio better when they are presented as separate layers of a volume. Using the proposed spatial features over monaural features on the same network gives an absolute F-score improvement of 6.1% on the publicly available TUT-SED 2016 dataset and 2.7% on the TUT-SED 2009 dataset that is fifteen times larger.
A Dataset of Reverberant Spatial Sound Scenes with Moving Sources for Sound Event Localization and Detection
This report presents the dataset and the evaluation setup of the Sound Event Localization & Detection (SELD) task for the DCASE 2020 Challenge. The SELD task refers to the problem of trying to simultaneously classify a known set of sound event classes, detect their temporal activations, and estimate their spatial directions or locations while they are active. To train and test SELD systems, datasets of diverse sound events occurring under realistic acoustic conditions are needed. Compared to the previous challenge, a significantly more complex dataset was created for DCASE 2020. The two key differences are a more diverse range of acoustical conditions, and dynamic conditions, i.e. moving sources. The spatial sound scenes are created using real room impulse responses captured in a continuous manner with a slowly moving excitation source. Both static and moving sound events are synthesized from them. Ambient noise recorded on location is added to complete the generation of scene recordings. A baseline SELD method accompanies the dataset, based on a convolutional recurrent neural network, to provide benchmark scores for the task. The baseline is an updated version of the one used in the previous challenge, with input features and training modifications to improve its performance.
Vocalsound: A Dataset for Improving Human Vocal Sounds Recognition
Recognizing human non-speech vocalizations is an important task and has broad applications such as automatic sound transcription and health condition monitoring. However, existing datasets have a relatively small number of vocal sound samples or noisy labels. As a consequence, state-of-the-art audio event classification models may not perform well in detecting human vocal sounds. To support research on building robust and accurate vocal sound recognition, we have created a VocalSound dataset consisting of over 21,000 crowdsourced recordings of laughter, sighs, coughs, throat clearing, sneezes, and sniffs from 3,365 unique subjects. Experiments show that the vocal sound recognition performance of a model can be significantly improved by 41.9% by adding VocalSound dataset to an existing dataset as training material. In addition, different from previous datasets, the VocalSound dataset contains meta information such as speaker age, gender, native language, country, and health condition.
CACE-Net: Co-guidance Attention and Contrastive Enhancement for Effective Audio-Visual Event Localization
The audio-visual event localization task requires identifying concurrent visual and auditory events from unconstrained videos within a network model, locating them, and classifying their category. The efficient extraction and integration of audio and visual modal information have always been challenging in this field. In this paper, we introduce CACE-Net, which differs from most existing methods that solely use audio signals to guide visual information. We propose an audio-visual co-guidance attention mechanism that allows for adaptive bi-directional cross-modal attentional guidance between audio and visual information, thus reducing inconsistencies between modalities. Moreover, we have observed that existing methods have difficulty distinguishing between similar background and event and lack the fine-grained features for event classification. Consequently, we employ background-event contrast enhancement to increase the discrimination of fused feature and fine-tuned pre-trained model to extract more refined and discernible features from complex multimodal inputs. Specifically, we have enhanced the model's ability to discern subtle differences between event and background and improved the accuracy of event classification in our model. Experiments on the AVE dataset demonstrate that CACE-Net sets a new benchmark in the audio-visual event localization task, proving the effectiveness of our proposed methods in handling complex multimodal learning and event localization in unconstrained videos. Code is available at https://github.com/Brain-Cog-Lab/CACE-Net.
A Dataset of Dynamic Reverberant Sound Scenes with Directional Interferers for Sound Event Localization and Detection
This report presents the dataset and baseline of Task 3 of the DCASE2021 Challenge on Sound Event Localization and Detection (SELD). The dataset is based on emulation of real recordings of static or moving sound events under real conditions of reverberation and ambient noise, using spatial room impulse responses captured in a variety of rooms and delivered in two spatial formats. The acoustical synthesis remains the same as in the previous iteration of the challenge, however the new dataset brings more challenging conditions of polyphony and overlapping instances of the same class. The most important difference of the new dataset is the introduction of directional interferers, meaning sound events that are localized in space but do not belong to the target classes to be detected and are not annotated. Since such interfering events are expected in every real-world scenario of SELD, the new dataset aims to promote systems that deal with this condition effectively. A modified SELDnet baseline employing the recent ACCDOA representation of SELD problems accompanies the dataset and it is shown to outperform the previous one. The new dataset is shown to be significantly more challenging for both baselines according to all considered metrics. To investigate the individual and combined effects of ambient noise, interferers, and reverberation, we study the performance of the baseline on different versions of the dataset excluding or including combinations of these factors. The results indicate that by far the most detrimental effects are caused by directional interferers.
WildDESED: An LLM-Powered Dataset for Wild Domestic Environment Sound Event Detection System
This work aims to advance sound event detection (SED) research by presenting a new large language model (LLM)-powered dataset namely wild domestic environment sound event detection (WildDESED). It is crafted as an extension to the original DESED dataset to reflect diverse acoustic variability and complex noises in home settings. We leveraged LLMs to generate eight different domestic scenarios based on target sound categories of the DESED dataset. Then we enriched the scenarios with a carefully tailored mixture of noises selected from AudioSet and ensured no overlap with target sound. We consider widely popular convolutional neural recurrent network to study WildDESED dataset, which depicts its challenging nature. We then apply curriculum learning by gradually increasing noise complexity to enhance the model's generalization capabilities across various noise levels. Our results with this approach show improvements within the noisy environment, validating the effectiveness on the WildDESED dataset promoting noise-robust SED advancements.
FSD50K: An Open Dataset of Human-Labeled Sound Events
Most existing datasets for sound event recognition (SER) are relatively small and/or domain-specific, with the exception of AudioSet, based on over 2M tracks from YouTube videos and encompassing over 500 sound classes. However, AudioSet is not an open dataset as its official release consists of pre-computed audio features. Downloading the original audio tracks can be problematic due to YouTube videos gradually disappearing and usage rights issues. To provide an alternative benchmark dataset and thus foster SER research, we introduce FSD50K, an open dataset containing over 51k audio clips totalling over 100h of audio manually labeled using 200 classes drawn from the AudioSet Ontology. The audio clips are licensed under Creative Commons licenses, making the dataset freely distributable (including waveforms). We provide a detailed description of the FSD50K creation process, tailored to the particularities of Freesound data, including challenges encountered and solutions adopted. We include a comprehensive dataset characterization along with discussion of limitations and key factors to allow its audio-informed usage. Finally, we conduct sound event classification experiments to provide baseline systems as well as insight on the main factors to consider when splitting Freesound audio data for SER. Our goal is to develop a dataset to be widely adopted by the community as a new open benchmark for SER research.
RCT: Random Consistency Training for Semi-supervised Sound Event Detection
Sound event detection (SED), as a core module of acoustic environmental analysis, suffers from the problem of data deficiency. The integration of semi-supervised learning (SSL) largely mitigates such problem while bringing no extra annotation budget. This paper researches on several core modules of SSL, and introduces a random consistency training (RCT) strategy. First, a self-consistency loss is proposed to fuse with the teacher-student model to stabilize the training. Second, a hard mixup data augmentation is proposed to account for the additive property of sounds. Third, a random augmentation scheme is applied to flexibly combine different types of data augmentations. Experiments show that the proposed strategy outperform other widely-used strategies.
An Approach for Classification of Dysfluent and Fluent Speech Using K-NN And SVM
This paper presents a new approach for classification of dysfluent and fluent speech using Mel-Frequency Cepstral Coefficient (MFCC). The speech is fluent when person's speech flows easily and smoothly. Sounds combine into syllable, syllables mix together into words and words link into sentences with little effort. When someone's speech is dysfluent, it is irregular and does not flow effortlessly. Therefore, a dysfluency is a break in the smooth, meaningful flow of speech. Stuttering is one such disorder in which the fluent flow of speech is disrupted by occurrences of dysfluencies such as repetitions, prolongations, interjections and so on. In this work we have considered three types of dysfluencies such as repetition, prolongation and interjection to characterize dysfluent speech. After obtaining dysfluent and fluent speech, the speech signals are analyzed in order to extract MFCC features. The k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) classifiers are used to classify the speech as dysfluent and fluent speech. The 80% of the data is used for training and 20% for testing. The average accuracy of 86.67% and 93.34% is obtained for dysfluent and fluent speech respectively.
A Light Weight Model for Active Speaker Detection
Active speaker detection is a challenging task in audio-visual scenario understanding, which aims to detect who is speaking in one or more speakers scenarios. This task has received extensive attention as it is crucial in applications such as speaker diarization, speaker tracking, and automatic video editing. The existing studies try to improve performance by inputting multiple candidate information and designing complex models. Although these methods achieved outstanding performance, their high consumption of memory and computational power make them difficult to be applied in resource-limited scenarios. Therefore, we construct a lightweight active speaker detection architecture by reducing input candidates, splitting 2D and 3D convolutions for audio-visual feature extraction, and applying gated recurrent unit (GRU) with low computational complexity for cross-modal modeling. Experimental results on the AVA-ActiveSpeaker dataset show that our framework achieves competitive mAP performance (94.1% vs. 94.2%), while the resource costs are significantly lower than the state-of-the-art method, especially in model parameters (1.0M vs. 22.5M, about 23x) and FLOPs (0.6G vs. 2.6G, about 4x). In addition, our framework also performs well on the Columbia dataset showing good robustness. The code and model weights are available at https://github.com/Junhua-Liao/Light-ASD.
Audio Event and Scene Recognition: A Unified Approach using Strongly and Weakly Labeled Data
In this paper we propose a novel learning framework called Supervised and Weakly Supervised Learning where the goal is to learn simultaneously from weakly and strongly labeled data. Strongly labeled data can be simply understood as fully supervised data where all labeled instances are available. In weakly supervised learning only data is weakly labeled which prevents one from directly applying supervised learning methods. Our proposed framework is motivated by the fact that a small amount of strongly labeled data can give considerable improvement over only weakly supervised learning. The primary problem domain focus of this paper is acoustic event and scene detection in audio recordings. We first propose a naive formulation for leveraging labeled data in both forms. We then propose a more general framework for Supervised and Weakly Supervised Learning (SWSL). Based on this general framework, we propose a graph based approach for SWSL. Our main method is based on manifold regularization on graphs in which we show that the unified learning can be formulated as a constraint optimization problem which can be solved by iterative concave-convex procedure (CCCP). Our experiments show that our proposed framework can address several concerns of audio content analysis using weakly labeled data.
Sound Event Detection in Multichannel Audio Using Spatial and Harmonic Features
In this paper, we propose the use of spatial and harmonic features in combination with long short term memory (LSTM) recurrent neural network (RNN) for automatic sound event detection (SED) task. Real life sound recordings typically have many overlapping sound events, making it hard to recognize with just mono channel audio. Human listeners have been successfully recognizing the mixture of overlapping sound events using pitch cues and exploiting the stereo (multichannel) audio signal available at their ears to spatially localize these events. Traditionally SED systems have only been using mono channel audio, motivated by the human listener we propose to extend them to use multichannel audio. The proposed SED system is compared against the state of the art mono channel method on the development subset of TUT sound events detection 2016 database. The usage of spatial and harmonic features are shown to improve the performance of SED.
End-to-end speaker segmentation for overlap-aware resegmentation
Speaker segmentation consists in partitioning a conversation between one or more speakers into speaker turns. Usually addressed as the late combination of three sub-tasks (voice activity detection, speaker change detection, and overlapped speech detection), we propose to train an end-to-end segmentation model that does it directly. Inspired by the original end-to-end neural speaker diarization approach (EEND), the task is modeled as a multi-label classification problem using permutation-invariant training. The main difference is that our model operates on short audio chunks (5 seconds) but at a much higher temporal resolution (every 16ms). Experiments on multiple speaker diarization datasets conclude that our model can be used with great success on both voice activity detection and overlapped speech detection. Our proposed model can also be used as a post-processing step, to detect and correctly assign overlapped speech regions. Relative diarization error rate improvement over the best considered baseline (VBx) reaches 17% on AMI, 13% on DIHARD 3, and 13% on VoxConverse.
Whisper-AT: Noise-Robust Automatic Speech Recognizers are Also Strong General Audio Event Taggers
In this paper, we focus on Whisper, a recent automatic speech recognition model trained with a massive 680k hour labeled speech corpus recorded in diverse conditions. We first show an interesting finding that while Whisper is very robust against real-world background sounds (e.g., music), its audio representation is actually not noise-invariant, but is instead highly correlated to non-speech sounds, indicating that Whisper recognizes speech conditioned on the noise type. With this finding, we build a unified audio tagging and speech recognition model Whisper-AT by freezing the backbone of Whisper, and training a lightweight audio tagging model on top of it. With <1% extra computational cost, Whisper-AT can recognize audio events, in addition to spoken text, in a single forward pass.
tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models
Contrastive Language-Audio Pretraining (CLAP) became of crucial importance in the field of audio and speech processing. Its employment ranges from sound event detection to text-to-audio generation. However, one of the main limitations is the considerable amount of data required in the training process and the overall computational complexity during inference. This paper investigates how we can reduce the complexity of contrastive language-audio pre-trained models, yielding an efficient model that we call tinyCLAP. We derive an unimodal distillation loss from first principles and explore how the dimensionality of the shared, multimodal latent space can be reduced via pruning. TinyCLAP uses only 6% of the original Microsoft CLAP parameters with a minimal reduction (less than 5%) in zero-shot classification performance across the three sound event detection datasets on which it was tested
Speculative End-Turn Detector for Efficient Speech Chatbot Assistant
Spoken dialogue systems powered by large language models have demonstrated remarkable abilities in understanding human speech and generating appropriate spoken responses. However, these systems struggle with end-turn detection (ETD) -- the ability to distinguish between user turn completion and hesitation. This limitation often leads to premature or delayed responses, disrupting the flow of spoken conversations. In this paper, we introduce the ETD Dataset, the first public dataset for end-turn detection. The ETD dataset consists of both synthetic speech data generated with text-to-speech models and real-world speech data collected from web sources. We also propose SpeculativeETD, a novel collaborative inference framework that balances efficiency and accuracy to improve real-time ETD in resource-constrained environments. Our approach jointly employs a lightweight GRU-based model, which rapidly detects the non-speaking units in real-time on local devices, and a high-performance Wav2vec-based model running on the server to make a more challenging classification of distinguishing turn ends from mere pauses. Experiments demonstrate that the proposed SpeculativeETD significantly improves ETD accuracy while keeping the required computations low. Datasets and code will be available after the review.
Property-Aware Multi-Speaker Data Simulation: A Probabilistic Modelling Technique for Synthetic Data Generation
We introduce a sophisticated multi-speaker speech data simulator, specifically engineered to generate multi-speaker speech recordings. A notable feature of this simulator is its capacity to modulate the distribution of silence and overlap via the adjustment of statistical parameters. This capability offers a tailored training environment for developing neural models suited for speaker diarization and voice activity detection. The acquisition of substantial datasets for speaker diarization often presents a significant challenge, particularly in multi-speaker scenarios. Furthermore, the precise time stamp annotation of speech data is a critical factor for training both speaker diarization and voice activity detection. Our proposed multi-speaker simulator tackles these problems by generating large-scale audio mixtures that maintain statistical properties closely aligned with the input parameters. We demonstrate that the proposed multi-speaker simulator generates audio mixtures with statistical properties that closely align with the input parameters derived from real-world statistics. Additionally, we present the effectiveness of speaker diarization and voice activity detection models, which have been trained exclusively on the generated simulated datasets.
Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning
Recognizing acoustic events is an intricate problem for a machine and an emerging field of research. Deep neural networks achieve convincing results and are currently the state-of-the-art approach for many tasks. One advantage is their implicit feature learning, opposite to an explicit feature extraction of the input signal. In this work, we analyzed whether more discriminative features can be learned from either the time-domain or the frequency-domain representation of the audio signal. For this purpose, we trained multiple deep networks with different architectures on the Freiburg-106 and ESC-10 datasets. Our results show that feature learning from the frequency domain is superior to the time domain. Moreover, additionally using convolution and pooling layers, to explore local structures of the audio signal, significantly improves the recognition performance and achieves state-of-the-art results.
DiffSSD: A Diffusion-Based Dataset For Speech Forensics
Diffusion-based speech generators are ubiquitous. These methods can generate very high quality synthetic speech and several recent incidents report their malicious use. To counter such misuse, synthetic speech detectors have been developed. Many of these detectors are trained on datasets which do not include diffusion-based synthesizers. In this paper, we demonstrate that existing detectors trained on one such dataset, ASVspoof2019, do not perform well in detecting synthetic speech from recent diffusion-based synthesizers. We propose the Diffusion-Based Synthetic Speech Dataset (DiffSSD), a dataset consisting of about 200 hours of labeled speech, including synthetic speech generated by 8 diffusion-based open-source and 2 commercial generators. We also examine the performance of existing synthetic speech detectors on DiffSSD in both closed-set and open-set scenarios. The results highlight the importance of this dataset in detecting synthetic speech generated from recent open-source and commercial speech generators.
Transcription free filler word detection with Neural semi-CRFs
Non-linguistic filler words, such as "uh" or "um", are prevalent in spontaneous speech and serve as indicators for expressing hesitation or uncertainty. Previous works for detecting certain non-linguistic filler words are highly dependent on transcriptions from a well-established commercial automatic speech recognition (ASR) system. However, certain ASR systems are not universally accessible from many aspects, e.g., budget, target languages, and computational power. In this work, we investigate filler word detection system that does not depend on ASR systems. We show that, by using the structured state space sequence model (S4) and neural semi-Markov conditional random fields (semi-CRFs), we achieve an absolute F1 improvement of 6.4% (segment level) and 3.1% (event level) on the PodcastFillers dataset. We also conduct a qualitative analysis on the detected results to analyze the limitations of our proposed system.
MINION: a Large-Scale and Diverse Dataset for Multilingual Event Detection
Event Detection (ED) is the task of identifying and classifying trigger words of event mentions in text. Despite considerable research efforts in recent years for English text, the task of ED in other languages has been significantly less explored. Switching to non-English languages, important research questions for ED include how well existing ED models perform on different languages, how challenging ED is in other languages, and how well ED knowledge and annotation can be transferred across languages. To answer those questions, it is crucial to obtain multilingual ED datasets that provide consistent event annotation for multiple languages. There exist some multilingual ED datasets; however, they tend to cover a handful of languages and mainly focus on popular ones. Many languages are not covered in existing multilingual ED datasets. In addition, the current datasets are often small and not accessible to the public. To overcome those shortcomings, we introduce a new large-scale multilingual dataset for ED (called MINION) that consistently annotates events for 8 different languages; 5 of them have not been supported by existing multilingual datasets. We also perform extensive experiments and analysis to demonstrate the challenges and transferability of ED across languages in MINION that in all call for more research effort in this area.
Smart Speech Segmentation using Acousto-Linguistic Features with look-ahead
Segmentation for continuous Automatic Speech Recognition (ASR) has traditionally used silence timeouts or voice activity detectors (VADs), which are both limited to acoustic features. This segmentation is often overly aggressive, given that people naturally pause to think as they speak. Consequently, segmentation happens mid-sentence, hindering both punctuation and downstream tasks like machine translation for which high-quality segmentation is critical. Model-based segmentation methods that leverage acoustic features are powerful, but without an understanding of the language itself, these approaches are limited. We present a hybrid approach that leverages both acoustic and language information to improve segmentation. Furthermore, we show that including one word as a look-ahead boosts segmentation quality. On average, our models improve segmentation-F0.5 score by 9.8% over baseline. We show that this approach works for multiple languages. For the downstream task of machine translation, it improves the translation BLEU score by an average of 1.05 points.
E.T. Bench: Towards Open-Ended Event-Level Video-Language Understanding
Recent advances in Video Large Language Models (Video-LLMs) have demonstrated their great potential in general-purpose video understanding. To verify the significance of these models, a number of benchmarks have been proposed to diagnose their capabilities in different scenarios. However, existing benchmarks merely evaluate models through video-level question-answering, lacking fine-grained event-level assessment and task diversity. To fill this gap, we introduce E.T. Bench (Event-Level & Time-Sensitive Video Understanding Benchmark), a large-scale and high-quality benchmark for open-ended event-level video understanding. Categorized within a 3-level task taxonomy, E.T. Bench encompasses 7.3K samples under 12 tasks with 7K videos (251.4h total length) under 8 domains, providing comprehensive evaluations. We extensively evaluated 8 Image-LLMs and 12 Video-LLMs on our benchmark, and the results reveal that state-of-the-art models for coarse-level (video-level) understanding struggle to solve our fine-grained tasks, e.g., grounding event-of-interests within videos, largely due to the short video context length, improper time representations, and lack of multi-event training data. Focusing on these issues, we further propose a strong baseline model, E.T. Chat, together with an instruction-tuning dataset E.T. Instruct 164K tailored for fine-grained event-level understanding. Our simple but effective solution demonstrates superior performance in multiple scenarios.
First-shot anomaly sound detection for machine condition monitoring: A domain generalization baseline
This paper provides a baseline system for First-shot-compliant unsupervised anomaly detection (ASD) for machine condition monitoring. First-shot ASD does not allow systems to do machine-type dependent hyperparameter tuning or tool ensembling based on the performance metric calculated with the grand truth. To show benchmark performance for First-shot ASD, this paper proposes an anomaly sound detection system that works on the domain generalization task in the Detection and Classification of Acoustic Scenes and Events (DCASE) 2022 Challenge Task 2: "Unsupervised Anomalous Sound Detection for Machine Condition Monitoring Applying Domain Generalization Technique" while complying with the First-shot requirements introduced in the DCASE 2023 Challenge Task 2 (DCASE2023T2). A simple autoencoder based implementation combined with selective Mahalanobis metric is implemented as a baseline system. The performance evaluation is conducted to set the target benchmark for the forthcoming DCASE2023T2. Source code of the baseline system will be available on GitHub: https://github.com/nttcslab/dcase2023_task2_baseline_ae .
ICSD: An Open-source Dataset for Infant Cry and Snoring Detection
The detection and analysis of infant cry and snoring events are crucial tasks within the field of audio signal processing. While existing datasets for general sound event detection are plentiful, they often fall short in providing sufficient, strongly labeled data specific to infant cries and snoring. To provide a benchmark dataset and thus foster the research of infant cry and snoring detection, this paper introduces the Infant Cry and Snoring Detection (ICSD) dataset, a novel, publicly available dataset specially designed for ICSD tasks. The ICSD comprises three types of subsets: a real strongly labeled subset with event-based labels annotated manually, a weakly labeled subset with only clip-level event annotations, and a synthetic subset generated and labeled with strong annotations. This paper provides a detailed description of the ICSD creation process, including the challenges encountered and the solutions adopted. We offer a comprehensive characterization of the dataset, discussing its limitations and key factors for ICSD usage. Additionally, we conduct extensive experiments on the ICSD dataset to establish baseline systems and offer insights into the main factors when using this dataset for ICSD research. Our goal is to develop a dataset that will be widely adopted by the community as a new open benchmark for future ICSD research.
Integrating Recurrence Dynamics for Speech Emotion Recognition
We investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of its respective Recurrence Plot (RP) reveals complex structures which can be measured by performing Recurrence Quantification Analysis (RQA). These measures are aggregated by using statistical functionals over segment and utterance periods. We report SER results for the proposed feature set on three databases using different classification methods. When fusing the proposed features with traditional feature sets, we show an improvement in unweighted accuracy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks, respectively, over the baseline. Following a segment-based approach we demonstrate state-of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network.
LibriheavyMix: A 20,000-Hour Dataset for Single-Channel Reverberant Multi-Talker Speech Separation, ASR and Speaker Diarization
The evolving speech processing landscape is increasingly focused on complex scenarios like meetings or cocktail parties with multiple simultaneous speakers and far-field conditions. Existing methodologies for addressing these challenges fall into two categories: multi-channel and single-channel solutions. Single-channel approaches, notable for their generality and convenience, do not require specific information about microphone arrays. This paper presents a large-scale far-field overlapping speech dataset, crafted to advance research in speech separation, recognition, and speaker diarization. This dataset is a critical resource for decoding ``Who said What and When'' in multi-talker, reverberant environments, a daunting challenge in the field. Additionally, we introduce a pipeline system encompassing speech separation, recognition, and diarization as a foundational benchmark. Evaluations on the WHAMR! dataset validate the broad applicability of the proposed data.
SynParaSpeech: Automated Synthesis of Paralinguistic Datasets for Speech Generation and Understanding
Paralinguistic sounds, like laughter and sighs, are crucial for synthesizing more realistic and engaging speech. However, existing methods typically depend on proprietary datasets, while publicly available resources often suffer from incomplete speech, inaccurate or missing timestamps, and limited real-world relevance. To address these problems, we propose an automated framework for generating large-scale paralinguistic data and apply it to construct the SynParaSpeech dataset. The dataset comprises 6 paralinguistic categories with 118.75 hours of data and precise timestamps, all derived from natural conversational speech. Our contributions lie in introducing the first automated method for constructing large-scale paralinguistic datasets and releasing the SynParaSpeech corpus, which advances speech generation through more natural paralinguistic synthesis and enhances speech understanding by improving paralinguistic event detection. The dataset and audio samples are available at https://github.com/ShawnPi233/SynParaSpeech.
Mind the Time: Temporally-Controlled Multi-Event Video Generation
Real-world videos consist of sequences of events. Generating such sequences with precise temporal control is infeasible with existing video generators that rely on a single paragraph of text as input. When tasked with generating multiple events described using a single prompt, such methods often ignore some of the events or fail to arrange them in the correct order. To address this limitation, we present MinT, a multi-event video generator with temporal control. Our key insight is to bind each event to a specific period in the generated video, which allows the model to focus on one event at a time. To enable time-aware interactions between event captions and video tokens, we design a time-based positional encoding method, dubbed ReRoPE. This encoding helps to guide the cross-attention operation. By fine-tuning a pre-trained video diffusion transformer on temporally grounded data, our approach produces coherent videos with smoothly connected events. For the first time in the literature, our model offers control over the timing of events in generated videos. Extensive experiments demonstrate that MinT outperforms existing open-source models by a large margin.
A multi-room reverberant dataset for sound event localization and detection
This paper presents the sound event localization and detection (SELD) task setup for the DCASE 2019 challenge. The goal of the SELD task is to detect the temporal activities of a known set of sound event classes, and further localize them in space when active. As part of the challenge, a synthesized dataset with each sound event associated with a spatial coordinate represented using azimuth and elevation angles is provided. These sound events are spatialized using real-life impulse responses collected at multiple spatial coordinates in five different rooms with varying dimensions and material properties. A baseline SELD method employing a convolutional recurrent neural network is used to generate benchmark scores for this reverberant dataset. The benchmark scores are obtained using the recommended cross-validation setup.
Thai Semantic End-of-Turn Detection for Real-Time Voice Agents
Fluid voice-to-voice interaction requires reliable and low-latency detection of when a user has finished speaking. Traditional audio-silence end-pointers add hundreds of milliseconds of delay and fail under hesitations or language-specific phenomena. We present, to our knowledge, the first systematic study of Thai text-only end-of-turn (EOT) detection for real-time agents. We compare zero-shot and few-shot prompting of compact LLMs to supervised fine-tuning of lightweight transformers. Using transcribed subtitles from the YODAS corpus and Thai-specific linguistic cues (e.g., sentence-final particles), we formulate EOT as a binary decision over token boundaries. We report a clear accuracy-latency tradeoff and provide a public-ready implementation plan. This work establishes a Thai baseline and demonstrates that small, fine-tuned models can deliver near-instant EOT decisions suitable for on-device agents.
AVASpeech-SMAD: A Strongly Labelled Speech and Music Activity Detection Dataset with Label Co-Occurrence
We propose a dataset, AVASpeech-SMAD, to assist speech and music activity detection research. With frame-level music labels, the proposed dataset extends the existing AVASpeech dataset, which originally consists of 45 hours of audio and speech activity labels. To the best of our knowledge, the proposed AVASpeech-SMAD is the first open-source dataset that features strong polyphonic labels for both music and speech. The dataset was manually annotated and verified via an iterative cross-checking process. A simple automatic examination was also implemented to further improve the quality of the labels. Evaluation results from two state-of-the-art SMAD systems are also provided as a benchmark for future reference.
Noise-Agnostic Multitask Whisper Training for Reducing False Alarm Errors in Call-for-Help Detection
Keyword spotting is often implemented by keyword classifier to the encoder in acoustic models, enabling the classification of predefined or open vocabulary keywords. Although keyword spotting is a crucial task in various applications and can be extended to call-for-help detection in emergencies, however, the previous method often suffers from scalability limitations due to retraining required to introduce new keywords or adapt to changing contexts. We explore a simple yet effective approach that leverages off-the-shelf pretrained ASR models to address these challenges, especially in call-for-help detection scenarios. Furthermore, we observed a substantial increase in false alarms when deploying call-for-help detection system in real-world scenarios due to noise introduced by microphones or different environments. To address this, we propose a novel noise-agnostic multitask learning approach that integrates a noise classification head into the ASR encoder. Our method enhances the model's robustness to noisy environments, leading to a significant reduction in false alarms and improved overall call-for-help performance. Despite the added complexity of multitask learning, our approach is computationally efficient and provides a promising solution for call-for-help detection in real-world scenarios.
End-to-end Domain-Adversarial Voice Activity Detection
Voice activity detection is the task of detecting speech regions in a given audio stream or recording. First, we design a neural network combining trainable filters and recurrent layers to tackle voice activity detection directly from the waveform. Experiments on the challenging DIHARD dataset show that the proposed end-to-end model reaches state-of-the-art performance and outperforms a variant where trainable filters are replaced by standard cepstral coefficients. Our second contribution aims at making the proposed voice activity detection model robust to domain mismatch. To that end, a domain classification branch is added to the network and trained in an adversarial manner. The same DIHARD dataset, drawn from 11 different domains is used for evaluation under two scenarios. In the in-domain scenario where the training and test sets cover the exact same domains, we show that the domain-adversarial approach does not degrade performance of the proposed end-to-end model. In the out-domain scenario where the test domain is different from training domains, it brings a relative improvement of more than 10%. Finally, our last contribution is the provision of a fully reproducible open-source pipeline than can be easily adapted to other datasets.
Advances in Speech Separation: Techniques, Challenges, and Future Trends
The field of speech separation, addressing the "cocktail party problem", has seen revolutionary advances with DNNs. Speech separation enhances clarity in complex acoustic environments and serves as crucial pre-processing for speech recognition and speaker recognition. However, current literature focuses narrowly on specific architectures or isolated approaches, creating fragmented understanding. This survey addresses this gap by providing systematic examination of DNN-based speech separation techniques. Our work differentiates itself through: (I) Comprehensive perspective: We systematically investigate learning paradigms, separation scenarios with known/unknown speakers, comparative analysis of supervised/self-supervised/unsupervised frameworks, and architectural components from encoders to estimation strategies. (II) Timeliness: Coverage of cutting-edge developments ensures access to current innovations and benchmarks. (III) Unique insights: Beyond summarization, we evaluate technological trajectories, identify emerging patterns, and highlight promising directions including domain-robust frameworks, efficient architectures, multimodal integration, and novel self-supervised paradigms. (IV) Fair evaluation: We provide quantitative evaluations on standard datasets, revealing true capabilities and limitations of different methods. This comprehensive survey serves as an accessible reference for experienced researchers and newcomers navigating speech separation's complex landscape.
Question-Answering Dense Video Events
Multimodal Large Language Models (MLLMs) have shown excellent performance in question-answering of single-event videos. In this paper, we present question-answering dense video events, a novel task that requires answering and grounding the dense-event questions in long videos, thus challenging MLLMs to faithfully comprehend and reason about multiple events occurring over extended time periods. To facilitate the study, we construct DeVE-QA - a dataset featuring 78K questions about 26K events on 10.6K long videos. We then benchmark and show that existing MLLMs excelling at single-event QA struggle to perform well in DeVE-QA. For improvement, we propose DeVi, a novel training-free MLLM approach that highlights a hierarchical captioning module, a temporal event memory module, and a self-consistency checking module to respectively detect, contextualize and memorize, and ground dense-events in long videos for question answering. Extensive experiments show that DeVi is superior at answering dense-event questions and grounding relevant video moments. Compared with existing MLLMs, it achieves a remarkable increase of 4.1 percent and 3.7 percent for G(round)QA accuracy on DeVE-QA and NExT-GQA respectively.
MM-Pyramid: Multimodal Pyramid Attentional Network for Audio-Visual Event Localization and Video Parsing
Recognizing and localizing events in videos is a fundamental task for video understanding. Since events may occur in auditory and visual modalities, multimodal detailed perception is essential for complete scene comprehension. Most previous works attempted to analyze videos from a holistic perspective. However, they do not consider semantic information at multiple scales, which makes the model difficult to localize events in different lengths. In this paper, we present a Multimodal Pyramid Attentional Network (MM-Pyramid) for event localization. Specifically, we first propose the attentive feature pyramid module. This module captures temporal pyramid features via several stacking pyramid units, each of them is composed of a fixed-size attention block and dilated convolution block. We also design an adaptive semantic fusion module, which leverages a unit-level attention block and a selective fusion block to integrate pyramid features interactively. Extensive experiments on audio-visual event localization and weakly-supervised audio-visual video parsing tasks verify the effectiveness of our approach.
WhisperX: Time-Accurate Speech Transcription of Long-Form Audio
Large-scale, weakly-supervised speech recognition models, such as Whisper, have demonstrated impressive results on speech recognition across domains and languages. However, their application to long audio transcription via buffered or sliding window approaches is prone to drifting, hallucination & repetition; and prohibits batched transcription due to their sequential nature. Further, timestamps corresponding each utterance are prone to inaccuracies and word-level timestamps are not available out-of-the-box. To overcome these challenges, we present WhisperX, a time-accurate speech recognition system with word-level timestamps utilising voice activity detection and forced phoneme alignment. In doing so, we demonstrate state-of-the-art performance on long-form transcription and word segmentation benchmarks. Additionally, we show that pre-segmenting audio with our proposed VAD Cut & Merge strategy improves transcription quality and enables a twelve-fold transcription speedup via batched inference.
WavCaps: A ChatGPT-Assisted Weakly-Labelled Audio Captioning Dataset for Audio-Language Multimodal Research
The advancement of audio-language (AL) multimodal learning tasks has been significant in recent years. However, researchers face challenges due to the costly and time-consuming collection process of existing audio-language datasets, which are limited in size. To address this data scarcity issue, we introduce WavCaps, the first large-scale weakly-labelled audio captioning dataset, comprising approximately 400k audio clips with paired captions. We sourced audio clips and their raw descriptions from web sources and a sound event detection dataset. However, the online-harvested raw descriptions are highly noisy and unsuitable for direct use in tasks such as automated audio captioning. To overcome this issue, we propose a three-stage processing pipeline for filtering noisy data and generating high-quality captions, where ChatGPT, a large language model, is leveraged to filter and transform raw descriptions automatically. We conduct a comprehensive analysis of the characteristics of WavCaps dataset and evaluate it on multiple downstream audio-language multimodal learning tasks. The systems trained on WavCaps outperform previous state-of-the-art (SOTA) models by a significant margin. Our aspiration is for the WavCaps dataset we have proposed to facilitate research in audio-language multimodal learning and demonstrate the potential of utilizing ChatGPT to enhance academic research. Our dataset and codes are available at https://github.com/XinhaoMei/WavCaps.
Musical Instrument Playing Technique Detection Based on FCN: Using Chinese Bowed-Stringed Instrument as an Example
Unlike melody extraction and other aspects of music transcription, research on playing technique detection is still in its early stages. Compared to existing work mostly focused on playing technique detection for individual single notes, we propose a general end-to-end method based on Sound Event Detection by FCN for musical instrument playing technique detection. In our case, we choose Erhu, a well-known Chinese bowed-stringed instrument, to experiment with our method. Because of the limitation of FCN, we present an algorithm to detect on variable length audio. The effectiveness of the proposed framework is tested on a new dataset, its categorization of techniques is similar to our training dataset. The highest accuracy of our 3 experiments on the new test set is 87.31%. Furthermore, we also evaluate the performance of the proposed framework on 10 real-world studio music (produced by midi) and 7 real-world recording samples to address the ability of generalization on our model.
Non-verbal information in spontaneous speech -- towards a new framework of analysis
Non-verbal signals in speech are encoded by prosody and carry information that ranges from conversation action to attitude and emotion. Despite its importance, the principles that govern prosodic structure are not yet adequately understood. This paper offers an analytical schema and a technological proof-of-concept for the categorization of prosodic signals and their association with meaning. The schema interprets surface-representations of multi-layered prosodic events. As a first step towards implementation, we present a classification process that disentangles prosodic phenomena of three orders. It relies on fine-tuning a pre-trained speech recognition model, enabling the simultaneous multi-class/multi-label detection. It generalizes over a large variety of spontaneous data, performing on a par with, or superior to, human annotation. In addition to a standardized formalization of prosody, disentangling prosodic patterns can direct a theory of communication and speech organization. A welcome by-product is an interpretation of prosody that will enhance speech- and language-related technologies.
Unsupervised Speech Segmentation: A General Approach Using Speech Language Models
In this paper, we introduce an unsupervised approach for Speech Segmentation, which builds on previously researched approaches, e.g., Speaker Diarization, while being applicable to an inclusive set of acoustic-semantic distinctions, paving a path towards a general Unsupervised Speech Segmentation approach. Unlike traditional speech and audio segmentation, which mainly focuses on spectral changes in the input signal, e.g., phone segmentation, our approach tries to segment the spoken utterance into chunks with differing acoustic-semantic styles, focusing on acoustic-semantic information that does not translate well into text, e.g., emotion or speaker. While most Speech Segmentation tasks only handle one style change, e.g., emotion diarization, our approach tries to handle multiple acoustic-semantic style changes. Leveraging recent advances in Speech Language Models (SLMs), we propose a simple unsupervised method to segment a given speech utterance. We empirically demonstrate the effectiveness of the proposed approach by considering several setups. Results suggest that the proposed method is superior to the evaluated baselines on boundary detection, segment purity, and over-segmentation. Code is available at https://github.com/avishaiElmakies/unsupervised_speech_segmentation_using_slm.
Self-Supervised Video Forensics by Audio-Visual Anomaly Detection
Manipulated videos often contain subtle inconsistencies between their visual and audio signals. We propose a video forensics method, based on anomaly detection, that can identify these inconsistencies, and that can be trained solely using real, unlabeled data. We train an autoregressive model to generate sequences of audio-visual features, using feature sets that capture the temporal synchronization between video frames and sound. At test time, we then flag videos that the model assigns low probability. Despite being trained entirely on real videos, our model obtains strong performance on the task of detecting manipulated speech videos. Project site: https://cfeng16.github.io/audio-visual-forensics
Sound Event Localization and Detection of Overlapping Sources Using Convolutional Recurrent Neural Networks
In this paper, we propose a convolutional recurrent neural network for joint sound event localization and detection (SELD) of multiple overlapping sound events in three-dimensional (3D) space. The proposed network takes a sequence of consecutive spectrogram time-frames as input and maps it to two outputs in parallel. As the first output, the sound event detection (SED) is performed as a multi-label classification task on each time-frame producing temporal activity for all the sound event classes. As the second output, localization is performed by estimating the 3D Cartesian coordinates of the direction-of-arrival (DOA) for each sound event class using multi-output regression. The proposed method is able to associate multiple DOAs with respective sound event labels and further track this association with respect to time. The proposed method uses separately the phase and magnitude component of the spectrogram calculated on each audio channel as the feature, thereby avoiding any method- and array-specific feature extraction. The method is evaluated on five Ambisonic and two circular array format datasets with different overlapping sound events in anechoic, reverberant and real-life scenarios. The proposed method is compared with two SED, three DOA estimation, and one SELD baselines. The results show that the proposed method is generic and applicable to any array structures, robust to unseen DOA values, reverberation, and low SNR scenarios. The proposed method achieved a consistently higher recall of the estimated number of DOAs across datasets in comparison to the best baseline. Additionally, this recall was observed to be significantly better than the best baseline method for a higher number of overlapping sound events.
ParaCLAP -- Towards a general language-audio model for computational paralinguistic tasks
Contrastive language-audio pretraining (CLAP) has recently emerged as a method for making audio analysis more generalisable. Specifically, CLAP-style models are able to `answer' a diverse set of language queries, extending the capabilities of audio models beyond a closed set of labels. However, CLAP relies on a large set of (audio, query) pairs for pretraining. While such sets are available for general audio tasks, like captioning or sound event detection, there are no datasets with matched audio and text queries for computational paralinguistic (CP) tasks. As a result, the community relies on generic CLAP models trained for general audio with limited success. In the present study, we explore training considerations for ParaCLAP, a CLAP-style model suited to CP, including a novel process for creating audio-language queries. We demonstrate its effectiveness on a set of computational paralinguistic tasks, where it is shown to surpass the performance of open-source state-of-the-art models.
PreFM: Online Audio-Visual Event Parsing via Predictive Future Modeling
Audio-visual event parsing plays a crucial role in understanding multimodal video content, but existing methods typically rely on offline processing of entire videos with huge model sizes, limiting their real-time applicability. We introduce Online Audio-Visual Event Parsing (On-AVEP), a novel paradigm for parsing audio, visual, and audio-visual events by sequentially analyzing incoming video streams. The On-AVEP task necessitates models with two key capabilities: (1) Accurate online inference, to effectively distinguish events with unclear and limited context in online settings, and (2) Real-time efficiency, to balance high performance with computational constraints. To cultivate these, we propose the Predictive Future Modeling (PreFM) framework featured by (a) predictive multimodal future modeling to infer and integrate beneficial future audio-visual cues, thereby enhancing contextual understanding and (b) modality-agnostic robust representation along with focal temporal prioritization to improve precision and generalization. Extensive experiments on the UnAV-100 and LLP datasets show PreFM significantly outperforms state-of-the-art methods by a large margin with significantly fewer parameters, offering an insightful approach for real-time multimodal video understanding. Code is available at https://github.com/XiaoYu-1123/PreFM.
SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation
The lack of labeled second language (L2) speech data is a major challenge in designing mispronunciation detection models. We introduce SpeechBlender - a fine-grained data augmentation pipeline for generating mispronunciation errors to overcome such data scarcity. The SpeechBlender utilizes varieties of masks to target different regions of phonetic units, and use the mixing factors to linearly interpolate raw speech signals while augmenting pronunciation. The masks facilitate smooth blending of the signals, generating more effective samples than the `Cut/Paste' method. Our proposed technique achieves state-of-the-art results, with Speechocean762, on ASR dependent mispronunciation detection models at phoneme level, with a 2.0% gain in Pearson Correlation Coefficient (PCC) compared to the previous state-of-the-art [1]. Additionally, we demonstrate a 5.0% improvement at the phoneme level compared to our baseline. We also observed a 4.6% increase in F1-score with Arabic AraVoiceL2 testset.
WildSpeech-Bench: Benchmarking Audio LLMs in Natural Speech Conversation
Recent multi-modal Large Language Models (LLMs) such as GPT-4o have demonstrated strong capabilities of direct speech interaction. However, the lack of specialized and comprehensive benchmarks for end-to-end speech LLM evaluation hinders optimizing the user experience of Audio LLMs in real-world applications. Existing evaluation methods often adapt text-based benchmarks, overlooking speech's unique characteristics and challenges, including prosody, homophones, stuttering, and differing user expectations. Here, we present a novel approach to thoroughly evaluate LLMs in practical speech conversations. We systematically curate real-world chat data relevant to spoken scenarios, introduce diversity in speaker attributes and acoustic conditions, and augment the dataset with speech-specific phenomena. We further design a query-aware evaluation method to use customized evaluation checklists and prompts to enhance the accuracy of automatic evaluation. We conduct comprehensive testing and detailed analysis of various mainstream speech models, revealing significant differences in model performance across different speech scenarios. The use of query-aware evaluation further enables a finer-grained assessment under various speech-specific scenarios. Our benchmark can provide valuable insights for speech model development and evaluation.
Video DataFlywheel: Resolving the Impossible Data Trinity in Video-Language Understanding
Recently, video-language understanding has achieved great success through large-scale pre-training. However, data scarcity remains a prevailing challenge. This study quantitatively reveals an "impossible trinity" among data quantity, diversity, and quality in pre-training datasets. Recent efforts seek to refine large-scale, diverse ASR datasets compromised by low quality through synthetic annotations. These methods successfully leverage useful information in multimodal video content (frames, tags, ASR transcripts, etc.) to refine the original annotations. Nevertheless, they struggle to mitigate noise within synthetic annotations and lack scalability as the dataset size expands. To address these issues, we introduce the Video DataFlywheel framework, which iteratively refines video annotations with improved noise control methods. For iterative refinement, we first leverage a video-language model to generate synthetic annotations, resulting in a refined dataset. Then, we pre-train on it and fine-tune on human refinement examples for a stronger model. These processes are repeated for continuous improvement. For noise control, we present AdaTaiLr, a novel noise control method that requires weaker assumptions on noise distribution, thereby proving more effective in large datasets with theoretical guarantees. The combination of iterative refinement and AdaTaiLr can achieve better scalability in video-language understanding. Extensive experiments show that our framework outperforms existing data refinement baselines, delivering a 3% performance boost and improving dataset quality with minimal diversity loss. Furthermore, our refined dataset facilitates significant improvements in various video-language understanding tasks, including video question answering and text-video retrieval.
Improving End-to-End SLU performance with Prosodic Attention and Distillation
Most End-to-End SLU methods depend on the pretrained ASR or language model features for intent prediction. However, other essential information in speech, such as prosody, is often ignored. Recent research has shown improved results in classifying dialogue acts by incorporating prosodic information. The margins of improvement in these methods are minimal as the neural models ignore prosodic features. In this work, we propose prosody-attention, which uses the prosodic features differently to generate attention maps across time frames of the utterance. Then we propose prosody-distillation to explicitly learn the prosodic information in the acoustic encoder rather than concatenating the implicit prosodic features. Both the proposed methods improve the baseline results, and the prosody-distillation method gives an intent classification accuracy improvement of 8\% and 2\% on SLURP and STOP datasets over the prosody baseline.
BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications
Automatic speech recognition (ASR) allows transcribing the communications between air traffic controllers (ATCOs) and aircraft pilots. The transcriptions are used later to extract ATC named entities, e.g., aircraft callsigns. One common challenge is speech activity detection (SAD) and speaker diarization (SD). In the failure condition, two or more segments remain in the same recording, jeopardizing the overall performance. We propose a system that combines SAD and a BERT model to perform speaker change detection and speaker role detection (SRD) by chunking ASR transcripts, i.e., SD with a defined number of speakers together with SRD. The proposed model is evaluated on real-life public ATC databases. Our BERT SD model baseline reaches up to 10% and 20% token-based Jaccard error rate (JER) in public and private ATC databases. We also achieved relative improvements of 32% and 7.7% in JERs and SD error rate (DER), respectively, compared to VBx, a well-known SD system.
Enhance Temporal Relations in Audio Captioning with Sound Event Detection
Automated audio captioning aims at generating natural language descriptions for given audio clips, not only detecting and classifying sounds, but also summarizing the relationships between audio events. Recent research advances in audio captioning have introduced additional guidance to improve the accuracy of audio events in generated sentences. However, temporal relations between audio events have received little attention while revealing complex relations is a key component in summarizing audio content. Therefore, this paper aims to better capture temporal relationships in caption generation with sound event detection (SED), a task that locates events' timestamps. We investigate the best approach to integrate temporal information in a captioning model and propose a temporal tag system to transform the timestamps into comprehensible relations. Results evaluated by the proposed temporal metrics suggest that great improvement is achieved in terms of temporal relation generation.
Libri-Light: A Benchmark for ASR with Limited or No Supervision
We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art.
A New Benchmark and Reverse Validation Method for Passage-level Hallucination Detection
Large Language Models (LLMs) have shown their ability to collaborate effectively with humans in real-world scenarios. However, LLMs are apt to generate hallucinations, i.e., makeup incorrect text and unverified information, which can cause significant damage when deployed for mission-critical tasks. In this paper, we propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion. To facilitate future studies and assess different methods, we construct a hallucination detection benchmark named PHD, which is generated by ChatGPT and annotated by human annotators. Contrasting previous studies of zero-resource hallucination detection, our method and benchmark concentrate on passage-level detection instead of sentence-level. We empirically evaluate our method and existing zero-resource detection methods on two datasets. The experimental results demonstrate that the proposed method considerably outperforms the baselines while costing fewer tokens and less time. Furthermore, we manually analyze some hallucination cases that LLM failed to capture, revealing the shared limitation of zero-resource methods.
LLM-EvRep: Learning an LLM-Compatible Event Representation Using a Self-Supervised Framework
Recent advancements in event-based recognition have demonstrated significant promise, yet most existing approaches rely on extensive training, limiting their adaptability for efficient processing of event-driven visual content. Meanwhile, large language models (LLMs) have exhibited remarkable zero-shot capabilities across diverse domains, but their application to event-based visual recognition remains largely unexplored. To bridge this gap, we propose LLM-EvGen, an event representation generator that produces LLM-compatible event representations LLM-EvRep, thereby enhancing the performance of LLMs on event recognition tasks. The generator is trained using a self-supervised framework, aligning the generated representations with semantic consistency and structural fidelity. Comprehensive experiments were conducted on three datasets: N-ImageNet, N-Caltech101, and N-MNIST. The results demonstrate that our method, LLM-EvRep, outperforms the event-to-video method, E2VID, by 15.93\%, 0.82\%, and 50.21\%, respectively, in recognition tasks when evaluated using GPT-4o.
Intel Labs at Ego4D Challenge 2022: A Better Baseline for Audio-Visual Diarization
This report describes our approach for the Audio-Visual Diarization (AVD) task of the Ego4D Challenge 2022. Specifically, we present multiple technical improvements over the official baselines. First, we improve the detection performance of the camera wearer's voice activity by modifying the training scheme of its model. Second, we discover that an off-the-shelf voice activity detection model can effectively remove false positives when it is applied solely to the camera wearer's voice activities. Lastly, we show that better active speaker detection leads to a better AVD outcome. Our final method obtains 65.9% DER on the test set of Ego4D, which significantly outperforms all the baselines. Our submission achieved 1st place in the Ego4D Challenge 2022.
SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding Tasks
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
SPIRE-SIES: A Spontaneous Indian English Speech Corpus
In this paper, we present a 170.83 hour Indian English spontaneous speech dataset. Lack of Indian English speech data is one of the major hindrances in developing robust speech systems which are adapted to the Indian speech style. Moreover this scarcity is even more for spontaneous speech. This corpus is crowd sourced over varied Indian nativities, genders and age groups. Traditional spontaneous speech collection strategies involve capturing of speech during interviewing or conversations. In this study, we use images as stimuli to induce spontaneity in speech. Transcripts for 23 hours is generated and validated which can serve as a spontaneous speech ASR benchmark. Quality of the corpus is validated with voice activity detection based segmentation, gender verification and image semantic correlation. Which determines a relationship between image stimulus and recorded speech using caption keywords derived from Image2Text model and high occurring words derived from whisper ASR generated transcripts.
Gibberish is All You Need for Membership Inference Detection in Contrastive Language-Audio Pretraining
Audio can disclose PII, particularly when combined with related text data. Therefore, it is essential to develop tools to detect privacy leakage in Contrastive Language-Audio Pretraining(CLAP). Existing MIAs need audio as input, risking exposure of voiceprint and requiring costly shadow models. We first propose PRMID, a membership inference detector based probability ranking given by CLAP, which does not require training shadow models but still requires both audio and text of the individual as input. To address these limitations, we then propose USMID, a textual unimodal speaker-level membership inference detector, querying the target model using only text data. We randomly generate textual gibberish that are clearly not in training dataset. Then we extract feature vectors from these texts using the CLAP model and train a set of anomaly detectors on them. During inference, the feature vector of each test text is input into the anomaly detector to determine if the speaker is in the training set (anomalous) or not (normal). If available, USMID can further enhance detection by integrating real audio of the tested speaker. Extensive experiments on various CLAP model architectures and datasets demonstrate that USMID outperforms baseline methods using only text data.
WavChat: A Survey of Spoken Dialogue Models
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.
VAD-free Streaming Hybrid CTC/Attention ASR for Unsegmented Recording
In this work, we propose novel decoding algorithms to enable streaming automatic speech recognition (ASR) on unsegmented long-form recordings without voice activity detection (VAD), based on monotonic chunkwise attention (MoChA) with an auxiliary connectionist temporal classification (CTC) objective. We propose a block-synchronous beam search decoding to take advantage of efficient batched output-synchronous and low-latency input-synchronous searches. We also propose a VAD-free inference algorithm that leverages CTC probabilities to determine a suitable timing to reset the model states to tackle the vulnerability to long-form data. Experimental evaluations demonstrate that the block-synchronous decoding achieves comparable accuracy to the label-synchronous one. Moreover, the VAD-free inference can recognize long-form speech robustly for up to a few hours.
What is More Likely to Happen Next? Video-and-Language Future Event Prediction
Given a video with aligned dialogue, people can often infer what is more likely to happen next. Making such predictions requires not only a deep understanding of the rich dynamics underlying the video and dialogue, but also a significant amount of commonsense knowledge. In this work, we explore whether AI models are able to learn to make such multimodal commonsense next-event predictions. To support research in this direction, we collect a new dataset, named Video-and-Language Event Prediction (VLEP), with 28,726 future event prediction examples (along with their rationales) from 10,234 diverse TV Show and YouTube Lifestyle Vlog video clips. In order to promote the collection of non-trivial challenging examples, we employ an adversarial human-and-model-in-the-loop data collection procedure. We also present a strong baseline incorporating information from video, dialogue, and commonsense knowledge. Experiments show that each type of information is useful for this challenging task, and that compared to the high human performance on VLEP, our model provides a good starting point but leaves large room for future work. Our dataset and code are available at: https://github.com/jayleicn/VideoLanguageFuturePred
SimpleSpeech 2: Towards Simple and Efficient Text-to-Speech with Flow-based Scalar Latent Transformer Diffusion Models
Scaling Text-to-speech (TTS) to large-scale datasets has been demonstrated as an effective method for improving the diversity and naturalness of synthesized speech. At the high level, previous large-scale TTS models can be categorized into either Auto-regressive (AR) based (e.g., VALL-E) or Non-auto-regressive (NAR) based models (e.g., NaturalSpeech 2/3). Although these works demonstrate good performance, they still have potential weaknesses. For instance, AR-based models are plagued by unstable generation quality and slow generation speed; meanwhile, some NAR-based models need phoneme-level duration alignment information, thereby increasing the complexity of data pre-processing, model design, and loss design. In this work, we build upon our previous publication by implementing a simple and efficient non-autoregressive (NAR) TTS framework, termed SimpleSpeech 2. SimpleSpeech 2 effectively combines the strengths of both autoregressive (AR) and non-autoregressive (NAR) methods, offering the following key advantages: (1) simplified data preparation; (2) straightforward model and loss design; and (3) stable, high-quality generation performance with fast inference speed. Compared to our previous publication, we present ({\romannumeral1}) a detailed analysis of the influence of speech tokenizer and noisy label for TTS performance; ({\romannumeral2}) four distinct types of sentence duration predictors; ({\romannumeral3}) a novel flow-based scalar latent transformer diffusion model. With these improvement, we show a significant improvement in generation performance and generation speed compared to our previous work and other state-of-the-art (SOTA) large-scale TTS models. Furthermore, we show that SimpleSpeech 2 can be seamlessly extended to multilingual TTS by training it on multilingual speech datasets. Demos are available on: {https://dongchaoyang.top/SimpleSpeech2\_demo/}.
F^3Set: Towards Analyzing Fast, Frequent, and Fine-grained Events from Videos
Analyzing Fast, Frequent, and Fine-grained (F^3) events presents a significant challenge in video analytics and multi-modal LLMs. Current methods struggle to identify events that satisfy all the F^3 criteria with high accuracy due to challenges such as motion blur and subtle visual discrepancies. To advance research in video understanding, we introduce F^3Set, a benchmark that consists of video datasets for precise F^3 event detection. Datasets in F^3Set are characterized by their extensive scale and comprehensive detail, usually encompassing over 1,000 event types with precise timestamps and supporting multi-level granularity. Currently, F^3Set contains several sports datasets, and this framework may be extended to other applications as well. We evaluated popular temporal action understanding methods on F^3Set, revealing substantial challenges for existing techniques. Additionally, we propose a new method, F^3ED, for F^3 event detections, achieving superior performance. The dataset, model, and benchmark code are available at https://github.com/F3Set/F3Set.
Microphone Conversion: Mitigating Device Variability in Sound Event Classification
In this study, we introduce a new augmentation technique to enhance the resilience of sound event classification (SEC) systems against device variability through the use of CycleGAN. We also present a unique dataset to evaluate this method. As SEC systems become increasingly common, it is crucial that they work well with audio from diverse recording devices. Our method addresses limited device diversity in training data by enabling unpaired training to transform input spectrograms as if they are recorded on a different device. Our experiments show that our approach outperforms existing methods in generalization by 5.2% - 11.5% in weighted f1 score. Additionally, it surpasses the current methods in adaptability across diverse recording devices by achieving a 6.5% - 12.8% improvement in weighted f1 score.
Speech Emotion Diarization: Which Emotion Appears When?
Speech Emotion Recognition (SER) typically relies on utterance-level solutions. However, emotions conveyed through speech should be considered as discrete speech events with definite temporal boundaries, rather than attributes of the entire utterance. To reflect the fine-grained nature of speech emotions, we propose a new task: Speech Emotion Diarization (SED). Just as Speaker Diarization answers the question of "Who speaks when?", Speech Emotion Diarization answers the question of "Which emotion appears when?". To facilitate the evaluation of the performance and establish a common benchmark for researchers, we introduce the Zaion Emotion Dataset (ZED), an openly accessible speech emotion dataset that includes non-acted emotions recorded in real-life conditions, along with manually-annotated boundaries of emotion segments within the utterance. We provide competitive baselines and open-source the code and the pre-trained models.
Language-TPP: Integrating Temporal Point Processes with Language Models for Event Analysis
Temporal Point Processes (TPPs) have been widely used for event sequence modeling, but they often struggle to incorporate rich textual event descriptions effectively. Conversely, while Large Language Models (LLMs) have been shown remarkable capabilities in processing textual data, they lack mechanisms for handling temporal dynamics. To bridge this gap, we introduce Language-TPP, a unified framework that integrates TPPs with LLMs for enhanced event sequence modeling. Language-TPP introduces a novel temporal encoding mechanism that converts continuous time intervals into specialized byte-tokens, enabling seamless integration with standard LLM architectures. This approach allows Language-TPP to achieve state-of-the-art performance across multiple TPP tasks, including event time prediction, type prediction, and intensity estimation, on five datasets. Additionally, we demonstrate that incorporating temporal information significantly improves the quality of generated event descriptions.
Enhancing Child Vocalization Classification in Multi-Channel Child-Adult Conversations Through Wav2vec2 Children ASR Features
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that often emerges in early childhood. ASD assessment typically involves an observation protocol including note-taking and ratings of child's social behavior conducted by a trained clinician. A robust machine learning (ML) model that is capable of labeling adult and child audio has the potential to save significant time and labor in manual coding children's behaviors. This may assist clinicians capture events of interest, better communicate events with parents, and educate new clinicians. In this study, we leverage the self-supervised learning model, Wav2Vec 2.0 (W2V2), pretrained on 4300h of home recordings of children under 5 years old, to build a unified system that performs both speaker diarization (SD) and vocalization classification (VC) tasks. We apply this system to two-channel audio recordings of brief 3-5 minute clinician-child interactions using the Rapid-ABC corpus. We propose a novel technique by introducing auxiliary features extracted from W2V2-based automatic speech recognition (ASR) system for children under 4 years old to improve children's VC task. We test our proposed method of improving children's VC task on two corpora (Rapid-ABC and BabbleCor) and observe consistent improvements. Furthermore, we reach, or perhaps outperform, the state-of-the-art performance of BabbleCor.
Improving Speech Recognition Error Prediction for Modern and Off-the-shelf Speech Recognizers
Modeling the errors of a speech recognizer can help simulate errorful recognized speech data from plain text, which has proven useful for tasks like discriminative language modeling, improving robustness of NLP systems, where limited or even no audio data is available at train time. Previous work typically considered replicating behavior of GMM-HMM based systems, but the behavior of more modern posterior-based neural network acoustic models is not the same and requires adjustments to the error prediction model. In this work, we extend a prior phonetic confusion based model for predicting speech recognition errors in two ways: first, we introduce a sampling-based paradigm that better simulates the behavior of a posterior-based acoustic model. Second, we investigate replacing the confusion matrix with a sequence-to-sequence model in order to introduce context dependency into the prediction. We evaluate the error predictors in two ways: first by predicting the errors made by a Switchboard ASR system on unseen data (Fisher), and then using that same predictor to estimate the behavior of an unrelated cloud-based ASR system on a novel task. Sampling greatly improves predictive accuracy within a 100-guess paradigm, while the sequence model performs similarly to the confusion matrix.
DisfluencySpeech -- Single-Speaker Conversational Speech Dataset with Paralanguage
Laughing, sighing, stuttering, and other forms of paralanguage do not contribute any direct lexical meaning to speech, but they provide crucial propositional context that aids semantic and pragmatic processes such as irony. It is thus important for artificial social agents to both understand and be able to generate speech with semantically-important paralanguage. Most speech datasets do not include transcribed non-lexical speech sounds and disfluencies, while those that do are typically multi-speaker datasets where each speaker provides relatively little audio. This makes it challenging to train conversational Text-to-Speech (TTS) synthesis models that include such paralinguistic components. We thus present DisfluencySpeech, a studio-quality labeled English speech dataset with paralanguage. A single speaker recreates nearly 10 hours of expressive utterances from the Switchboard-1 Telephone Speech Corpus (Switchboard), simulating realistic informal conversations. To aid the development of a TTS model that is able to predictively synthesise paralanguage from text without such components, we provide three different transcripts at different levels of information removal (removal of non-speech events, removal of non-sentence elements, and removal of false starts), as well as benchmark TTS models trained on each of these levels.
Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation
We present a joint audio-visual model for isolating a single speech signal from a mixture of sounds such as other speakers and background noise. Solving this task using only audio as input is extremely challenging and does not provide an association of the separated speech signals with speakers in the video. In this paper, we present a deep network-based model that incorporates both visual and auditory signals to solve this task. The visual features are used to "focus" the audio on desired speakers in a scene and to improve the speech separation quality. To train our joint audio-visual model, we introduce AVSpeech, a new dataset comprised of thousands of hours of video segments from the Web. We demonstrate the applicability of our method to classic speech separation tasks, as well as real-world scenarios involving heated interviews, noisy bars, and screaming children, only requiring the user to specify the face of the person in the video whose speech they want to isolate. Our method shows clear advantage over state-of-the-art audio-only speech separation in cases of mixed speech. In addition, our model, which is speaker-independent (trained once, applicable to any speaker), produces better results than recent audio-visual speech separation methods that are speaker-dependent (require training a separate model for each speaker of interest).
Entity Embedding-based Anomaly Detection for Heterogeneous Categorical Events
Anomaly detection plays an important role in modern data-driven security applications, such as detecting suspicious access to a socket from a process. In many cases, such events can be described as a collection of categorical values that are considered as entities of different types, which we call heterogeneous categorical events. Due to the lack of intrinsic distance measures among entities, and the exponentially large event space, most existing work relies heavily on heuristics to calculate abnormal scores for events. Different from previous work, we propose a principled and unified probabilistic model APE (Anomaly detection via Probabilistic pairwise interaction and Entity embedding) that directly models the likelihood of events. In this model, we embed entities into a common latent space using their observed co-occurrence in different events. More specifically, we first model the compatibility of each pair of entities according to their embeddings. Then we utilize the weighted pairwise interactions of different entity types to define the event probability. Using Noise-Contrastive Estimation with "context-dependent" noise distribution, our model can be learned efficiently regardless of the large event space. Experimental results on real enterprise surveillance data show that our methods can accurately detect abnormal events compared to other state-of-the-art abnormal detection techniques.
Semi-Autoregressive Streaming ASR With Label Context
Non-autoregressive (NAR) modeling has gained significant interest in speech processing since these models achieve dramatically lower inference time than autoregressive (AR) models while also achieving good transcription accuracy. Since NAR automatic speech recognition (ASR) models must wait for the completion of the entire utterance before processing, some works explore streaming NAR models based on blockwise attention for low-latency applications. However, streaming NAR models significantly lag in accuracy compared to streaming AR and non-streaming NAR models. To address this, we propose a streaming "semi-autoregressive" ASR model that incorporates the labels emitted in previous blocks as additional context using a Language Model (LM) subnetwork. We also introduce a novel greedy decoding algorithm that addresses insertion and deletion errors near block boundaries while not significantly increasing the inference time. Experiments show that our method outperforms the existing streaming NAR model by 19% relative on Tedlium2, 16%/8% on Librispeech-100 clean/other test sets, and 19%/8% on the Switchboard(SWB) / Callhome(CH) test sets. It also reduced the accuracy gap with streaming AR and non-streaming NAR models while achieving 2.5x lower latency. We also demonstrate that our approach can effectively utilize external text data to pre-train the LM subnetwork to further improve streaming ASR accuracy.
FunASR: A Fundamental End-to-End Speech Recognition Toolkit
This paper introduces FunASR, an open-source speech recognition toolkit designed to bridge the gap between academic research and industrial applications. FunASR offers models trained on large-scale industrial corpora and the ability to deploy them in applications. The toolkit's flagship model, Paraformer, is a non-autoregressive end-to-end speech recognition model that has been trained on a manually annotated Mandarin speech recognition dataset that contains 60,000 hours of speech. To improve the performance of Paraformer, we have added timestamp prediction and hotword customization capabilities to the standard Paraformer backbone. In addition, to facilitate model deployment, we have open-sourced a voice activity detection model based on the Feedforward Sequential Memory Network (FSMN-VAD) and a text post-processing punctuation model based on the controllable time-delay Transformer (CT-Transformer), both of which were trained on industrial corpora. These functional modules provide a solid foundation for building high-precision long audio speech recognition services. Compared to other models trained on open datasets, Paraformer demonstrates superior performance.
A Survey on Non-Intrusive ASR Refinement: From Output-Level Correction to Full-Model Distillation
Automatic Speech Recognition (ASR) has become an integral component of modern technology, powering applications such as voice-activated assistants, transcription services, and accessibility tools. Yet ASR systems continue to struggle with the inherent variability of human speech, such as accents, dialects, and speaking styles, as well as environmental interference, including background noise. Moreover, domain-specific conversations often employ specialized terminology, which can exacerbate transcription errors. These shortcomings not only degrade raw ASR accuracy but also propagate mistakes through subsequent natural language processing pipelines. Because redesigning an ASR model is costly and time-consuming, non-intrusive refinement techniques that leave the model's architecture unchanged have become increasingly popular. In this survey, we systematically review current non-intrusive refinement approaches and group them into five classes: fusion, re-scoring, correction, distillation, and training adjustment. For each class, we outline the main methods, advantages, drawbacks, and ideal application scenarios. Beyond method classification, this work surveys adaptation techniques aimed at refining ASR in domain-specific contexts, reviews commonly used evaluation datasets along with their construction processes, and proposes a standardized set of metrics to facilitate fair comparisons. Finally, we identify open research gaps and suggest promising directions for future work. By providing this structured overview, we aim to equip researchers and practitioners with a clear foundation for developing more robust, accurate ASR refinement pipelines.
Online Generic Event Boundary Detection
Generic Event Boundary Detection (GEBD) aims to interpret long-form videos through the lens of human perception. However, current GEBD methods require processing complete video frames to make predictions, unlike humans processing data online and in real-time. To bridge this gap, we introduce a new task, Online Generic Event Boundary Detection (On-GEBD), aiming to detect boundaries of generic events immediately in streaming videos. This task faces unique challenges of identifying subtle, taxonomy-free event changes in real-time, without the access to future frames. To tackle these challenges, we propose a novel On-GEBD framework, Estimator, inspired by Event Segmentation Theory (EST) which explains how humans segment ongoing activity into events by leveraging the discrepancies between predicted and actual information. Our framework consists of two key components: the Consistent Event Anticipator (CEA), and the Online Boundary Discriminator (OBD). Specifically, the CEA generates a prediction of the future frame reflecting current event dynamics based solely on prior frames. Then, the OBD measures the prediction error and adaptively adjusts the threshold using statistical tests on past errors to capture diverse, subtle event transitions. Experimental results demonstrate that Estimator outperforms all baselines adapted from recent online video understanding models and achieves performance comparable to prior offline-GEBD methods on the Kinetics-GEBD and TAPOS datasets.
TimeAudio: Bridging Temporal Gaps in Large Audio-Language Models
Recent Large Audio-Language Models (LALMs) exhibit impressive capabilities in understanding audio content for conversational QA tasks. However, these models struggle to accurately understand timestamps for temporal localization (e.g., Temporal Audio Grounding) and are restricted to short audio perception, leading to constrained capabilities on fine-grained tasks. We identify three key aspects that limit their temporal localization and long audio understanding: (i) timestamp representation, (ii) architecture, and (iii) data. To address this, we introduce TimeAudio, a novel method that empowers LALMs to connect their understanding of audio content with precise temporal perception. Specifically, we incorporate unique temporal markers to improve time-sensitive reasoning and apply an absolute time-aware encoding that explicitly grounds the acoustic features with absolute time information. Moreover, to achieve end-to-end long audio understanding, we introduce a segment-level token merging module to substantially reduce audio token redundancy and enhance the efficiency of information extraction. Due to the lack of suitable datasets and evaluation metrics, we consolidate existing audio datasets into a new dataset focused on temporal tasks and establish a series of metrics to evaluate the fine-grained performance. Evaluations show strong performance across a variety of fine-grained tasks, such as dense captioning, temporal grounding, and timeline speech summarization, demonstrating TimeAudio's robust temporal localization and reasoning capabilities.
PAST: Phonetic-Acoustic Speech Tokenizer
We present PAST, a novel end-to-end framework that jointly models phonetic information alongside signal reconstruction, eliminating the need for external pretrained models. Unlike previous approaches that rely on pretrained self-supervised models, PAST employs supervised phonetic data, directly integrating domain knowledge into the tokenization process via auxiliary tasks. Additionally, we introduce a streamable, causal variant of PAST, enabling real-time speech applications. Results demonstrate that PAST surpasses existing evaluated baseline tokenizers across common evaluation metrics, including phonetic representation and speech reconstruction. Notably, PAST also achieves superior performance when serving as a speech representation for speech language models, further highlighting its effectiveness as a foundation for spoken language generation. To foster further research, we release the full implementation. For code, model checkpoints, and samples see: https://pages.cs.huji.ac.il/adiyoss-lab/PAST
MERTech: Instrument Playing Technique Detection Using Self-Supervised Pretrained Model With Multi-Task Finetuning
Instrument playing techniques (IPTs) constitute a pivotal component of musical expression. However, the development of automatic IPT detection methods suffers from limited labeled data and inherent class imbalance issues. In this paper, we propose to apply a self-supervised learning model pre-trained on large-scale unlabeled music data and finetune it on IPT detection tasks. This approach addresses data scarcity and class imbalance challenges. Recognizing the significance of pitch in capturing the nuances of IPTs and the importance of onset in locating IPT events, we investigate multi-task finetuning with pitch and onset detection as auxiliary tasks. Additionally, we apply a post-processing approach for event-level prediction, where an IPT activation initiates an event only if the onset output confirms an onset in that frame. Our method outperforms prior approaches in both frame-level and event-level metrics across multiple IPT benchmark datasets. Further experiments demonstrate the efficacy of multi-task finetuning on each IPT class.
Improving Polyphonic Sound Event Detection on Multichannel Recordings with the Sørensen-Dice Coefficient Loss and Transfer Learning
The S{\o}rensen--Dice Coefficient has recently seen rising popularity as a loss function (also known as Dice loss) due to its robustness in tasks where the number of negative samples significantly exceeds that of positive samples, such as semantic segmentation, natural language processing, and sound event detection. Conventional training of polyphonic sound event detection systems with binary cross-entropy loss often results in suboptimal detection performance as the training is often overwhelmed by updates from negative samples. In this paper, we investigated the effect of the Dice loss, intra- and inter-modal transfer learning, data augmentation, and recording formats, on the performance of polyphonic sound event detection systems with multichannel inputs. Our analysis showed that polyphonic sound event detection systems trained with Dice loss consistently outperformed those trained with cross-entropy loss across different training settings and recording formats in terms of F1 score and error rate. We achieved further performance gains via the use of transfer learning and an appropriate combination of different data augmentation techniques.
Benchmarking Generative Latent Variable Models for Speech
Stochastic latent variable models (LVMs) achieve state-of-the-art performance on natural image generation but are still inferior to deterministic models on speech. In this paper, we develop a speech benchmark of popular temporal LVMs and compare them against state-of-the-art deterministic models. We report the likelihood, which is a much used metric in the image domain, but rarely, or incomparably, reported for speech models. To assess the quality of the learned representations, we also compare their usefulness for phoneme recognition. Finally, we adapt the Clockwork VAE, a state-of-the-art temporal LVM for video generation, to the speech domain. Despite being autoregressive only in latent space, we find that the Clockwork VAE can outperform previous LVMs and reduce the gap to deterministic models by using a hierarchy of latent variables.
Temporal Modeling Matters: A Novel Temporal Emotional Modeling Approach for Speech Emotion Recognition
Speech emotion recognition (SER) plays a vital role in improving the interactions between humans and machines by inferring human emotion and affective states from speech signals. Whereas recent works primarily focus on mining spatiotemporal information from hand-crafted features, we explore how to model the temporal patterns of speech emotions from dynamic temporal scales. Towards that goal, we introduce a novel temporal emotional modeling approach for SER, termed Temporal-aware bI-direction Multi-scale Network (TIM-Net), which learns multi-scale contextual affective representations from various time scales. Specifically, TIM-Net first employs temporal-aware blocks to learn temporal affective representation, then integrates complementary information from the past and the future to enrich contextual representations, and finally, fuses multiple time scale features for better adaptation to the emotional variation. Extensive experimental results on six benchmark SER datasets demonstrate the superior performance of TIM-Net, gaining 2.34% and 2.61% improvements of the average UAR and WAR over the second-best on each corpus. The source code is available at https://github.com/Jiaxin-Ye/TIM-Net_SER.
Speech Recognition and Multi-Speaker Diarization of Long Conversations
Speech recognition (ASR) and speaker diarization (SD) models have traditionally been trained separately to produce rich conversation transcripts with speaker labels. Recent advances have shown that joint ASR and SD models can learn to leverage audio-lexical inter-dependencies to improve word diarization performance. We introduce a new benchmark of hour-long podcasts collected from the weekly This American Life radio program to better compare these approaches when applied to extended multi-speaker conversations. We find that training separate ASR and SD models perform better when utterance boundaries are known but otherwise joint models can perform better. To handle long conversations with unknown utterance boundaries, we introduce a striding attention decoding algorithm and data augmentation techniques which, combined with model pre-training, improves ASR and SD.
FT Speech: Danish Parliament Speech Corpus
This paper introduces FT Speech, a new speech corpus created from the recorded meetings of the Danish Parliament, otherwise known as the Folketing (FT). The corpus contains over 1,800 hours of transcribed speech by a total of 434 speakers. It is significantly larger in duration, vocabulary, and amount of spontaneous speech than the existing public speech corpora for Danish, which are largely limited to read-aloud and dictation data. We outline design considerations, including the preprocessing methods and the alignment procedure. To evaluate the quality of the corpus, we train automatic speech recognition systems on the new resource and compare them to the systems trained on the Danish part of Sprakbanken, the largest public ASR corpus for Danish to date. Our baseline results show that we achieve a 14.01 WER on the new corpus. A combination of FT Speech with in-domain language data provides comparable results to models trained specifically on Sprakbanken, showing that FT Speech transfers well to this data set. Interestingly, our results demonstrate that the opposite is not the case. This shows that FT Speech provides a valuable resource for promoting research on Danish ASR with more spontaneous speech.
MultiQT: Multimodal Learning for Real-Time Question Tracking in Speech
We address a challenging and practical task of labeling questions in speech in real time during telephone calls to emergency medical services in English, which embeds within a broader decision support system for emergency call-takers. We propose a novel multimodal approach to real-time sequence labeling in speech. Our model treats speech and its own textual representation as two separate modalities or views, as it jointly learns from streamed audio and its noisy transcription into text via automatic speech recognition. Our results show significant gains of jointly learning from the two modalities when compared to text or audio only, under adverse noise and limited volume of training data. The results generalize to medical symptoms detection where we observe a similar pattern of improvements with multimodal learning.
Automatic channel selection and spatial feature integration for multi-channel speech recognition across various array topologies
Automatic Speech Recognition (ASR) has shown remarkable progress, yet it still faces challenges in real-world distant scenarios across various array topologies each with multiple recording devices. The focal point of the CHiME-7 Distant ASR task is to devise a unified system capable of generalizing various array topologies that have multiple recording devices and offering reliable recognition performance in real-world environments. Addressing this task, we introduce an ASR system that demonstrates exceptional performance across various array topologies. First of all, we propose two attention-based automatic channel selection modules to select the most advantageous subset of multi-channel signals from multiple recording devices for each utterance. Furthermore, we introduce inter-channel spatial features to augment the effectiveness of multi-frame cross-channel attention, aiding it in improving the capability of spatial information awareness. Finally, we propose a multi-layer convolution fusion module drawing inspiration from the U-Net architecture to integrate the multi-channel output into a single-channel output. Experimental results on the CHiME-7 corpus with oracle segmentation demonstrate that the improvements introduced in our proposed ASR system lead to a relative reduction of 40.1% in the Macro Diarization Attributed Word Error Rates (DA-WER) when compared to the baseline ASR system on the Eval sets.
Grounding Partially-Defined Events in Multimodal Data
How are we able to learn about complex current events just from short snippets of video? While natural language enables straightforward ways to represent under-specified, partially observable events, visual data does not facilitate analogous methods and, consequently, introduces unique challenges in event understanding. With the growing prevalence of vision-capable AI agents, these systems must be able to model events from collections of unstructured video data. To tackle robust event modeling in multimodal settings, we introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task. We propose a corresponding benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities. We propose a collection of LLM-driven approaches to the task of multimodal event analysis, and evaluate them on MultiVENT-G. Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
Time Is a Feature: Exploiting Temporal Dynamics in Diffusion Language Models
Diffusion large language models (dLLMs) generate text through iterative denoising, yet current decoding strategies discard rich intermediate predictions in favor of the final output. Our work here reveals a critical phenomenon, temporal oscillation, where correct answers often emerge in the middle process, but are overwritten in later denoising steps. To address this issue, we introduce two complementary methods that exploit temporal consistency: 1) Temporal Self-Consistency Voting, a training-free, test-time decoding strategy that aggregates predictions across denoising steps to select the most consistent output; and 2) a post-training method termed Temporal Consistency Reinforcement, which uses Temporal Semantic Entropy (TSE), a measure of semantic stability across intermediate predictions, as a reward signal to encourage stable generations. Empirical results across multiple benchmarks demonstrate the effectiveness of our approach. Using the negative TSE reward alone, we observe a remarkable average improvement of 24.7% on the Countdown dataset over an existing dLLM. Combined with the accuracy reward, we achieve absolute gains of 2.0% on GSM8K, 4.3% on MATH500, 6.6% on SVAMP, and 25.3% on Countdown, respectively. Our findings underscore the untapped potential of temporal dynamics in dLLMs and offer two simple yet effective tools to harness them.
Expanding Event Modality Applications through a Robust CLIP-Based Encoder
This paper introduces a powerful encoder that transfers CLIP`s capabilities to event-based data, enhancing its utility and expanding its applicability across diverse domains. While large-scale datasets have significantly advanced image-based models, the scarcity of comprehensive event datasets has limited performance potential in event modality. To address this challenge, we adapt CLIP`s architecture to align event embeddings with image embeddings, supporting zero-shot learning and preserving text alignment while mitigating catastrophic forgetting. Our encoder achieves strong performance in object recognition, with competitive results in zero-shot and few-shot learning tasks. Notably, it generalizes effectively to events extracted from video data without requiring additional training, highlighting its versatility. Additionally, we integrate this encoder within a cross-modality framework that facilitates interaction across five modalities-Image, Event, Text, Sound, and Depth-expanding the possibilities for cross-modal applications. Overall, this work underscores the transformative potential of a robust event encoder, broadening the scope and utility of event-based data across various fields.
Dense-Captioning Events in Videos
Most natural videos contain numerous events. For example, in a video of a "man playing a piano", the video might also contain "another man dancing" or "a crowd clapping". We introduce the task of dense-captioning events, which involves both detecting and describing events in a video. We propose a new model that is able to identify all events in a single pass of the video while simultaneously describing the detected events with natural language. Our model introduces a variant of an existing proposal module that is designed to capture both short as well as long events that span minutes. To capture the dependencies between the events in a video, our model introduces a new captioning module that uses contextual information from past and future events to jointly describe all events. We also introduce ActivityNet Captions, a large-scale benchmark for dense-captioning events. ActivityNet Captions contains 20k videos amounting to 849 video hours with 100k total descriptions, each with it's unique start and end time. Finally, we report performances of our model for dense-captioning events, video retrieval and localization.
RTime-QA: A Benchmark for Atomic Temporal Event Understanding in Large Multi-modal Models
Understanding accurate atomic temporal event is essential for video comprehension. However, current video-language benchmarks often fall short to evaluate Large Multi-modal Models' (LMMs) temporal event understanding capabilities, as they can be effectively addressed using image-language models. In this paper, we introduce RTime-QA, a novel benchmark specifically designed to assess the atomic temporal event understanding ability of LMMs. RTime-QA comprises 822 high-quality, carefully-curated video-text questions, each meticulously annotated by human experts. Each question features a video depicting an atomic temporal event, paired with both correct answers and temporal negative descriptions, specifically designed to evaluate temporal understanding. To advance LMMs' temporal event understanding ability, we further introduce RTime-IT, a 14k instruction-tuning dataset that employs a similar annotation process as RTime-QA. Extensive experimental analysis demonstrates that RTime-QA presents a significant challenge for LMMs: the state-of-the-art model Qwen2-VL achieves only 34.6 on strict-ACC metric, substantially lagging behind human performance. Furthermore, our experiments reveal that RTime-IT effectively enhance LMMs' capacity in temporal understanding. By fine-tuning on RTime-IT, our Qwen2-VL achieves 65.9 on RTime-QA.
Meeting Transcription Using Virtual Microphone Arrays
We describe a system that generates speaker-annotated transcripts of meetings by using a virtual microphone array, a set of spatially distributed asynchronous recording devices such as laptops and mobile phones. The system is composed of continuous audio stream alignment, blind beamforming, speech recognition, speaker diarization using prior speaker information, and system combination. When utilizing seven input audio streams, our system achieves a word error rate (WER) of 22.3% and comes within 3% of the close-talking microphone WER on the non-overlapping speech segments. The speaker-attributed WER (SAWER) is 26.7%. The relative gains in SAWER over the single-device system are 14.8%, 20.3%, and 22.4% for three, five, and seven microphones, respectively. The presented system achieves a 13.6% diarization error rate when 10% of the speech duration contains more than one speaker. The contribution of each component to the overall performance is also investigated, and we validate the system with experiments on the NIST RT-07 conference meeting test set.
Decompose the Sounds and Pixels, Recompose the Events
In this paper, we propose a framework centering around a novel architecture called the Event Decomposition Recomposition Network (EDRNet) to tackle the Audio-Visual Event (AVE) localization problem in the supervised and weakly supervised settings. AVEs in the real world exhibit common unravelling patterns (termed as Event Progress Checkpoints (EPC)), which humans can perceive through the cooperation of their auditory and visual senses. Unlike earlier methods which attempt to recognize entire event sequences, the EDRNet models EPCs and inter-EPC relationships using stacked temporal convolutions. Based on the postulation that EPC representations are theoretically consistent for an event category, we introduce the State Machine Based Video Fusion, a novel augmentation technique that blends source videos using different EPC template sequences. Additionally, we design a new loss function called the Land-Shore-Sea loss to compactify continuous foreground and background representations. Lastly, to alleviate the issue of confusing events during weak supervision, we propose a prediction stabilization method called Bag to Instance Label Correction. Experiments on the AVE dataset show that our collective framework outperforms the state-of-the-art by a sizable margin.
Neural HMMs are all you need (for high-quality attention-free TTS)
Neural sequence-to-sequence TTS has achieved significantly better output quality than statistical speech synthesis using HMMs. However, neural TTS is generally not probabilistic and uses non-monotonic attention. Attention failures increase training time and can make synthesis babble incoherently. This paper describes how the old and new paradigms can be combined to obtain the advantages of both worlds, by replacing attention in neural TTS with an autoregressive left-right no-skip hidden Markov model defined by a neural network. Based on this proposal, we modify Tacotron 2 to obtain an HMM-based neural TTS model with monotonic alignment, trained to maximise the full sequence likelihood without approximation. We also describe how to combine ideas from classical and contemporary TTS for best results. The resulting example system is smaller and simpler than Tacotron 2, and learns to speak with fewer iterations and less data, whilst achieving comparable naturalness prior to the post-net. Our approach also allows easy control over speaking rate.
Speaker Embeddings With Weakly Supervised Voice Activity Detection For Efficient Speaker Diarization
Current speaker diarization systems rely on an external voice activity detection model prior to speaker embedding extraction on the detected speech segments. In this paper, we establish that the attention system of a speaker embedding extractor acts as a weakly supervised internal VAD model and performs equally or better than comparable supervised VAD systems. Subsequently, speaker diarization can be performed efficiently by extracting the VAD logits and corresponding speaker embedding simultaneously, alleviating the need and computational overhead of an external VAD model. We provide an extensive analysis of the behavior of the frame-level attention system in current speaker verification models and propose a novel speaker diarization pipeline using ECAPA2 speaker embeddings for both VAD and embedding extraction. The proposed strategy gains state-of-the-art performance on the AMI, VoxConverse and DIHARD III diarization benchmarks.
SELMA: A Speech-Enabled Language Model for Virtual Assistant Interactions
In this work, we present and evaluate SELMA, a Speech-Enabled Language Model for virtual Assistant interactions that integrates audio and text as inputs to a Large Language Model (LLM). SELMA is designed to handle three primary and two auxiliary tasks related to interactions with virtual assistants simultaneously within a single end-to-end model. We employ low-rank adaptation modules for parameter-efficient training of both the audio encoder and the LLM. Additionally, we implement a feature pooling strategy enabling the system to recognize global patterns and improve accuracy on tasks less reliant on individual sequence elements. Experimental results on Voice Trigger (VT) detection, Device-Directed Speech Detection (DDSD), and Automatic Speech Recognition (ASR), demonstrate that our approach both simplifies the typical input processing pipeline of virtual assistants significantly and also improves performance compared to dedicated models for each individual task. SELMA yields relative Equal-Error Rate improvements of 64% on the VT detection task, and 22% on DDSD, while also achieving word error rates close to the baseline.
EventTransAct: A video transformer-based framework for Event-camera based action recognition
Recognizing and comprehending human actions and gestures is a crucial perception requirement for robots to interact with humans and carry out tasks in diverse domains, including service robotics, healthcare, and manufacturing. Event cameras, with their ability to capture fast-moving objects at a high temporal resolution, offer new opportunities compared to standard action recognition in RGB videos. However, previous research on event camera action recognition has primarily focused on sensor-specific network architectures and image encoding, which may not be suitable for new sensors and limit the use of recent advancements in transformer-based architectures. In this study, we employ a computationally efficient model, namely the video transformer network (VTN), which initially acquires spatial embeddings per event-frame and then utilizes a temporal self-attention mechanism. In order to better adopt the VTN for the sparse and fine-grained nature of event data, we design Event-Contrastive Loss (L_{EC}) and event-specific augmentations. Proposed L_{EC} promotes learning fine-grained spatial cues in the spatial backbone of VTN by contrasting temporally misaligned frames. We evaluate our method on real-world action recognition of N-EPIC Kitchens dataset, and achieve state-of-the-art results on both protocols - testing in seen kitchen (74.9\% accuracy) and testing in unseen kitchens (42.43\% and 46.66\% Accuracy). Our approach also takes less computation time compared to competitive prior approaches, which demonstrates the potential of our framework EventTransAct for real-world applications of event-camera based action recognition. Project Page: https://tristandb8.github.io/EventTransAct_webpage/
Monotonic segmental attention for automatic speech recognition
We introduce a novel segmental-attention model for automatic speech recognition. We restrict the decoder attention to segments to avoid quadratic runtime of global attention, better generalize to long sequences, and eventually enable streaming. We directly compare global-attention and different segmental-attention modeling variants. We develop and compare two separate time-synchronous decoders, one specifically taking the segmental nature into account, yielding further improvements. Using time-synchronous decoding for segmental models is novel and a step towards streaming applications. Our experiments show the importance of a length model to predict the segment boundaries. The final best segmental-attention model using segmental decoding performs better than global-attention, in contrast to other monotonic attention approaches in the literature. Further, we observe that the segmental model generalizes much better to long sequences of up to several minutes.
Dealing with training and test segmentation mismatch: FBK@IWSLT2021
This paper describes FBK's system submission to the IWSLT 2021 Offline Speech Translation task. We participated with a direct model, which is a Transformer-based architecture trained to translate English speech audio data into German texts. The training pipeline is characterized by knowledge distillation and a two-step fine-tuning procedure. Both knowledge distillation and the first fine-tuning step are carried out on manually segmented real and synthetic data, the latter being generated with an MT system trained on the available corpora. Differently, the second fine-tuning step is carried out on a random segmentation of the MuST-C v2 En-De dataset. Its main goal is to reduce the performance drops occurring when a speech translation model trained on manually segmented data (i.e. an ideal, sentence-like segmentation) is evaluated on automatically segmented audio (i.e. actual, more realistic testing conditions). For the same purpose, a custom hybrid segmentation procedure that accounts for both audio content (pauses) and for the length of the produced segments is applied to the test data before passing them to the system. At inference time, we compared this procedure with a baseline segmentation method based on Voice Activity Detection (VAD). Our results indicate the effectiveness of the proposed hybrid approach, shown by a reduction of the gap with manual segmentation from 8.3 to 1.4 BLEU points.
DiPCo -- Dinner Party Corpus
We present a speech data corpus that simulates a "dinner party" scenario taking place in an everyday home environment. The corpus was created by recording multiple groups of four Amazon employee volunteers having a natural conversation in English around a dining table. The participants were recorded by a single-channel close-talk microphone and by five far-field 7-microphone array devices positioned at different locations in the recording room. The dataset contains the audio recordings and human labeled transcripts of a total of 10 sessions with a duration between 15 and 45 minutes. The corpus was created to advance in the field of noise robust and distant speech processing and is intended to serve as a public research and benchmarking data set.
STARSS22: A dataset of spatial recordings of real scenes with spatiotemporal annotations of sound events
This report presents the Sony-TAu Realistic Spatial Soundscapes 2022 (STARS22) dataset for sound event localization and detection, comprised of spatial recordings of real scenes collected in various interiors of two different sites. The dataset is captured with a high resolution spherical microphone array and delivered in two 4-channel formats, first-order Ambisonics and tetrahedral microphone array. Sound events in the dataset belonging to 13 target sound classes are annotated both temporally and spatially through a combination of human annotation and optical tracking. The dataset serves as the development and evaluation dataset for the Task 3 of the DCASE2022 Challenge on Sound Event Localization and Detection and introduces significant new challenges for the task compared to the previous iterations, which were based on synthetic spatialized sound scene recordings. Dataset specifications are detailed including recording and annotation process, target classes and their presence, and details on the development and evaluation splits. Additionally, the report presents the baseline system that accompanies the dataset in the challenge with emphasis on the differences with the baseline of the previous iterations; namely, introduction of the multi-ACCDOA representation to handle multiple simultaneous occurences of events of the same class, and support for additional improved input features for the microphone array format. Results of the baseline indicate that with a suitable training strategy a reasonable detection and localization performance can be achieved on real sound scene recordings. The dataset is available in https://zenodo.org/record/6387880.
Echotune: A Modular Extractor Leveraging the Variable-Length Nature of Speech in ASR Tasks
The Transformer architecture has proven to be highly effective for Automatic Speech Recognition (ASR) tasks, becoming a foundational component for a plethora of research in the domain. Historically, many approaches have leaned on fixed-length attention windows, which becomes problematic for varied speech samples in duration and complexity, leading to data over-smoothing and neglect of essential long-term connectivity. Addressing this limitation, we introduce Echo-MSA, a nimble module equipped with a variable-length attention mechanism that accommodates a range of speech sample complexities and durations. This module offers the flexibility to extract speech features across various granularities, spanning from frames and phonemes to words and discourse. The proposed design captures the variable length feature of speech and addresses the limitations of fixed-length attention. Our evaluation leverages a parallel attention architecture complemented by a dynamic gating mechanism that amalgamates traditional attention with the Echo-MSA module output. Empirical evidence from our study reveals that integrating Echo-MSA into the primary model's training regime significantly enhances the word error rate (WER) performance, all while preserving the intrinsic stability of the original model.
Synergizing Unsupervised Episode Detection with LLMs for Large-Scale News Events
State-of-the-art automatic event detection struggles with interpretability and adaptability to evolving large-scale key events -- unlike episodic structures, which excel in these areas. Often overlooked, episodes represent cohesive clusters of core entities performing actions at a specific time and location; a partially ordered sequence of episodes can represent a key event. This paper introduces a novel task, episode detection, which identifies episodes within a news corpus of key event articles. Detecting episodes poses unique challenges, as they lack explicit temporal or locational markers and cannot be merged using semantic similarity alone. While large language models (LLMs) can aid with these reasoning difficulties, they suffer with long contexts typical of news corpora. To address these challenges, we introduce EpiMine, an unsupervised framework that identifies a key event's candidate episodes by leveraging natural episodic partitions in articles, estimated through shifts in discriminative term combinations. These candidate episodes are more cohesive and representative of true episodes, synergizing with LLMs to better interpret and refine them into final episodes. We apply EpiMine to our three diverse, real-world event datasets annotated at the episode level, where it achieves a 59.2% average gain across all metrics compared to baselines.
HiFiTTS-2: A Large-Scale High Bandwidth Speech Dataset
This paper introduces HiFiTTS-2, a large-scale speech dataset designed for high-bandwidth speech synthesis. The dataset is derived from LibriVox audiobooks, and contains approximately 36.7k hours of English speech for 22.05 kHz training, and 31.7k hours for 44.1 kHz training. We present our data processing pipeline, including bandwidth estimation, segmentation, text preprocessing, and multi-speaker detection. The dataset is accompanied by detailed utterance and audiobook metadata generated by our pipeline, enabling researchers to apply data quality filters to adapt the dataset to various use cases. Experimental results demonstrate that our data pipeline and resulting dataset can facilitate the training of high-quality, zero-shot text-to-speech (TTS) models at high bandwidths.
MIMII DG: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection for Domain Generalization Task
We present a machine sound dataset to benchmark domain generalization techniques for anomalous sound detection (ASD). Domain shifts are differences in data distributions that can degrade the detection performance, and handling them is a major issue for the application of ASD systems. While currently available datasets for ASD tasks assume that occurrences of domain shifts are known, in practice, they can be difficult to detect. To handle such domain shifts, domain generalization techniques that perform well regardless of the domains should be investigated. In this paper, we present the first ASD dataset for the domain generalization techniques, called MIMII DG. The dataset consists of five machine types and three domain shift scenarios for each machine type. The dataset is dedicated to the domain generalization task with features such as multiple different values for parameters that cause domain shifts and introduction of domain shifts that can be difficult to detect, such as shifts in the background noise. Experimental results using two baseline systems indicate that the dataset reproduces domain shift scenarios and is useful for benchmarking domain generalization techniques.
Exploiting semi-supervised training through a dropout regularization in end-to-end speech recognition
In this paper, we explore various approaches for semi supervised learning in an end to end automatic speech recognition (ASR) framework. The first step in our approach involves training a seed model on the limited amount of labelled data. Additional unlabelled speech data is employed through a data selection mechanism to obtain the best hypothesized output, further used to retrain the seed model. However, uncertainties of the model may not be well captured with a single hypothesis. As opposed to this technique, we apply a dropout mechanism to capture the uncertainty by obtaining multiple hypothesized text transcripts of an speech recording. We assume that the diversity of automatically generated transcripts for an utterance will implicitly increase the reliability of the model. Finally, the data selection process is also applied on these hypothesized transcripts to reduce the uncertainty. Experiments on freely available TEDLIUM corpus and proprietary Adobe's internal dataset show that the proposed approach significantly reduces ASR errors, compared to the baseline model.
SpeakerLM: End-to-End Versatile Speaker Diarization and Recognition with Multimodal Large Language Models
The Speaker Diarization and Recognition (SDR) task aims to predict "who spoke when and what" within an audio clip, which is a crucial task in various real-world multi-speaker scenarios such as meeting transcription and dialogue systems. Existing SDR systems typically adopt a cascaded framework, combining multiple modules such as speaker diarization (SD) and automatic speech recognition (ASR). The cascaded systems suffer from several limitations, such as error propagation, difficulty in handling overlapping speech, and lack of joint optimization for exploring the synergy between SD and ASR tasks. To address these limitations, we introduce SpeakerLM, a unified multimodal large language model for SDR that jointly performs SD and ASR in an end-to-end manner. Moreover, to facilitate diverse real-world scenarios, we incorporate a flexible speaker registration mechanism into SpeakerLM, enabling SDR under different speaker registration settings. SpeakerLM is progressively developed with a multi-stage training strategy on large-scale real data. Extensive experiments show that SpeakerLM demonstrates strong data scaling capability and generalizability, outperforming state-of-the-art cascaded baselines on both in-domain and out-of-domain public SDR benchmarks. Furthermore, experimental results show that the proposed speaker registration mechanism effectively ensures robust SDR performance of SpeakerLM across diverse speaker registration conditions and varying numbers of registered speakers.
Prosody-controllable spontaneous TTS with neural HMMs
Spontaneous speech has many affective and pragmatic functions that are interesting and challenging to model in TTS. However, the presence of reduced articulation, fillers, repetitions, and other disfluencies in spontaneous speech make the text and acoustics less aligned than in read speech, which is problematic for attention-based TTS. We propose a TTS architecture that can rapidly learn to speak from small and irregular datasets, while also reproducing the diversity of expressive phenomena present in spontaneous speech. Specifically, we add utterance-level prosody control to an existing neural HMM-based TTS system which is capable of stable, monotonic alignments for spontaneous speech. We objectively evaluate control accuracy and perform perceptual tests that demonstrate that prosody control does not degrade synthesis quality. To exemplify the power of combining prosody control and ecologically valid data for reproducing intricate spontaneous speech phenomena, we evaluate the system's capability of synthesizing two types of creaky voice. Audio samples are available at https://www.speech.kth.se/tts-demos/prosodic-hmm/
GET: Group Event Transformer for Event-Based Vision
Event cameras are a type of novel neuromorphic sen-sor that has been gaining increasing attention. Existing event-based backbones mainly rely on image-based designs to extract spatial information within the image transformed from events, overlooking important event properties like time and polarity. To address this issue, we propose a novel Group-based vision Transformer backbone for Event-based vision, called Group Event Transformer (GET), which de-couples temporal-polarity information from spatial infor-mation throughout the feature extraction process. Specifi-cally, we first propose a new event representation for GET, named Group Token, which groups asynchronous events based on their timestamps and polarities. Then, GET ap-plies the Event Dual Self-Attention block, and Group Token Aggregation module to facilitate effective feature commu-nication and integration in both the spatial and temporal-polarity domains. After that, GET can be integrated with different downstream tasks by connecting it with vari-ous heads. We evaluate our method on four event-based classification datasets (Cifar10-DVS, N-MNIST, N-CARS, and DVS128Gesture) and two event-based object detection datasets (1Mpx and Gen1), and the results demonstrate that GET outperforms other state-of-the-art methods. The code is available at https://github.com/Peterande/GET-Group-Event-Transformer.
Audio tagging with noisy labels and minimal supervision
This paper introduces Task 2 of the DCASE2019 Challenge, titled "Audio tagging with noisy labels and minimal supervision". This task was hosted on the Kaggle platform as "Freesound Audio Tagging 2019". The task evaluates systems for multi-label audio tagging using a large set of noisy-labeled data, and a much smaller set of manually-labeled data, under a large vocabulary setting of 80 everyday sound classes. In addition, the proposed dataset poses an acoustic mismatch problem between the noisy train set and the test set due to the fact that they come from different web audio sources. This can correspond to a realistic scenario given by the difficulty in gathering large amounts of manually labeled data. We present the task setup, the FSDKaggle2019 dataset prepared for this scientific evaluation, and a baseline system consisting of a convolutional neural network. All these resources are freely available.
ACCENT: An Automatic Event Commonsense Evaluation Metric for Open-Domain Dialogue Systems
Commonsense reasoning is omnipresent in human communications and thus is an important feature for open-domain dialogue systems. However, evaluating commonsense in dialogue systems is still an open challenge. We take the first step by focusing on event commonsense that considers events and their relations, and is crucial in both dialogues and general commonsense reasoning. We propose ACCENT, an event commonsense evaluation metric empowered by commonsense knowledge bases (CSKBs). ACCENT first extracts event-relation tuples from a dialogue, and then evaluates the response by scoring the tuples in terms of their compatibility with the CSKB. To evaluate ACCENT, we construct the first public event commonsense evaluation dataset for open-domain dialogues. Our experiments show that ACCENT is an efficient metric for event commonsense evaluation, which achieves higher correlations with human judgments than existing baselines.
PSST! Prosodic Speech Segmentation with Transformers
Self-attention mechanisms have enabled transformers to achieve superhuman-level performance on many speech-to-text (STT) tasks, yet the challenge of automatic prosodic segmentation has remained unsolved. In this paper we finetune Whisper, a pretrained STT model, to annotate intonation unit (IU) boundaries by repurposing low-frequency tokens. Our approach achieves an accuracy of 95.8%, outperforming previous methods without the need for large-scale labeled data or enterprise grade compute resources. We also diminish input signals by applying a series of filters, finding that low pass filters at a 3.2 kHz level improve segmentation performance in out of sample and out of distribution contexts. We release our model as both a transcription tool and a baseline for further improvements in prosodic segmentation.
A report on sound event detection with different binaural features
In this paper, we compare the performance of using binaural audio features in place of single-channel features for sound event detection. Three different binaural features are studied and evaluated on the publicly available TUT Sound Events 2017 dataset of length 70 minutes. Sound event detection is performed separately with single-channel and binaural features using stacked convolutional and recurrent neural network and the evaluation is reported using standard metrics of error rate and F-score. The studied binaural features are seen to consistently perform equal to or better than the single-channel features with respect to error rate metric.
SLUE: New Benchmark Tasks for Spoken Language Understanding Evaluation on Natural Speech
Progress in speech processing has been facilitated by shared datasets and benchmarks. Historically these have focused on automatic speech recognition (ASR), speaker identification, or other lower-level tasks. Interest has been growing in higher-level spoken language understanding tasks, including using end-to-end models, but there are fewer annotated datasets for such tasks. At the same time, recent work shows the possibility of pre-training generic representations and then fine-tuning for several tasks using relatively little labeled data. We propose to create a suite of benchmark tasks for Spoken Language Understanding Evaluation (SLUE) consisting of limited-size labeled training sets and corresponding evaluation sets. This resource would allow the research community to track progress, evaluate pre-trained representations for higher-level tasks, and study open questions such as the utility of pipeline versus end-to-end approaches. We present the first phase of the SLUE benchmark suite, consisting of named entity recognition, sentiment analysis, and ASR on the corresponding datasets. We focus on naturally produced (not read or synthesized) speech, and freely available datasets. We provide new transcriptions and annotations on subsets of the VoxCeleb and VoxPopuli datasets, evaluation metrics and results for baseline models, and an open-source toolkit to reproduce the baselines and evaluate new models.
What Makes Sound Event Localization and Detection Difficult? Insights from Error Analysis
Sound event localization and detection (SELD) is an emerging research topic that aims to unify the tasks of sound event detection and direction-of-arrival estimation. As a result, SELD inherits the challenges of both tasks, such as noise, reverberation, interference, polyphony, and non-stationarity of sound sources. Furthermore, SELD often faces an additional challenge of assigning correct correspondences between the detected sound classes and directions of arrival to multiple overlapping sound events. Previous studies have shown that unknown interferences in reverberant environments often cause major degradation in the performance of SELD systems. To further understand the challenges of the SELD task, we performed a detailed error analysis on two of our SELD systems, which both ranked second in the team category of DCASE SELD Challenge, one in 2020 and one in 2021. Experimental results indicate polyphony as the main challenge in SELD, due to the difficulty in detecting all sound events of interest. In addition, the SELD systems tend to make fewer errors for the polyphonic scenario that is dominant in the training set.
PSELDNets: Pre-trained Neural Networks on Large-scale Synthetic Datasets for Sound Event Localization and Detection
Sound event localization and detection (SELD) has seen substantial advancements through learning-based methods. These systems, typically trained from scratch on specific datasets, have shown considerable generalization capabilities. Recently, deep neural networks trained on large-scale datasets have achieved remarkable success in the sound event classification (SEC) field, prompting an open question of whether these advancements can be extended to develop general-purpose SELD models. In this paper, leveraging the power of pre-trained SEC models, we propose pre-trained SELD networks (PSELDNets) on large-scale synthetic datasets. These synthetic datasets, generated by convolving sound events with simulated spatial room impulse responses (SRIRs), contain 1,167 hours of audio clips with an ontology of 170 sound classes. These PSELDNets are transferred to downstream SELD tasks. When we adapt PSELDNets to specific scenarios, particularly in low-resource data cases, we introduce a data-efficient fine-tuning method, AdapterBit. PSELDNets are evaluated on a synthetic-test-set using collected SRIRs from TAU Spatial Room Impulse Response Database (TAU-SRIR DB) and achieve satisfactory performance. We also conduct our experiments to validate the transferability of PSELDNets to three publicly available datasets and our own collected audio recordings. Results demonstrate that PSELDNets surpass state-of-the-art systems across all publicly available datasets. Given the need for direction-of-arrival estimation, SELD generally relies on sufficient multi-channel audio clips. However, incorporating the AdapterBit, PSELDNets show more efficient adaptability to various tasks using minimal multi-channel or even just monophonic audio clips, outperforming the traditional fine-tuning approaches.
LoCoNet: Long-Short Context Network for Active Speaker Detection
Active Speaker Detection (ASD) aims to identify who is speaking in each frame of a video. ASD reasons from audio and visual information from two contexts: long-term intra-speaker context and short-term inter-speaker context. Long-term intra-speaker context models the temporal dependencies of the same speaker, while short-term inter-speaker context models the interactions of speakers in the same scene. These two contexts are complementary to each other and can help infer the active speaker. Motivated by these observations, we propose LoCoNet, a simple yet effective Long-Short Context Network that models the long-term intra-speaker context and short-term inter-speaker context. We use self-attention to model long-term intra-speaker context due to its effectiveness in modeling long-range dependencies, and convolutional blocks that capture local patterns to model short-term inter-speaker context. Extensive experiments show that LoCoNet achieves state-of-the-art performance on multiple datasets, achieving an mAP of 95.2%(+1.1%) on AVA-ActiveSpeaker, 68.1%(+22%) on Columbia dataset, 97.2%(+2.8%) on Talkies dataset and 59.7%(+8.0%) on Ego4D dataset. Moreover, in challenging cases where multiple speakers are present, or face of active speaker is much smaller than other faces in the same scene, LoCoNet outperforms previous state-of-the-art methods by 3.4% on the AVA-ActiveSpeaker dataset. The code will be released at https://github.com/SJTUwxz/LoCoNet_ASD.
Data Augmentation for Human Behavior Analysis in Multi-Person Conversations
In this paper, we present the solution of our team HFUT-VUT for the MultiMediate Grand Challenge 2023 at ACM Multimedia 2023. The solution covers three sub-challenges: bodily behavior recognition, eye contact detection, and next speaker prediction. We select Swin Transformer as the baseline and exploit data augmentation strategies to address the above three tasks. Specifically, we crop the raw video to remove the noise from other parts. At the same time, we utilize data augmentation to improve the generalization of the model. As a result, our solution achieves the best results of 0.6262 for bodily behavior recognition in terms of mean average precision and the accuracy of 0.7771 for eye contact detection on the corresponding test set. In addition, our approach also achieves comparable results of 0.5281 for the next speaker prediction in terms of unweighted average recall.
Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video Captioning
In this work, we introduce Vid2Seq, a multi-modal single-stage dense event captioning model pretrained on narrated videos which are readily-available at scale. The Vid2Seq architecture augments a language model with special time tokens, allowing it to seamlessly predict event boundaries and textual descriptions in the same output sequence. Such a unified model requires large-scale training data, which is not available in current annotated datasets. We show that it is possible to leverage unlabeled narrated videos for dense video captioning, by reformulating sentence boundaries of transcribed speech as pseudo event boundaries, and using the transcribed speech sentences as pseudo event captions. The resulting Vid2Seq model pretrained on the YT-Temporal-1B dataset improves the state of the art on a variety of dense video captioning benchmarks including YouCook2, ViTT and ActivityNet Captions. Vid2Seq also generalizes well to the tasks of video paragraph captioning and video clip captioning, and to few-shot settings. Our code is publicly available at https://antoyang.github.io/vid2seq.html.
BERSting at the Screams: A Benchmark for Distanced, Emotional and Shouted Speech Recognition
Some speech recognition tasks, such as automatic speech recognition (ASR), are approaching or have reached human performance in many reported metrics. Yet, they continue to struggle in complex, real-world, situations, such as with distanced speech. Previous challenges have released datasets to address the issue of distanced ASR, however, the focus remains primarily on distance, specifically relying on multi-microphone array systems. Here we present the B(asic) E(motion) R(andom phrase) S(hou)t(s) (BERSt) dataset. The dataset contains almost 4 hours of English speech from 98 actors with varying regional and non-native accents. The data was collected on smartphones in the actors homes and therefore includes at least 98 different acoustic environments. The data also includes 7 different emotion prompts and both shouted and spoken utterances. The smartphones were places in 19 different positions, including obstructions and being in a different room than the actor. This data is publicly available for use and can be used to evaluate a variety of speech recognition tasks, including: ASR, shout detection, and speech emotion recognition (SER). We provide initial benchmarks for ASR and SER tasks, and find that ASR degrades both with an increase in distance and shout level and shows varied performance depending on the intended emotion. Our results show that the BERSt dataset is challenging for both ASR and SER tasks and continued work is needed to improve the robustness of such systems for more accurate real-world use.
SpikMamba: When SNN meets Mamba in Event-based Human Action Recognition
Human action recognition (HAR) plays a key role in various applications such as video analysis, surveillance, autonomous driving, robotics, and healthcare. Most HAR algorithms are developed from RGB images, which capture detailed visual information. However, these algorithms raise concerns in privacy-sensitive environments due to the recording of identifiable features. Event cameras offer a promising solution by capturing scene brightness changes sparsely at the pixel level, without capturing full images. Moreover, event cameras have high dynamic ranges that can effectively handle scenarios with complex lighting conditions, such as low light or high contrast environments. However, using event cameras introduces challenges in modeling the spatially sparse and high temporal resolution event data for HAR. To address these issues, we propose the SpikMamba framework, which combines the energy efficiency of spiking neural networks and the long sequence modeling capability of Mamba to efficiently capture global features from spatially sparse and high a temporal resolution event data. Additionally, to improve the locality of modeling, a spiking window-based linear attention mechanism is used. Extensive experiments show that SpikMamba achieves remarkable recognition performance, surpassing the previous state-of-the-art by 1.45%, 7.22%, 0.15%, and 3.92% on the PAF, HARDVS, DVS128, and E-FAction datasets, respectively. The code is available at https://github.com/Typistchen/SpikMamba.
QuerYD: A video dataset with high-quality text and audio narrations
We introduce QuerYD, a new large-scale dataset for retrieval and event localisation in video. A unique feature of our dataset is the availability of two audio tracks for each video: the original audio, and a high-quality spoken description of the visual content. The dataset is based on YouDescribe, a volunteer project that assists visually-impaired people by attaching voiced narrations to existing YouTube videos. This ever-growing collection of videos contains highly detailed, temporally aligned audio and text annotations. The content descriptions are more relevant than dialogue, and more detailed than previous description attempts, which can be observed to contain many superficial or uninformative descriptions. To demonstrate the utility of the QuerYD dataset, we show that it can be used to train and benchmark strong models for retrieval and event localisation. Data, code and models are made publicly available, and we hope that QuerYD inspires further research on video understanding with written and spoken natural language.
Uncertainty-Weighted Image-Event Multimodal Fusion for Video Anomaly Detection
Most existing video anomaly detectors rely solely on RGB frames, which lack the temporal resolution needed to capture abrupt or transient motion cues, key indicators of anomalous events. To address this limitation, we propose Image-Event Fusion for Video Anomaly Detection (IEF-VAD), a framework that synthesizes event representations directly from RGB videos and fuses them with image features through a principled, uncertainty-aware process. The system (i) models heavy-tailed sensor noise with a Student`s-t likelihood, deriving value-level inverse-variance weights via a Laplace approximation; (ii) applies Kalman-style frame-wise updates to balance modalities over time; and (iii) iteratively refines the fused latent state to erase residual cross-modal noise. Without any dedicated event sensor or frame-level labels, IEF-VAD sets a new state of the art across multiple real-world anomaly detection benchmarks. These findings highlight the utility of synthetic event representations in emphasizing motion cues that are often underrepresented in RGB frames, enabling accurate and robust video understanding across diverse applications without requiring dedicated event sensors. Code and models are available at https://github.com/EavnJeong/IEF-VAD.
A Large Dataset of Spontaneous Speech with the Accent Spoken in São Paulo for Automatic Speech Recognition Evaluation
We present a freely available spontaneous speech corpus for the Brazilian Portuguese language and report preliminary automatic speech recognition (ASR) results, using both the Wav2Vec2-XLSR-53 and Distil-Whisper models fine-tuned and trained on our corpus. The NURC-SP Audio Corpus comprises 401 different speakers (204 females, 197 males) with a total of 239.30 hours of transcribed audio recordings. To the best of our knowledge, this is the first large Paulistano accented spontaneous speech corpus dedicated to the ASR task in Portuguese. We first present the design and development procedures of the NURC-SP Audio Corpus, and then describe four ASR experiments in detail. The experiments demonstrated promising results for the applicability of the corpus for ASR. Specifically, we fine-tuned two versions of Wav2Vec2-XLSR-53 model, trained a Distil-Whisper model using our dataset with labels determined by Whisper Large-V3 model, and fine-tuned this Distil-Whisper model with our corpus. Our best results were the Distil-Whisper fine-tuned over NURC-SP Audio Corpus with a WER of 24.22% followed by a fine-tuned versions of Wav2Vec2-XLSR-53 model with a WER of 33.73%, that is almost 10% point worse than Distil-Whisper's. To enable experiment reproducibility, we share the NURC-SP Audio Corpus dataset, pre-trained models, and training recipes in Hugging-Face and Github repositories.
Temporal Residual Guided Diffusion Framework for Event-Driven Video Reconstruction
Event-based video reconstruction has garnered increasing attention due to its advantages, such as high dynamic range and rapid motion capture capabilities. However, current methods often prioritize the extraction of temporal information from continuous event flow, leading to an overemphasis on low-frequency texture features in the scene, resulting in over-smoothing and blurry artifacts. Addressing this challenge necessitates the integration of conditional information, encompassing temporal features, low-frequency texture, and high-frequency events, to guide the Denoising Diffusion Probabilistic Model (DDPM) in producing accurate and natural outputs. To tackle this issue, we introduce a novel approach, the Temporal Residual Guided Diffusion Framework, which effectively leverages both temporal and frequency-based event priors. Our framework incorporates three key conditioning modules: a pre-trained low-frequency intensity estimation module, a temporal recurrent encoder module, and an attention-based high-frequency prior enhancement module. In order to capture temporal scene variations from the events at the current moment, we employ a temporal-domain residual image as the target for the diffusion model. Through the combination of these three conditioning paths and the temporal residual framework, our framework excels in reconstructing high-quality videos from event flow, mitigating issues such as artifacts and over-smoothing commonly observed in previous approaches. Extensive experiments conducted on multiple benchmark datasets validate the superior performance of our framework compared to prior event-based reconstruction methods.
From What to Respond to When to Respond: Timely Response Generation for Open-domain Dialogue Agents
While research on dialogue response generation has primarily focused on generating coherent responses conditioning on textual context, the critical question of when to respond grounded on the temporal context remains underexplored. To bridge this gap, we propose a novel task called timely dialogue response generation and introduce the TimelyChat benchmark, which evaluates the capabilities of language models to predict appropriate time intervals and generate time-conditioned responses. Additionally, we construct a large-scale training dataset by leveraging unlabeled event knowledge from a temporal commonsense knowledge graph and employing a large language model (LLM) to synthesize 55K event-driven dialogues. We then train Timer, a dialogue agent designed to proactively predict time intervals and generate timely responses that align with those intervals. Experimental results show that Timer outperforms prompting-based LLMs and other fine-tuned baselines in both turn-level and dialogue-level evaluations. We publicly release our data, model, and code.
Hierarchical attention interpretation: an interpretable speech-level transformer for bi-modal depression detection
Depression is a common mental disorder. Automatic depression detection tools using speech, enabled by machine learning, help early screening of depression. This paper addresses two limitations that may hinder the clinical implementations of such tools: noise resulting from segment-level labelling and a lack of model interpretability. We propose a bi-modal speech-level transformer to avoid segment-level labelling and introduce a hierarchical interpretation approach to provide both speech-level and sentence-level interpretations, based on gradient-weighted attention maps derived from all attention layers to track interactions between input features. We show that the proposed model outperforms a model that learns at a segment level (p=0.854, r=0.947, F1=0.947 compared to p=0.732, r=0.808, F1=0.768). For model interpretation, using one true positive sample, we show which sentences within a given speech are most relevant to depression detection; and which text tokens and Mel-spectrogram regions within these sentences are most relevant to depression detection. These interpretations allow clinicians to verify the validity of predictions made by depression detection tools, promoting their clinical implementations.
MPN: Multimodal Parallel Network for Audio-Visual Event Localization
Audio-visual event localization aims to localize an event that is both audible and visible in the wild, which is a widespread audio-visual scene analysis task for unconstrained videos. To address this task, we propose a Multimodal Parallel Network (MPN), which can perceive global semantics and unmixed local information parallelly. Specifically, our MPN framework consists of a classification subnetwork to predict event categories and a localization subnetwork to predict event boundaries. The classification subnetwork is constructed by the Multimodal Co-attention Module (MCM) and obtains global contexts. The localization subnetwork consists of Multimodal Bottleneck Attention Module (MBAM), which is designed to extract fine-grained segment-level contents. Extensive experiments demonstrate that our framework achieves the state-of-the-art performance both in fully supervised and weakly supervised settings on the Audio-Visual Event (AVE) dataset.
A Detailed Audio-Text Data Simulation Pipeline using Single-Event Sounds
Recently, there has been an increasing focus on audio-text cross-modal learning. However, most of the existing audio-text datasets contain only simple descriptions of sound events. Compared with classification labels, the advantages of such descriptions are significantly limited. In this paper, we first analyze the detailed information that human descriptions of audio may contain beyond sound event labels. Based on the analysis, we propose an automatic pipeline for curating audio-text pairs with rich details. Leveraging the property that sounds can be mixed and concatenated in the time domain, we control details in four aspects: temporal relationship, loudness, speaker identity, and occurrence number, in simulating audio mixtures. Corresponding details are transformed into captions by large language models. Audio-text pairs with rich details in text descriptions are thereby obtained. We validate the effectiveness of our pipeline with a small amount of simulated data, demonstrating that the simulated data enables models to learn detailed audio captioning.
On the Consistency of Video Large Language Models in Temporal Comprehension
Video large language models (Video-LLMs) can temporally ground language queries and retrieve video moments. Yet, such temporal comprehension capabilities are neither well-studied nor understood. So we conduct a study on prediction consistency -- a key indicator for robustness and trustworthiness of temporal grounding. After the model identifies an initial moment within the video content, we apply a series of probes to check if the model's responses align with this initial grounding as an indicator of reliable comprehension. Our results reveal that current Video-LLMs are sensitive to variations in video contents, language queries, and task settings, unveiling severe deficiencies in maintaining consistency. We further explore common prompting and instruction-tuning methods as potential solutions, but find that their improvements are often unstable. To that end, we propose event temporal verification tuning that explicitly accounts for consistency, and demonstrate significant improvements for both grounding and consistency. Our data and code will be available at https://github.com/minjoong507/Consistency-of-Video-LLM.
Summarizing Speech: A Comprehensive Survey
Speech summarization has become an essential tool for efficiently managing and accessing the growing volume of spoken and audiovisual content. However, despite its increasing importance, speech summarization remains loosely defined. The field intersects with several research areas, including speech recognition, text summarization, and specific applications like meeting summarization. This survey not only examines existing datasets and evaluation protocols, which are crucial for assessing the quality of summarization approaches, but also synthesizes recent developments in the field, highlighting the shift from traditional systems to advanced models like fine-tuned cascaded architectures and end-to-end solutions. In doing so, we surface the ongoing challenges, such as the need for realistic evaluation benchmarks, multilingual datasets, and long-context handling.
SpeechStew: Simply Mix All Available Speech Recognition Data to Train One Large Neural Network
We present SpeechStew, a speech recognition model that is trained on a combination of various publicly available speech recognition datasets: AMI, Broadcast News, Common Voice, LibriSpeech, Switchboard/Fisher, Tedlium, and Wall Street Journal. SpeechStew simply mixes all of these datasets together, without any special re-weighting or re-balancing of the datasets. SpeechStew achieves SoTA or near SoTA results across a variety of tasks, without the use of an external language model. Our results include 9.0\% WER on AMI-IHM, 4.7\% WER on Switchboard, 8.3\% WER on CallHome, and 1.3\% on WSJ, which significantly outperforms prior work with strong external language models. We also demonstrate that SpeechStew learns powerful transfer learning representations. We fine-tune SpeechStew on a noisy low resource speech dataset, CHiME-6. We achieve 38.9\% WER without a language model, which compares to 38.6\% WER to a strong HMM baseline with a language model.
Interspeech 2025 URGENT Speech Enhancement Challenge
There has been a growing effort to develop universal speech enhancement (SE) to handle inputs with various speech distortions and recording conditions. The URGENT Challenge series aims to foster such universal SE by embracing a broad range of distortion types, increasing data diversity, and incorporating extensive evaluation metrics. This work introduces the Interspeech 2025 URGENT Challenge, the second edition of the series, to explore several aspects that have received limited attention so far: language dependency, universality for more distortion types, data scalability, and the effectiveness of using noisy training data. We received 32 submissions, where the best system uses a discriminative model, while most other competitive ones are hybrid methods. Analysis reveals some key findings: (i) some generative or hybrid approaches are preferred in subjective evaluations over the top discriminative model, and (ii) purely generative SE models can exhibit language dependency.
IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model
In this paper, we describe our shared task submissions for Subtask 2 in CASE-2022, Event Causality Identification with Casual News Corpus. The challenge focused on the automatic detection of all cause-effect-signal spans present in the sentence from news-media. We detect cause-effect-signal spans in a sentence using T5 -- a pre-trained autoregressive language model. We iteratively identify all cause-effect-signal span triplets, always conditioning the prediction of the next triplet on the previously predicted ones. To predict the triplet itself, we consider different causal relationships such as causerightarroweffectrightarrowsignal. Each triplet component is generated via a language model conditioned on the sentence, the previous parts of the current triplet, and previously predicted triplets. Despite training on an extremely small dataset of 160 samples, our approach achieved competitive performance, being placed second in the competition. Furthermore, we show that assuming either causerightarroweffect or effectrightarrowcause order achieves similar results.
Moshi: a speech-text foundation model for real-time dialogue
We introduce Moshi, a speech-text foundation model and full-duplex spoken dialogue framework. Current systems for spoken dialogue rely on pipelines of independent components, namely voice activity detection, speech recognition, textual dialogue and text-to-speech. Such frameworks cannot emulate the experience of real conversations. First, their complexity induces a latency of several seconds between interactions. Second, text being the intermediate modality for dialogue, non-linguistic information that modifies meaning -- such as emotion or non-speech sounds -- is lost in the interaction. Finally, they rely on a segmentation into speaker turns, which does not take into account overlapping speech, interruptions and interjections. Moshi solves these independent issues altogether by casting spoken dialogue as speech-to-speech generation. Starting from a text language model backbone, Moshi generates speech as tokens from the residual quantizer of a neural audio codec, while modeling separately its own speech and that of the user into parallel streams. This allows for the removal of explicit speaker turns, and the modeling of arbitrary conversational dynamics. We moreover extend the hierarchical semantic-to-acoustic token generation of previous work to first predict time-aligned text tokens as a prefix to audio tokens. Not only this "Inner Monologue" method significantly improves the linguistic quality of generated speech, but we also illustrate how it can provide streaming speech recognition and text-to-speech. Our resulting model is the first real-time full-duplex spoken large language model, with a theoretical latency of 160ms, 200ms in practice, and is available at https://github.com/kyutai-labs/moshi.
NAST: Noise Aware Speech Tokenization for Speech Language Models
Speech tokenization is the task of representing speech signals as a sequence of discrete units. Such representations can be later used for various downstream tasks including automatic speech recognition, text-to-speech, etc. More relevant to this study, such representation serves as the basis of Speech Language Models. In this work, we tackle the task of speech tokenization under the noisy setup and present NAST: Noise Aware Speech Tokenization for Speech Language Models. NAST is composed of three main components: (i) a predictor; (ii) a residual encoder; and (iii) a decoder. We evaluate the efficiency of NAST considering several spoken language modeling tasks and show that NAST is superior to the evaluated baselines across all setups. Lastly, we analyze NAST and show its disentanglement properties and robustness to signal variations in the form of noise, reverberation, pitch-shift, and time-stretch. Code and pre-trained models are available at https://github.com/ShovalMessica/NAST.
Diff-TTSG: Denoising probabilistic integrated speech and gesture synthesis
With read-aloud speech synthesis achieving high naturalness scores, there is a growing research interest in synthesising spontaneous speech. However, human spontaneous face-to-face conversation has both spoken and non-verbal aspects (here, co-speech gestures). Only recently has research begun to explore the benefits of jointly synthesising these two modalities in a single system. The previous state of the art used non-probabilistic methods, which fail to capture the variability of human speech and motion, and risk producing oversmoothing artefacts and sub-optimal synthesis quality. We present the first diffusion-based probabilistic model, called Diff-TTSG, that jointly learns to synthesise speech and gestures together. Our method can be trained on small datasets from scratch. Furthermore, we describe a set of careful uni- and multi-modal subjective tests for evaluating integrated speech and gesture synthesis systems, and use them to validate our proposed approach. Please see https://shivammehta25.github.io/Diff-TTSG/ for video examples, data, and code.
Knowledge boosting during low-latency inference
Models for low-latency, streaming applications could benefit from the knowledge capacity of larger models, but edge devices cannot run these models due to resource constraints. A possible solution is to transfer hints during inference from a large model running remotely to a small model running on-device. However, this incurs a communication delay that breaks real-time requirements and does not guarantee that both models will operate on the same data at the same time. We propose knowledge boosting, a novel technique that allows a large model to operate on time-delayed input during inference, while still boosting small model performance. Using a streaming neural network that processes 8 ms chunks, we evaluate different speech separation and enhancement tasks with communication delays of up to six chunks or 48 ms. Our results show larger gains where the performance gap between the small and large models is wide, demonstrating a promising method for large-small model collaboration for low-latency applications. Code, dataset, and audio samples available at https://knowledgeboosting.cs.washington.edu/.
NOTSOFAR-1 Challenge: New Datasets, Baseline, and Tasks for Distant Meeting Transcription
We introduce the first Natural Office Talkers in Settings of Far-field Audio Recordings (``NOTSOFAR-1'') Challenge alongside datasets and baseline system. The challenge focuses on distant speaker diarization and automatic speech recognition (DASR) in far-field meeting scenarios, with single-channel and known-geometry multi-channel tracks, and serves as a launch platform for two new datasets: First, a benchmarking dataset of 315 meetings, averaging 6 minutes each, capturing a broad spectrum of real-world acoustic conditions and conversational dynamics. It is recorded across 30 conference rooms, featuring 4-8 attendees and a total of 35 unique speakers. Second, a 1000-hour simulated training dataset, synthesized with enhanced authenticity for real-world generalization, incorporating 15,000 real acoustic transfer functions. The tasks focus on single-device DASR, where multi-channel devices always share the same known geometry. This is aligned with common setups in actual conference rooms, and avoids technical complexities associated with multi-device tasks. It also allows for the development of geometry-specific solutions. The NOTSOFAR-1 Challenge aims to advance research in the field of distant conversational speech recognition, providing key resources to unlock the potential of data-driven methods, which we believe are currently constrained by the absence of comprehensive high-quality training and benchmarking datasets.
TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection
Time-series anomaly detection plays a central role across a wide range of application domains. With the increasing proliferation of the Internet of Things (IoT) and smart manufacturing, time-series data has dramatically increased in both scale and dimensionality. This growth has exposed the limitations of traditional statistical methods in handling the high heterogeneity and complexity of such data. Inspired by the recent success of large language models (LLMs) in multimodal tasks across language and vision domains, we propose a novel unsupervised anomaly detection framework: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection (TriP-LLM). TriP-LLM integrates local and global temporal features through a tri-branch design-Patching, Selection, and Global-to encode the input time series into patch-wise tokens, which are then processed by a frozen, pretrained LLM. A lightweight patch-wise decoder reconstructs the input, from which anomaly scores are derived. We evaluate TriP-LLM on several public benchmark datasets using PATE, a recently proposed threshold-free evaluation metric, and conduct all comparisons within a unified open-source framework to ensure fairness. Experimental results show that TriP-LLM consistently outperforms recent state-of-the-art methods across all datasets, demonstrating strong detection capabilities. Furthermore, through extensive ablation studies, we verify the substantial contribution of the LLM to the overall architecture. Compared to LLM-based approaches using Channel Independence (CI) patch processing, TriP-LLM achieves significantly lower memory consumption, making it more suitable for GPU memory-constrained environments. All code and model checkpoints are publicly available on https://github.com/YYZStart/TriP-LLM.git
XAI-based Comparison of Input Representations for Audio Event Classification
Deep neural networks are a promising tool for Audio Event Classification. In contrast to other data like natural images, there are many sensible and non-obvious representations for audio data, which could serve as input to these models. Due to their black-box nature, the effect of different input representations has so far mostly been investigated by measuring classification performance. In this work, we leverage eXplainable AI (XAI), to understand the underlying classification strategies of models trained on different input representations. Specifically, we compare two model architectures with regard to relevant input features used for Audio Event Detection: one directly processes the signal as the raw waveform, and the other takes in its time-frequency spectrogram representation. We show how relevance heatmaps obtained via "Siren"{Layer-wise Relevance Propagation} uncover representation-dependent decision strategies. With these insights, we can make a well-informed decision about the best input representation in terms of robustness and representativity and confirm that the model's classification strategies align with human requirements.
