Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBaryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction
Recent studies illustrate the correlation between the angular momenta of cosmic structures and their Lagrangian properties. However, only baryons are observable and it is unclear whether they reliably trace the cosmic angular momenta. We study the Lagrangian mass distribution, spin correlation, and predictability of dark matter, gas, and stellar components of galaxy-halo systems using IllustrisTNG, and show that the primordial segregations between components are typically small. Their protoshapes are also similar in terms of the statistics of moment of inertia tensors. Under the common gravitational potential they are expected to exert the same tidal torque and the strong spin correlations are not destroyed by the nonlinear evolution and complicated baryonic effects, as confirmed by the high-resolution hydrodynamic simulations. We further show that their late-time angular momenta traced by total gas, stars, or the central galaxies, can be reliably reconstructed by the initial perturbations. These results suggest that baryonic angular momenta can potentially be used in reconstructing the parameters and models related to the initial perturbations.
RABBITS -- I. The crucial role of nuclear star formation in driving the coalescence of supermassive black hole binaries
In this study of the `Resolving supermAssive Black hole Binaries In galacTic hydrodynamical Simulations' (RABBITS) series, we focus on the hardening and coalescing process of supermassive black hole (SMBH) binaries in galaxy mergers. For simulations including different galaxy formation processes (i.e. gas cooling, star formation, SMBH accretion, stellar and AGN feedback), we systematically control the effect of stochastic eccentricity by fixing it to similar values during the SMBH hardening phase. We find a strong correlation between the SMBH merger time-scales and the presence of nuclear star formation. Throughout the galaxy merging process, gas condenses at the centre due to cooling and tidal torques, leading to nuclear star formation. These recently formed stars, which inherit low angular momenta from the gas, contribute to the loss cone and assist in the SMBH hardening via three-body interactions. Compared to non-radiative hydrodynamical runs, the SMBH merger time-scales measured from the runs including cooling, stellar and SMBH physical processes tend to be shortened by a factor of {sim}1.7. After fixing the eccentricity to the range of e sim 0.6--0.8 during the hardening phase, the simulations with AGN feedback reveal merger time-scales of {sim} 100--500 Myr for disc mergers and {sim} 1--2 Gyr for elliptical mergers. With a semi-analytical approach, we find that the torque interaction between the binary and its circumbinary disc has minimal impact on the shrinking of the binary orbit in our retrograde galaxy merger. Our results are useful in improving the modelling of SMBH merger time-scales and gravitational wave event rates.
Extension of the creep tide theory to exoplanet systems with high stellar obliquity. The dynamic tide of CoRoT-3b
This paper extends the creep tide theory to exoplanetary systems with significant obliquities. The extended theory allows us to obtain the stellar and planetary hydrodynamic equilibrium tides and the evolution of the rotational state of the bodies. The dynamic ellipsoidal figure of equilibrium of the body is calculated taking into account that its reaction to external forces is delayed by its viscosity. The derived equations are used to determine the motion of the tidal bulge of the planetary companion CoRoT-3b (a brown dwarf) and its host star. We show how the tides deform the figure of the companion and how its tidal bulge moves close to the substellar meridian from one hemisphere to another. The stellar lag is mostly positive and is braking the star's rotation.
Characterizing WASP-43b's interior structure: unveiling tidal decay and apsidal motion
Context. Recent developments in exoplanetary research highlight the importance of Love numbers in understanding their internal dynamics, formation, migration history and their potential habitability. Love numbers represent crucial parameters that gauge how exoplanets respond to external forces such as tidal interactions and rotational effects. By measuring these responses, we can gain insights into the internal structure, composition, and density distribution of exoplanets. The rate of apsidal precession of a planetary orbit is directly linked to the second-order fluid Love number, thus we can gain valuable insights into the mass distribution of the planet. Aims. In this context, we aim to re-determine the orbital parameters of WASP-43b-in particular, orbital period, eccentricity, and argument of the periastron-and its orbital evolution. We study the outcomes of the tidal interaction with the host star:whether tidal decay and periastron precession are occurring in the system. Method. We observed the system with HARPS, whose data we present for the first time, and we also analyse the newly acquired JWST full-phase light curve. We fit jointly archival and new radial velocity and transit and occultation mid-times, including tidal decay, periastron precession and long-term acceleration in the system. Results. We detected a tidal decay rate of \dotP_a=(-1.99pm0.50) and a periastron precession rate of \dotomega=(0.1851+0.0070-0.0077)=(0.1727+0.0083-0.0089)deg/d=(621.72+29.88-32.04)arcsec/d. This is the first time that both periastron precession and tidal decay are simultaneously detected in an exoplanetary system. The observed tidal interactions can neither be explained by the tidal contribution to apsidal motion of a non-aligned stellar or planetary rotation axis nor by assuming non-synchronous rotation for the planet, and a value for the planetary Love number cannot be derived. [...]
The growth of intermediate mass black holes through tidal captures and tidal disruption events
We present N-body simulations, including post-Newtonian dynamics, of dense clusters of low-mass stars harbouring central black holes (BHs) with initial masses of 50, 300, and 2000 M_{odot}. The models are evolved with the N-body code bifrost to investigate the possible formation and growth of massive BHs by the tidal capture of stars and tidal disruption events (TDEs). We model star-BH tidal interactions using a velocity-dependent drag force, which causes orbital energy and angular momentum loss near the BH. About sim 20-30 per cent of the stars within the spheres of influence of the black holes form Bahcall-Wolf cusps and prevent the systems from core collapse. Within the first 40 Myr of evolution, the systems experience 500 up to 1300 TDEs, depending on the initial cluster structure. Most (> 95 per cent) of the TDEs originate from stars in the Bahcall-Wolf cusp. We derive an analytical formula for the TDE rate as a function of the central BH mass, density and velocity dispersion of the clusters (N_{TDE} propto M_{BH} rho sigma^{-3}). We find that TDEs can lead a 300 M_{odot} BH to reach sim 7000 M_{odot} within a Gyr. This indicates that TDEs can drive the formation and growth of massive BHs in sufficiently dense environments, which might be present in the central regions of nuclear star clusters.
Tides on Lava Worlds: Application to Close-in Exoplanets and the Early Earth-Moon System
Understanding the physics of planetary magma oceans has been the subject of growing efforts, in light of the increasing abundance of Solar system samples and extrasolar surveys. A rocky planet harboring such an ocean is likely to interact tidally with its host star, planetary companions, or satellites. To date, however, models of the tidal response and heat generation of magma oceans have been restricted to the framework of weakly viscous solids, ignoring the dynamical fluid behavior of the ocean beyond a critical melt fraction. Here we provide a handy analytical model that accommodates this phase transition, allowing for a physical estimation of the tidal response of lava worlds. We apply the model in two settings: The tidal history of the early Earth-Moon system in the aftermath of the giant impact; and the tidal interplay between short-period exoplanets and their host stars. For the former, we show that the fluid behavior of the Earth's molten surface drives efficient early Lunar recession to {sim} 25 Earth radii within 10^4{-} 10^5 years, in contrast with earlier predictions. For close-in exoplanets, we report on how their molten surfaces significantly change their spin-orbit dynamics, allowing them to evade spin-orbit resonances and accelerating their track towards tidal synchronization from a Gyr to Myr timescale. Moreover, we re-evaluate the energy budgets of detected close-in exoplanets, highlighting how the surface thermodynamics of these planets are likely controlled by enhanced, fluid-driven tidal heating, rather than vigorous insolation, and how this regime change substantially alters predictions for their surface temperatures.
The implications of stochastic gas torques for asymmetric binaries in the LISA band
Gravitational waves from asymmetric mass-ratio black-hole binaries carry unique information about their astrophysical environment. For instance, the Laser Interferometer Space Antenna (LISA) could potentially measure the amplitude and slope of gas torques in binaries embedded in the accretion disks of Active Galactic Nuclei, helping differentiate competing accretion disk models. However, this relies on simplified analytic models, which do not account for the stochastic variability of torques seen in hydrodynamic simulations. In this work, we use hydrodynamic simulations to create gravitational waveforms for extreme and intermediate mass-ratio inspirals in the LISA band. We then analyze these simulated waveforms using simpler templates that assume analytic torques, without stochastic time variability. By performing realistic Bayesian parameter estimation, we find no bias at 90% confidence in the binary parameters; however, estimates of accretion disk parameters, such as torque amplitude and slope, may be biased. Typically, the posterior distribution is centered around the average value of the torques, but when stochastic variability is large, the posterior can indicate no torques, even though they are present in the simulation. Our results suggest that while simplified analytic torque models work well for estimating binary parameters, caution is needed when using them to infer properties of the accretion disk. This work moves towards a more realistic assessment of one of the LISA science objectives, i.e., probing the properties of the astrophysical environments of black holes.
TiDAL: Learning Training Dynamics for Active Learning
Active learning (AL) aims to select the most useful data samples from an unlabeled data pool and annotate them to expand the labeled dataset under a limited budget. Especially, uncertainty-based methods choose the most uncertain samples, which are known to be effective in improving model performance. However, AL literature often overlooks training dynamics (TD), defined as the ever-changing model behavior during optimization via stochastic gradient descent, even though other areas of literature have empirically shown that TD provides important clues for measuring the sample uncertainty. In this paper, we propose a novel AL method, Training Dynamics for Active Learning (TiDAL), which leverages the TD to quantify uncertainties of unlabeled data. Since tracking the TD of all the large-scale unlabeled data is impractical, TiDAL utilizes an additional prediction module that learns the TD of labeled data. To further justify the design of TiDAL, we provide theoretical and empirical evidence to argue the usefulness of leveraging TD for AL. Experimental results show that our TiDAL achieves better or comparable performance on both balanced and imbalanced benchmark datasets compared to state-of-the-art AL methods, which estimate data uncertainty using only static information after model training.
TidalDecode: Fast and Accurate LLM Decoding with Position Persistent Sparse Attention
Large language models (LLMs) have driven significant advancements across diverse NLP tasks, with long-context models gaining prominence for handling extended inputs. However, the expanding key-value (KV) cache size required by Transformer architectures intensifies the memory constraints, particularly during the decoding phase, creating a significant bottleneck. Existing sparse attention mechanisms designed to address this bottleneck have two limitations: (1) they often fail to reliably identify the most relevant tokens for attention, and (2) they overlook the spatial coherence of token selection across consecutive Transformer layers, which can lead to performance degradation and substantial overhead in token selection. This paper introduces TidalDecode, a simple yet effective algorithm and system for fast and accurate LLM decoding through position persistent sparse attention. TidalDecode leverages the spatial coherence of tokens selected by existing sparse attention methods and introduces a few token selection layers that perform full attention to identify the tokens with the highest attention scores, while all other layers perform sparse attention with the pre-selected tokens. This design enables TidalDecode to substantially reduce the overhead of token selection for sparse attention without sacrificing the quality of the generated results. Evaluation on a diverse set of LLMs and tasks shows that TidalDecode closely matches the generative performance of full attention methods while reducing the LLM decoding latency by up to 2.1x.
Radiating Love: adiabatic tidal fluxes and modes up to next-to-next-to-leading post-Newtonian order
We present the analytic evaluation of the gravitational energy and of the angular momentum flux with tidal effects for inspiraling compact binaries, at next-to-next-to-leading post-Newtoian (2PN) order, within the effective field theory diagrammatic approach. We first compute the stress-energy tensor for a binary system, that requires the evaluation of two-point Feynman integrals, up to two loops. Then, we extract the multipole moments of the system, which we present for generic orbits in center-of-mass coordinates, and which are needed for the evaluation of the total gravitational energy and the angular momentum flux, for generic orbits. Finally, we provide the expression of gauge invariant quantities such as the fluxes, and the mode amplitudes and phase of the emitted gravitational wave, for circular orbits. Our findings are useful to update earlier theoretical studies as well as related phenomenological analyses, and waveform models
Tidal Suppression of Fuzzy Dark Matter Heating in Milky Way Satellite Galaxies
Many previous studies have imposed stringent constraints on the particle mass of fuzzy dark matter (FDM) by analyzing observations of Galactic satellite galaxies, which show no significant evidence of the heating effect predicted by FDM. However, these analyses have generally neglected the tidal influence of the Milky Way, which can substantially suppress the FDM-induced heating in satellites. This oversight arises from computational challenges of accurately capturing the tidal effects in FDM simulations. In this study, we present a novel simulation framework that, for the first time, enables the simulation of an FDM-stellar system within an observationally motivated gravitational potential of the Milky Way. This framework incorporates the diverse Galactic components, including the gravitational influence of the Large Magellanic Cloud. Using the Fornax dwarf galaxy as a case study, we demonstrate that tidal effects significantly alleviate the tension between observational data and the predicted heating effect for an FDM particle mass of m_asim 10^{-22} eV.
The impact of stellar winds and tidal locking effects on the habitability of Earth-like exoplanets around M dwarf stars
We present an assessment of the effects of stellar wind magnetic and mechanical components on the habitability of Earth-like exoplanets orbiting the inner and outer radii of the habitable zone (HZ) of M dwarfs. We consider stars with masses in the range of 0.09 - 0.75 M_odot and planets with a surface dipolar magnetic field of 0.5 G. We estimate the size of the magnetospheres of such exoplanets using the pressure balance equation including the contribution of magnetic and ram pressures from stellar winds. We explore different scenarios, including fast and slow stellar winds, to assess the relevance of kinetic contribution. Furthermore, the effect of tidal locking and potential deviations from the Parker spiral, typically used to describe the interplanetary magnetic field, are analyzed. We show that for low mass stars (M < 0.15 M_odot), the ram pressure exerted by stellar winds affects the size of the magnetosphere more than the stellar wind magnetic pressure. Interestingly, when the ram pressure is not much stronger than the magnetic pressure, typically for higher mass stars, the inclusion of ram pressure can be beneficial to the magnetosphere due to the magnetopause currents. A magnetosphere with the size of that of modern Earth is difficult to achieve with the current assumptions. However, an early Earth magnetosphere is achieved by roughly half of our hypothetical planets orbiting the outer radius of the HZ in most of the considered cases. We find that deviations from the Parker spiral can affect the results significantly, reducing the magnetosphere by 56% in extreme cases. Most of the hypothetical planets are most likely (or might be) tidally locked, with the notable exception of those orbiting the outer HZ of GJ 846 and V1005 Ori.
