Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEfficientVLA: Training-Free Acceleration and Compression for Vision-Language-Action Models
Vision-Language-Action (VLA) models, particularly diffusion-based architectures, demonstrate transformative potential for embodied intelligence but are severely hampered by high computational and memory demands stemming from extensive inherent and inference-time redundancies. While existing acceleration efforts often target isolated inefficiencies, such piecemeal solutions typically fail to holistically address the varied computational and memory bottlenecks across the entire VLA pipeline, thereby limiting practical deployability. We introduce EfficientVLA, a structured and training-free inference acceleration framework that systematically eliminates these barriers by cohesively exploiting multifaceted redundancies. EfficientVLA synergistically integrates three targeted strategies: (1) pruning of functionally inconsequential layers from the language module, guided by an analysis of inter-layer redundancies; (2) optimizing the visual processing pathway through a task-aware strategy that selects a compact, diverse set of visual tokens, balancing task-criticality with informational coverage; and (3) alleviating temporal computational redundancy within the iterative diffusion-based action head by strategically caching and reusing key intermediate features. We apply our method to a standard VLA model CogACT, yielding a 1.93X inference speedup and reduces FLOPs to 28.9%, with only a 0.6% success rate drop in the SIMPLER benchmark.
Training-Free Unsupervised Prompt for Vision-Language Models
Prompt learning has become the most effective paradigm for adapting large pre-trained vision-language models (VLMs) to downstream tasks. Recently, unsupervised prompt tuning methods, such as UPL and POUF, directly leverage pseudo-labels as supervisory information to fine-tune additional adaptation modules on unlabeled data. However, inaccurate pseudo labels easily misguide the tuning process and result in poor representation capabilities. In light of this, we propose Training-Free Unsupervised Prompts (TFUP), which maximally preserves the inherent representation capabilities and enhances them with a residual connection to similarity-based prediction probabilities in a training-free and labeling-free manner. Specifically, we integrate both instance confidence and prototype scores to select representative samples, which are used to customize a reliable Feature Cache Model (FCM) for training-free inference. Then, we design a Multi-level Similarity Measure (MSM) that considers both feature-level and semantic-level similarities to calculate the distance between each test image and the cached sample as the weight of the corresponding cached label to generate similarity-based prediction probabilities. In this way, TFUP achieves surprising performance, even surpassing the training-base method on multiple classification datasets. Based on our TFUP, we propose a training-based approach (TFUP-T) to further boost the adaptation performance. In addition to the standard cross-entropy loss, TFUP-T adopts an additional marginal distribution entropy loss to constrain the model from a global perspective. Our TFUP-T achieves new state-of-the-art classification performance compared to unsupervised and few-shot adaptation approaches on multiple benchmarks. In particular, TFUP-T improves the classification accuracy of POUF by 3.3% on the most challenging Domain-Net dataset.
$Δ$-DiT: A Training-Free Acceleration Method Tailored for Diffusion Transformers
Diffusion models are widely recognized for generating high-quality and diverse images, but their poor real-time performance has led to numerous acceleration works, primarily focusing on UNet-based structures. With the more successful results achieved by diffusion transformers (DiT), there is still a lack of exploration regarding the impact of DiT structure on generation, as well as the absence of an acceleration framework tailored to the DiT architecture. To tackle these challenges, we conduct an investigation into the correlation between DiT blocks and image generation. Our findings reveal that the front blocks of DiT are associated with the outline of the generated images, while the rear blocks are linked to the details. Based on this insight, we propose an overall training-free inference acceleration framework Delta-DiT: using a designed cache mechanism to accelerate the rear DiT blocks in the early sampling stages and the front DiT blocks in the later stages. Specifically, a DiT-specific cache mechanism called Delta-Cache is proposed, which considers the inputs of the previous sampling image and reduces the bias in the inference. Extensive experiments on PIXART-alpha and DiT-XL demonstrate that the Delta-DiT can achieve a 1.6times speedup on the 20-step generation and even improves performance in most cases. In the scenario of 4-step consistent model generation and the more challenging 1.12times acceleration, our method significantly outperforms existing methods. Our code will be publicly available.
WorldForge: Unlocking Emergent 3D/4D Generation in Video Diffusion Model via Training-Free Guidance
Recent video diffusion models demonstrate strong potential in spatial intelligence tasks due to their rich latent world priors. However, this potential is hindered by their limited controllability and geometric inconsistency, creating a gap between their strong priors and their practical use in 3D/4D tasks. As a result, current approaches often rely on retraining or fine-tuning, which risks degrading pretrained knowledge and incurs high computational costs. To address this, we propose WorldForge, a training-free, inference-time framework composed of three tightly coupled modules. Intra-Step Recursive Refinement introduces a recursive refinement mechanism during inference, which repeatedly optimizes network predictions within each denoising step to enable precise trajectory injection. Flow-Gated Latent Fusion leverages optical flow similarity to decouple motion from appearance in the latent space and selectively inject trajectory guidance into motion-related channels. Dual-Path Self-Corrective Guidance compares guided and unguided denoising paths to adaptively correct trajectory drift caused by noisy or misaligned structural signals. Together, these components inject fine-grained, trajectory-aligned guidance without training, achieving both accurate motion control and photorealistic content generation. Extensive experiments across diverse benchmarks validate our method's superiority in realism, trajectory consistency, and visual fidelity. This work introduces a novel plug-and-play paradigm for controllable video synthesis, offering a new perspective on leveraging generative priors for spatial intelligence.
MoEs Are Stronger than You Think: Hyper-Parallel Inference Scaling with RoE
The generation quality of large language models (LLMs) is often improved by utilizing inference-time sequence-level scaling methods (e.g., Chain-of-Thought). We introduce hyper-parallel scaling, a complementary framework that improves prediction quality at the token level. Hyper-parallel scaling computes and aggregates multiple output proposals for a single token from the model. We implement this concept in Mixture-of-Experts (MoE) models, which we refer to as Roster of Experts (RoE). RoE is a training-free inference algorithm that turns a single MoE into a dynamic ensemble of MoEs. RoE injects controlled stochasticity into the expert routing mechanism, enabling it to sample multiple diverse experts for each token and aggregate their outputs for a more accurate final prediction.To overcome the computational cost, we introduce an efficient batching strategy and a specialized KV-caching mechanism that minimizes compute and memory overhead. For example, RoE enables a 7B MoE model to match the performance of a 10.5B MoE model while using 30% less compute for inference. These gains are achieved without any fine-tuning of model parameters.
Identifying and Solving Conditional Image Leakage in Image-to-Video Diffusion Model
Diffusion models have obtained substantial progress in image-to-video (I2V) generation. However, such models are not fully understood. In this paper, we report a significant but previously overlooked issue in I2V diffusion models (I2V-DMs), namely, conditional image leakage. I2V-DMs tend to over-rely on the conditional image at large time steps, neglecting the crucial task of predicting the clean video from noisy inputs, which results in videos lacking dynamic and vivid motion. We further address this challenge from both inference and training aspects by presenting plug-and-play strategies accordingly. First, we introduce a training-free inference strategy that starts the generation process from an earlier time step to avoid the unreliable late-time steps of I2V-DMs, as well as an initial noise distribution with optimal analytic expressions (Analytic-Init) by minimizing the KL divergence between it and the actual marginal distribution to effectively bridge the training-inference gap. Second, to mitigate conditional image leakage during training, we design a time-dependent noise distribution for the conditional image, which favors high noise levels at large time steps to sufficiently interfere with the conditional image. We validate these strategies on various I2V-DMs using our collected open-domain image benchmark and the UCF101 dataset. Extensive results demonstrate that our methods outperform baselines by producing videos with more dynamic and natural motion without compromising image alignment and temporal consistency. The project page: https://cond-image-leak.github.io/.
Test-Time Scaling in Diffusion LLMs via Hidden Semi-Autoregressive Experts
Diffusion-based large language models (dLLMs) are trained flexibly to model extreme dependence in the data distribution; however, how to best utilize this information at inference time remains an open problem. In this work, we uncover an interesting property of these models: dLLMs trained on textual data implicitly learn a mixture of semi-autoregressive experts, where different generation orders reveal different specialized behaviors. We show that committing to any single, fixed inference time schedule, a common practice, collapses performance by failing to leverage this latent ensemble. To address this, we introduce HEX (Hidden semiautoregressive EXperts for test-time scaling), a training-free inference method that ensembles across heterogeneous block schedules. By doing a majority vote over diverse block-sized generation paths, HEX robustly avoids failure modes associated with any single fixed schedule. On reasoning benchmarks such as GSM8K, it boosts accuracy by up to 3.56X (from 24.72% to 88.10%), outperforming top-K margin inference and specialized fine-tuned methods like GRPO, without additional training. HEX even yields significant gains on MATH benchmark from 16.40% to 40.00%, scientific reasoning on ARC-C from 54.18% to 87.80%, and TruthfulQA from 28.36% to 57.46%. Our results establish a new paradigm for test-time scaling in diffusion-based LLMs (dLLMs), revealing that the sequence in which masking is performed plays a critical role in determining performance during inference.
VMoBA: Mixture-of-Block Attention for Video Diffusion Models
The quadratic complexity of full attention mechanisms poses a significant bottleneck for Video Diffusion Models (VDMs) aiming to generate long-duration, high-resolution videos. While various sparse attention methods have been proposed, many are designed as training-free inference accelerators or do not optimally capture the unique spatio-temporal characteristics inherent in video data when trained natively. This paper introduces Video Mixture of Block Attention (VMoBA), a novel sparse attention mechanism specifically adapted for VDMs. Motivated by an in-depth analysis of attention patterns within pre-trained video transformers, which revealed strong spatio-temporal locality, varying query importance, and head-specific concentration levels, VMoBA enhances the original MoBA framework with three key modifications: (1) a layer-wise recurrent block partition scheme (1D-2D-3D) to dynamically adapt to diverse spatio-temporal attention patterns and improve efficiency; (2) global block selection to prioritize the most salient query-key block interactions across an entire attention head; and (3) threshold-based block selection to dynamically determine the number of attended blocks based on their cumulative similarity. Extensive experiments demonstrate that VMoBA significantly accelerates the training of VDMs on longer sequences, achieving 2.92x FLOPs and 1.48x latency speedup, while attaining comparable or even superior generation quality to full attention. Furthermore, VMoBA exhibits competitive performance in training-free inference, offering 2.40x FLOPs and 1.35x latency speedup for high-res video generation.
The Scene Language: Representing Scenes with Programs, Words, and Embeddings
We introduce the Scene Language, a visual scene representation that concisely and precisely describes the structure, semantics, and identity of visual scenes. It represents a scene with three key components: a program that specifies the hierarchical and relational structure of entities in the scene, words in natural language that summarize the semantic class of each entity, and embeddings that capture the visual identity of each entity. This representation can be inferred from pre-trained language models via a training-free inference technique, given text or image inputs. The resulting scene can be rendered into images using traditional, neural, or hybrid graphics renderers. Together, this forms a robust, automated system for high-quality 3D and 4D scene generation. Compared with existing representations like scene graphs, our proposed Scene Language generates complex scenes with higher fidelity, while explicitly modeling the scene structures to enable precise control and editing.
CADE 2.5 - ZeResFDG: Frequency-Decoupled, Rescaled and Zero-Projected Guidance for SD/SDXL Latent Diffusion Models
We introduce CADE 2.5 (Comfy Adaptive Detail Enhancer), a sampler-level guidance stack for SD/SDXL latent diffusion models. The central module, ZeResFDG, unifies (i) frequency-decoupled guidance that reweights low- and high-frequency components of the guidance signal, (ii) energy rescaling that matches the per-sample magnitude of the guided prediction to the positive branch, and (iii) zero-projection that removes the component parallel to the unconditional direction. A lightweight spectral EMA with hysteresis switches between a conservative and a detail-seeking mode as structure crystallizes during sampling. Across SD/SDXL samplers, ZeResFDG improves sharpness, prompt adherence, and artifact control at moderate guidance scales without any retraining. In addition, we employ a training-free inference-time stabilizer, QSilk Micrograin Stabilizer (quantile clamp + depth/edge-gated micro-detail injection), which improves robustness and yields natural high-frequency micro-texture at high resolutions with negligible overhead. For completeness we note that the same rule is compatible with alternative parameterizations (e.g., velocity), which we briefly discuss in the Appendix; however, this paper focuses on SD/SDXL latent diffusion models.
CCD: Mitigating Hallucinations in Radiology MLLMs via Clinical Contrastive Decoding
Multimodal large language models (MLLMs) have recently achieved remarkable progress in radiology by integrating visual perception with natural language understanding. However, they often generate clinically unsupported descriptions, known as medical hallucinations, which pose serious risks in medical applications that demand accuracy and image-grounded outputs. Through empirical analysis, we find that prompt-induced hallucinations remain prevalent in radiology MLLMs, largely due to over-sensitivity to clinical sections. To address this, we introduce Clinical Contrastive Cecoding (CCD), a training-free and retrieval-free inference framework that integrates structured clinical signals from task-specific radiology expert models. CCD introduces a dual-stage contrastive mechanism to refine token-level logits during generation, thereby enhancing clinical fidelity without modifying the base MLLM. Experiments on three datasets and multiple models demonstrate that CCD consistently improves overall performance on radiology report generation (RRG). On the MIMIC-CXR dataset, it yields up to a 17% improvement in RadGraph-F1 when applied to state-of-the-art RRG models. Our approach provides a lightweight and generalisable solution for mitigating medical hallucinations, effectively bridging expert models and MLLMs in radiology.
The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering
Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits rankings throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss -- visually grounded tokens gradually become less favored throughout generation, and (2) early excitation -- semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information -- visually grounded tokens though not being eventually decided still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by abount 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies.
AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning
Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that, our method substantially reduces computation load (e.g., a 7-fold reduction in FLOPs) while preserving the performance of video and image LLMs. Further, under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., +4.6 on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code will be available at https://github.com/LaVi-Lab/AIM.
Hybrid SD: Edge-Cloud Collaborative Inference for Stable Diffusion Models
Stable Diffusion Models (SDMs) have shown remarkable proficiency in image synthesis. However, their broad application is impeded by their large model sizes and intensive computational requirements, which typically require expensive cloud servers for deployment. On the flip side, while there are many compact models tailored for edge devices that can reduce these demands, they often compromise on semantic integrity and visual quality when compared to full-sized SDMs. To bridge this gap, we introduce Hybrid SD, an innovative, training-free SDMs inference framework designed for edge-cloud collaborative inference. Hybrid SD distributes the early steps of the diffusion process to the large models deployed on cloud servers, enhancing semantic planning. Furthermore, small efficient models deployed on edge devices can be integrated for refining visual details in the later stages. Acknowledging the diversity of edge devices with differing computational and storage capacities, we employ structural pruning to the SDMs U-Net and train a lightweight VAE. Empirical evaluations demonstrate that our compressed models achieve state-of-the-art parameter efficiency (225.8M) on edge devices with competitive image quality. Additionally, Hybrid SD reduces the cloud cost by 66% with edge-cloud collaborative inference.
Consensus Entropy: Harnessing Multi-VLM Agreement for Self-Verifying and Self-Improving OCR
The Optical Character Recognition (OCR) task is important for evaluating Vision-Language Models (VLMs) and providing high-quality data sources for LLM training data. While state-of-the-art VLMs show improved average OCR accuracy, they still struggle with sample-level quality degradation and lack reliable automatic detection of low-quality outputs. We introduce Consensus Entropy (CE), a training-free post-inference method that quantifies OCR uncertainty by aggregating outputs from multiple VLMs. Our approach exploits a key insight: correct VLM OCR predictions converge in output space while errors diverge. We develop a lightweight multi-model framework that effectively identifies problematic samples, selects the best outputs and combines model strengths. Experiments across multiple OCR benchmarks and VLMs demonstrate that CE outperforms VLM-as-judge approaches and single-model baselines at the same cost and achieves state-of-the-art results across multiple metrics. For instance, our solution demonstrates: achieving 15.2% higher F1 scores than VLM-as-judge methods in quality verification, delivering 6.0% accuracy gains on mathematical calculation tasks, and requiring rephrasing only 7.3% of inputs while maintaining overall performance. Notably, the entire process requires neither training nor supervision while maintaining plug-and-play functionality throughout.
Test-Time Anchoring for Discrete Diffusion Posterior Sampling
We study the problem of posterior sampling using pretrained discrete diffusion foundation models, aiming to recover images from noisy measurements without retraining task-specific models. While diffusion models have achieved remarkable success in generative modeling, most advances rely on continuous Gaussian diffusion. In contrast, discrete diffusion offers a unified framework for jointly modeling categorical data such as text and images. Beyond unification, discrete diffusion provides faster inference, finer control, and principled training-free Bayesian inference, making it particularly well-suited for posterior sampling. However, existing approaches to discrete diffusion posterior sampling face severe challenges: derivative-free guidance yields sparse signals, continuous relaxations limit applicability, and split Gibbs samplers suffer from the curse of dimensionality. To overcome these limitations, we introduce Anchored Posterior Sampling (APS) for masked diffusion foundation models, built on two key innovations -- quantized expectation for gradient-like guidance in discrete embedding space, and anchored remasking for adaptive decoding. Our approach achieves state-of-the-art performance among discrete diffusion samplers across linear and nonlinear inverse problems on the standard benchmarks. We further demonstrate the benefits of our approach in training-free stylization and text-guided editing.
LimiX: Unleashing Structured-Data Modeling Capability for Generalist Intelligence
We argue that progress toward general intelligence requires complementary foundation models grounded in language, the physical world, and structured data. This report presents LimiX, the first installment of our large structured-data models (LDMs). LimiX treats structured data as a joint distribution over variables and missingness, thus capable of addressing a wide range of tabular tasks through query-based conditional prediction via a single model. LimiX is pretrained using masked joint-distribution modeling with an episodic, context-conditional objective, where the model predicts for query subsets conditioned on dataset-specific contexts, supporting rapid, training-free adaptation at inference. We evaluate LimiX across 10 large structured-data benchmarks with broad regimes of sample size, feature dimensionality, class number, categorical-to-numerical feature ratio, missingness, and sample-to-feature ratios. With a single model and a unified interface, LimiX consistently surpasses strong baselines including gradient-boosting trees, deep tabular networks, recent tabular foundation models, and automated ensembles, as shown in Figure 1 and Figure 2. The superiority holds across a wide range of tasks, such as classification, regression, missing value imputation, and data generation, often by substantial margins, while avoiding task-specific architectures or bespoke training per task. All LimiX models are publicly accessible under Apache 2.0.
Training-free Stylized Text-to-Image Generation with Fast Inference
Although diffusion models exhibit impressive generative capabilities, existing methods for stylized image generation based on these models often require textual inversion or fine-tuning with style images, which is time-consuming and limits the practical applicability of large-scale diffusion models. To address these challenges, we propose a novel stylized image generation method leveraging a pre-trained large-scale diffusion model without requiring fine-tuning or any additional optimization, termed as OmniPainter. Specifically, we exploit the self-consistency property of latent consistency models to extract the representative style statistics from reference style images to guide the stylization process. Additionally, we then introduce the norm mixture of self-attention, which enables the model to query the most relevant style patterns from these statistics for the intermediate output content features. This mechanism also ensures that the stylized results align closely with the distribution of the reference style images. Our qualitative and quantitative experimental results demonstrate that the proposed method outperforms state-of-the-art approaches.
Efficient Online Inference of Vision Transformers by Training-Free Tokenization
The cost of deploying vision transformers increasingly represents a barrier to wider industrial adoption. Existing compression requires additional end-to-end fine-tuning or incurs a significant drawback to runtime, thus making them ill-suited for online inference. We introduce the Visual Word Tokenizer (VWT), a training-free method for reducing energy costs while retaining performance and runtime. The VWT groups patches (visual subwords) that are frequently used into visual words while infrequent ones remain intact. To do so, intra-image or inter-image statistics are leveraged to identify similar visual concepts for compression. Experimentally, we demonstrate a reduction in wattage of up to 19% with only a 20% increase in runtime at most. Comparative approaches of 8-bit quantization and token merging achieve a lower or similar energy efficiency but exact a higher toll on runtime (up to 2times or more). Our results indicate that VWTs are well-suited for efficient online inference with a marginal compromise on performance.
[CLS] Attention is All You Need for Training-Free Visual Token Pruning: Make VLM Inference Faster
Large vision-language models (VLMs) often rely on a substantial number of visual tokens when interacting with large language models (LLMs), which has proven to be inefficient. Recent efforts have aimed to accelerate VLM inference by pruning visual tokens. Most existing methods assess the importance of visual tokens based on the text-visual cross-attentions in LLMs. In this study, we find that the cross-attentions between text and visual tokens in LLMs are inaccurate. Pruning tokens based on these inaccurate attentions leads to significant performance degradation, especially at high reduction ratios. To this end, we introduce FasterVLM, a simple yet effective training-free visual token pruning method that evaluates the importance of visual tokens more accurately by utilizing attentions between the [CLS] token and image tokens from the visual encoder. Since FasterVLM eliminates redundant visual tokens immediately after the visual encoder, ensuring they do not interact with LLMs and resulting in faster VLM inference. It is worth noting that, benefiting from the accuracy of [CLS] cross-attentions, FasterVLM can prune 95\% of visual tokens while maintaining 90\% of the performance of LLaVA-1.5-7B. We apply FasterVLM to various VLMs, including LLaVA-1.5, LLaVA-NeXT, and Video-LLaVA, to demonstrate its effectiveness. Experimental results show that our FasterVLM maintains strong performance across various VLM architectures and reduction ratios, significantly outperforming existing text-visual attention-based methods. Our code is available at https://github.com/Theia-4869/FasterVLM.
VISTA: Vision-Language Inference for Training-Free Stock Time-Series Analysis
Stock price prediction remains a complex and high-stakes task in financial analysis, traditionally addressed using statistical models or, more recently, language models. In this work, we introduce VISTA (Vision-Language Inference for Stock Time-series Analysis), a novel, training-free framework that leverages Vision-Language Models (VLMs) for multi-modal stock forecasting. VISTA prompts a VLM with both textual representations of historical stock prices and their corresponding line charts to predict future price values. By combining numerical and visual modalities in a zero-shot setting and using carefully designed chain-of-thought prompts, VISTA captures complementary patterns that unimodal approaches often miss. We benchmark VISTA against standard baselines, including ARIMA and text-only LLM-based prompting methods. Experimental results show that VISTA outperforms these baselines by up to 89.83%, demonstrating the effectiveness of multi-modal inference for stock time-series analysis and highlighting the potential of VLMs in financial forecasting tasks without requiring task-specific training.
XL3M: A Training-free Framework for LLM Length Extension Based on Segment-wise Inference
Length generalization failure problem, namely the large language model (LLM) fails to generalize to texts longer than its maximum training length, greatly restricts the application of LLM in the scenarios with streaming long inputs. To address this problem, the existing methods either require substantial costs or introduce precision loss. In this paper, we empirically find that the accuracy of the LLM's prediction is highly correlated to its certainty. Based on this, we propose an efficient training free framework, named XL3M (it means extra-long large language model), which enables the LLMs trained on short sequences to reason extremely long sequence without any further training or fine-tuning. Under the XL3M framework, the input context will be firstly decomposed into multiple short sub-contexts, where each sub-context contains an independent segment and a common ``question'' which is a few tokens from the end of the original context. Then XL3M gives a method to measure the relevance between each segment and the ``question'', and constructs a concise key context by splicing all the relevant segments in chronological order. The key context is further used instead of the original context to complete the inference task. Evaluations on comprehensive benchmarks show the superiority of XL3M. Using our framework, a Llama2-7B model is able to reason 20M long sequences on an 8-card Huawei Ascend 910B NPU machine with 64GB memory per card.
DeltaLLM: A Training-Free Framework Exploiting Temporal Sparsity for Efficient Edge LLM Inference
Deploying Large Language Models (LLMs) on edge devices remains challenging due to their quadratically increasing computations with the sequence length. Existing studies for dynamic attention pruning are designed for hardware with massively parallel computation capabilities, such as GPUs or TPUs, and aim at long context lengths (e.g., 64K), making them unsuitable for edge scenarios. We present DeltaLLM, a training-free framework that exploits temporal sparsity in attention patterns to enable efficient LLM inference across both the prefilling and decoding stages, on resource-constrained edge devices. DeltaLLM introduces an accuracy- and memory-aware delta matrix construction strategy that introduces temporal sparsity, and a context-aware hybrid attention mechanism that combines full attention in a local context window with delta approximation outside it to increase accuracy. We evaluate our framework on the edge-device-friendly BitNet-b1.58-2B-4T model and Llama3.2-1B-Instruct model across diverse language tasks. The results show that on BitNet, our framework increases the attention sparsity from 0% to 60% during the prefilling stage with slight accuracy improvement on the WG task, and 0% to 57% across both the prefilling and decoding stages, with even higher F1 score from 29.63 to 30.97 on SQuAD-v2 task. On the Llama model, it can also achieve up to 60% sparsity during the prefilling stage and around 57% across both stages with negligible accuracy drop. These results demonstrate that DeltaLLM offers a promising solution for efficient edge deployment, requiring no fine-tuning and seamlessly integrating with existing inference pipelines.
Rotated Runtime Smooth: Training-Free Activation Smoother for accurate INT4 inference
Large language models have demonstrated promising capabilities upon scaling up parameters. However, serving large language models incurs substantial computation and memory movement costs due to their large scale. Quantization methods have been employed to reduce service costs and latency. Nevertheless, outliers in activations hinder the development of INT4 weight-activation quantization. Existing approaches separate outliers and normal values into two matrices or migrate outliers from activations to weights, suffering from high latency or accuracy degradation. Based on observing activations from large language models, outliers can be classified into channel-wise and spike outliers. In this work, we propose Rotated Runtime Smooth (RRS), a plug-and-play activation smoother for quantization, consisting of Runtime Smooth and the Rotation operation. Runtime Smooth (RS) is introduced to eliminate channel-wise outliers by smoothing activations with channel-wise maximums during runtime. The rotation operation can narrow the gap between spike outliers and normal values, alleviating the effect of victims caused by channel-wise smoothing. The proposed method outperforms the state-of-the-art method in the LLaMA and Qwen families and improves WikiText-2 perplexity from 57.33 to 6.66 for INT4 inference.
Ltri-LLM: Streaming Long Context Inference for LLMs with Training-Free Dynamic Triangular Attention Pattern
The quadratic computational complexity of the attention mechanism in current Large Language Models (LLMs) renders inference with long contexts prohibitively expensive. To address this challenge, various approaches aim to retain critical portions of the context to optimally approximate Full Attention (FA) through Key-Value (KV) compression or Sparse Attention (SA), enabling the processing of virtually unlimited text lengths in a streaming manner. However, these methods struggle to achieve performance levels comparable to FA, particularly in retrieval tasks. In this paper, our analysis of attention head patterns reveals that LLMs' attention distributions show strong local correlations, naturally reflecting a chunking mechanism for input context. We propose Ltri-LLM framework, which divides KVs into spans, stores them in an offline index, and retrieves the relevant KVs into memory for various queries. Experimental results on popular long text benchmarks show that Ltri-LLM can achieve performance close to FA while maintaining efficient, streaming-based inference.
Training-free Diffusion Acceleration with Bottleneck Sampling
Diffusion models have demonstrated remarkable capabilities in visual content generation but remain challenging to deploy due to their high computational cost during inference. This computational burden primarily arises from the quadratic complexity of self-attention with respect to image or video resolution. While existing acceleration methods often compromise output quality or necessitate costly retraining, we observe that most diffusion models are pre-trained at lower resolutions, presenting an opportunity to exploit these low-resolution priors for more efficient inference without degrading performance. In this work, we introduce Bottleneck Sampling, a training-free framework that leverages low-resolution priors to reduce computational overhead while preserving output fidelity. Bottleneck Sampling follows a high-low-high denoising workflow: it performs high-resolution denoising in the initial and final stages while operating at lower resolutions in intermediate steps. To mitigate aliasing and blurring artifacts, we further refine the resolution transition points and adaptively shift the denoising timesteps at each stage. We evaluate Bottleneck Sampling on both image and video generation tasks, where extensive experiments demonstrate that it accelerates inference by up to 3times for image generation and 2.5times for video generation, all while maintaining output quality comparable to the standard full-resolution sampling process across multiple evaluation metrics. Code is available at: https://github.com/tyfeld/Bottleneck-Sampling
Training-Free Activation Sparsity in Large Language Models
Activation sparsity can enable practical inference speedups in large language models (LLMs) by reducing the compute and memory-movement required for matrix multiplications during the forward pass. However, existing methods face limitations that inhibit widespread adoption. Some approaches are tailored towards older models with ReLU-based sparsity, while others require extensive continued pre-training on up to hundreds of billions of tokens. This paper describes TEAL, a simple training-free method that applies magnitude-based activation sparsity to hidden states throughout the entire model. TEAL achieves 40-50% model-wide sparsity with minimal performance degradation across Llama-2, Llama-3, and Mistral families, with sizes varying from 7B to 70B. We improve existing sparse kernels and demonstrate wall-clock decoding speed-ups of up to 1.53times and 1.8times at 40% and 50% model-wide sparsity. TEAL is compatible with weight quantization, enabling further efficiency gains.
Training-free Long Video Generation with Chain of Diffusion Model Experts
Video generation models hold substantial potential in areas such as filmmaking. However, current video diffusion models need high computational costs and produce suboptimal results due to high complexity of video generation task. In this paper, we propose ConFiner, an efficient high-quality video generation framework that decouples video generation into easier subtasks: structure control and spatial-temporal refinement. It can generate high-quality videos with chain of off-the-shelf diffusion model experts, each expert responsible for a decoupled subtask. During the refinement, we introduce coordinated denoising, which can merge multiple diffusion experts' capabilities into a single sampling. Furthermore, we design ConFiner-Long framework, which can generate long coherent video with three constraint strategies on ConFiner. Experimental results indicate that with only 10\% of the inference cost, our ConFiner surpasses representative models like Lavie and Modelscope across all objective and subjective metrics. And ConFiner-Long can generate high-quality and coherent videos with up to 600 frames.
Training-Free Motion-Guided Video Generation with Enhanced Temporal Consistency Using Motion Consistency Loss
In this paper, we address the challenge of generating temporally consistent videos with motion guidance. While many existing methods depend on additional control modules or inference-time fine-tuning, recent studies suggest that effective motion guidance is achievable without altering the model architecture or requiring extra training. Such approaches offer promising compatibility with various video generation foundation models. However, existing training-free methods often struggle to maintain consistent temporal coherence across frames or to follow guided motion accurately. In this work, we propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss, the latter being our key innovation. Specifically, we capture the inter-frame feature correlation patterns of intermediate features from a video diffusion model to represent the motion pattern of the reference video. We then design a motion consistency loss to maintain similar feature correlation patterns in the generated video, using the gradient of this loss in the latent space to guide the generation process for precise motion control. This approach improves temporal consistency across various motion control tasks while preserving the benefits of a training-free setup. Extensive experiments show that our method sets a new standard for efficient, temporally coherent video generation.
Training-Free Token Pruning via Zeroth-Order Gradient Estimation in Vision-Language Models
Large Vision-Language Models (VLMs) enable strong multimodal reasoning but incur heavy inference costs from redundant visual tokens. Token pruning alleviates this issue, yet existing approaches face limitations. Attention-based methods rely on raw attention scores, which are often unstable across layers and heads and can lead to redundant selections. Diversity-based methods improve robustness by selecting tokens far apart in feature space but risk dropping regions needed for accurate prediction. We propose \ours, a training-free framework built on a simple intuition: tokens with higher sensitivity are more likely to influence the model's output, and they should also capture complementary visual cues rather than overlapping information. To achieve this, we estimate token sensitivity using zeroth-order perturbations at the projection layer, a shallow and computationally light component of the model. This approach measures how small random perturbations affect the projection outputs, allowing us to approximate each token's influence through lightweight forward passes without backpropagation. Extensive experiments across multiple VLMs and benchmarks show that \ours consistently outperforms prior methods, pruning up to 94.4\% of tokens while maintaining accuracy and significantly improving efficiency, achieving up to 2.30x faster end-to-end inference over the baseline.
FreeLoRA: Enabling Training-Free LoRA Fusion for Autoregressive Multi-Subject Personalization
Subject-driven image generation plays a crucial role in applications such as virtual try-on and poster design. Existing approaches typically fine-tune pretrained generative models or apply LoRA-based adaptations for individual subjects. However, these methods struggle with multi-subject personalization, as combining independently adapted modules often requires complex re-tuning or joint optimization. We present FreeLoRA, a simple and generalizable framework that enables training-free fusion of subject-specific LoRA modules for multi-subject personalization. Each LoRA module is adapted on a few images of a specific subject using a Full Token Tuning strategy, where it is applied across all tokens in the prompt to encourage weakly supervised token-content alignment. At inference, we adopt Subject-Aware Inference, activating each module only on its corresponding subject tokens. This enables training-free fusion of multiple personalized subjects within a single image, while mitigating overfitting and mutual interference between subjects. Extensive experiments show that FreeLoRA achieves strong performance in both subject fidelity and prompt consistency.
CountingDINO: A Training-free Pipeline for Class-Agnostic Counting using Unsupervised Backbones
Class-agnostic counting (CAC) aims to estimate the number of objects in images without being restricted to predefined categories. However, while current exemplar-based CAC methods offer flexibility at inference time, they still rely heavily on labeled data for training, which limits scalability and generalization to many downstream use cases. In this paper, we introduce CountingDINO, the first training-free exemplar-based CAC framework that exploits a fully unsupervised feature extractor. Specifically, our approach employs self-supervised vision-only backbones to extract object-aware features, and it eliminates the need for annotated data throughout the entire proposed pipeline. At inference time, we extract latent object prototypes via ROI-Align from DINO features and use them as convolutional kernels to generate similarity maps. These are then transformed into density maps through a simple yet effective normalization scheme. We evaluate our approach on the FSC-147 benchmark, where we consistently outperform a baseline based on an SOTA unsupervised object detector under the same label- and training-free setting. Additionally, we achieve competitive results -- and in some cases surpass -- training-free methods that rely on supervised backbones, non-training-free unsupervised methods, as well as several fully supervised SOTA approaches. This demonstrates that label- and training-free CAC can be both scalable and effective. Code: https://lorebianchi98.github.io/CountingDINO/.
Training-Free Efficient Video Generation via Dynamic Token Carving
Despite the remarkable generation quality of video Diffusion Transformer (DiT) models, their practical deployment is severely hindered by extensive computational requirements. This inefficiency stems from two key challenges: the quadratic complexity of self-attention with respect to token length and the multi-step nature of diffusion models. To address these limitations, we present Jenga, a novel inference pipeline that combines dynamic attention carving with progressive resolution generation. Our approach leverages two key insights: (1) early denoising steps do not require high-resolution latents, and (2) later steps do not require dense attention. Jenga introduces a block-wise attention mechanism that dynamically selects relevant token interactions using 3D space-filling curves, alongside a progressive resolution strategy that gradually increases latent resolution during generation. Experimental results demonstrate that Jenga achieves substantial speedups across multiple state-of-the-art video diffusion models while maintaining comparable generation quality (8.83times speedup with 0.01\% performance drop on VBench). As a plug-and-play solution, Jenga enables practical, high-quality video generation on modern hardware by reducing inference time from minutes to seconds -- without requiring model retraining. Code: https://github.com/dvlab-research/Jenga
Training-free Guidance in Text-to-Video Generation via Multimodal Planning and Structured Noise Initialization
Recent advancements in text-to-video (T2V) diffusion models have significantly enhanced the visual quality of the generated videos. However, even recent T2V models find it challenging to follow text descriptions accurately, especially when the prompt requires accurate control of spatial layouts or object trajectories. A recent line of research uses layout guidance for T2V models that require fine-tuning or iterative manipulation of the attention map during inference time. This significantly increases the memory requirement, making it difficult to adopt a large T2V model as a backbone. To address this, we introduce Video-MSG, a training-free Guidance method for T2V generation based on Multimodal planning and Structured noise initialization. Video-MSG consists of three steps, where in the first two steps, Video-MSG creates Video Sketch, a fine-grained spatio-temporal plan for the final video, specifying background, foreground, and object trajectories, in the form of draft video frames. In the last step, Video-MSG guides a downstream T2V diffusion model with Video Sketch through noise inversion and denoising. Notably, Video-MSG does not need fine-tuning or attention manipulation with additional memory during inference time, making it easier to adopt large T2V models. Video-MSG demonstrates its effectiveness in enhancing text alignment with multiple T2V backbones (VideoCrafter2 and CogVideoX-5B) on popular T2V generation benchmarks (T2VCompBench and VBench). We provide comprehensive ablation studies about noise inversion ratio, different background generators, background object detection, and foreground object segmentation.
MDPO: Overcoming the Training-Inference Divide of Masked Diffusion Language Models
Diffusion language models, as a promising alternative to traditional autoregressive (AR) models, enable faster generation and richer conditioning on bidirectional context. However, they suffer from a key discrepancy between training and inference: during inference, MDLMs progressively reveal the structure of the generated sequence by producing fewer and fewer masked tokens, whereas this structure is ignored in training as tokens are masked at random. Although this discrepancy between training and inference can lead to suboptimal performance, it has been largely overlooked by previous works, leaving closing this gap between the two stages an open problem. To address this, we frame the problem of learning effective denoising trajectories as a sequential decision-making problem and use the resulting framework to apply reinforcement learning. We propose a novel Masked Diffusion Policy Optimization (MDPO) to exploit the Markov property diffusion possesses and explicitly train the model under the same progressive refining schedule used at inference. MDPO matches the performance of the previous state-of-the-art (SOTA) method with 60x fewer gradient updates, while achieving average improvements of 9.6% on MATH500 and 54.2% on Countdown over SOTA when trained within the same number of weight updates. Additionally, we improve the remasking strategy of MDLMs as a plug-in inference replacement to overcome the limitation that the model cannot refine tokens flexibly. This simple yet effective training-free strategy, what we refer to as RCR, consistently improves performance and yields additional gains when combined with MDPO. Our findings establish great potential for investigating the discrepancy between pre-training and inference of MDLMs. Code: https://github.com/autonomousvision/mdpo. Project Page: https://cli212.github.io/MDPO/.
Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
Estimating the uncertainty of responses of Large Language Models~(LLMs) remains a critical challenge. While recent Bayesian methods have demonstrated effectiveness in quantifying uncertainty through low-rank weight updates, they typically require complex fine-tuning or post-training procedures. In this paper, we propose Training-Free Bayesianization~(TFB), a novel framework that transforms existing off-the-shelf trained LoRA adapters into Bayesian ones without additional training. TFB systematically searches for the maximally acceptable level of variance in the weight posterior, constrained within a family of low-rank isotropic Gaussian distributions. We theoretically demonstrate that under mild conditions, this search process is equivalent to variational inference for the weights. Through comprehensive experiments, we show that TFB achieves superior uncertainty estimation and generalization compared to existing methods while eliminating the need for complex training procedures. Code will be available at https://github.com/Wang-ML-Lab/bayesian-peft.
Evict3R: Training-Free Token Eviction for Memory-Bounded Streaming Visual Geometry Transformers
Streaming visual transformers like StreamVGGT achieve strong 3D perception but suffer from unbounded growth of key value (KV) memory, which limits scalability. We propose a training-free, inference-time token eviction policy that bounds memory by discarding redundant tokens while keeping the most informative ones. Our method uses significantly less memory with little to no drop in accuracy: on 7-Scenes with long sequences it reduces peak memory from 18.63 GB to 9.39 GB while accuracy and completeness drop by only 0.003. Under strict memory budgets, eviction enables denser frame sampling, which improves reconstruction accuracy compared to the baseline. Experiments across video depth estimation (Sintel, KITTI), 3D reconstruction (7-Scenes, NRGBD), and camera pose estimation (Sintel, TUM-dynamics) show that our approach closely matches StreamVGGT at a fraction of the memory and makes long-horizon streaming inference more practical.
HiPrune: Training-Free Visual Token Pruning via Hierarchical Attention in Vision-Language Models
Vision-Language Models (VLMs) encode images into lengthy sequences of visual tokens, leading to excessive computational overhead and limited inference efficiency. While prior efforts prune or merge tokens to address this issue, they often rely on special tokens (e.g., CLS) or require task-specific training, hindering scalability across architectures. In this paper, we propose HiPrune, a training-free and model-agnostic token Pruning framework that exploits the Hierarchical attention structure within vision encoders. We identify that middle layers attend to object-centric regions, while deep layers capture global contextual features. Based on this observation, HiPrune selects three types of informative tokens: (1) Anchor tokens with high attention in object-centric layers, (2) Buffer tokens adjacent to anchors for spatial continuity, and (3) Register tokens with strong attention in deep layers for global summarization. Our method requires no retraining and integrates seamlessly with any ViT-based VLM. Extensive experiments on LLaVA-1.5, LLaVA-NeXT, and Qwen2.5-VL demonstrate that HiPrune achieves state-of-the-art pruning performance, preserving up to 99.3% task accuracy with only 33.3% tokens, and maintaining 99.5% accuracy with just 11.1% tokens. Meanwhile, it reduces inference FLOPs and latency by up to 9times, showcasing strong generalization across models and tasks. Code is available at https://github.com/Danielement321/HiPrune.
Training-Free Reward-Guided Image Editing via Trajectory Optimal Control
Recent advancements in diffusion and flow-matching models have demonstrated remarkable capabilities in high-fidelity image synthesis. A prominent line of research involves reward-guided guidance, which steers the generation process during inference to align with specific objectives. However, leveraging this reward-guided approach to the task of image editing, which requires preserving the semantic content of the source image while enhancing a target reward, is largely unexplored. In this work, we introduce a novel framework for training-free, reward-guided image editing. We formulate the editing process as a trajectory optimal control problem where the reverse process of a diffusion model is treated as a controllable trajectory originating from the source image, and the adjoint states are iteratively updated to steer the editing process. Through extensive experiments across distinct editing tasks, we demonstrate that our approach significantly outperforms existing inversion-based training-free guidance baselines, achieving a superior balance between reward maximization and fidelity to the source image without reward hacking.
Compositional Caching for Training-free Open-vocabulary Attribute Detection
Attribute detection is crucial for many computer vision tasks, as it enables systems to describe properties such as color, texture, and material. Current approaches often rely on labor-intensive annotation processes which are inherently limited: objects can be described at an arbitrary level of detail (e.g., color vs. color shades), leading to ambiguities when the annotators are not instructed carefully. Furthermore, they operate within a predefined set of attributes, reducing scalability and adaptability to unforeseen downstream applications. We present Compositional Caching (ComCa), a training-free method for open-vocabulary attribute detection that overcomes these constraints. ComCa requires only the list of target attributes and objects as input, using them to populate an auxiliary cache of images by leveraging web-scale databases and Large Language Models to determine attribute-object compatibility. To account for the compositional nature of attributes, cache images receive soft attribute labels. Those are aggregated at inference time based on the similarity between the input and cache images, refining the predictions of underlying Vision-Language Models (VLMs). Importantly, our approach is model-agnostic, compatible with various VLMs. Experiments on public datasets demonstrate that ComCa significantly outperforms zero-shot and cache-based baselines, competing with recent training-based methods, proving that a carefully designed training-free approach can successfully address open-vocabulary attribute detection.
Training-Free Open-Ended Object Detection and Segmentation via Attention as Prompts
Existing perception models achieve great success by learning from large amounts of labeled data, but they still struggle with open-world scenarios. To alleviate this issue, researchers introduce open-set perception tasks to detect or segment unseen objects in the training set. However, these models require predefined object categories as inputs during inference, which are not available in real-world scenarios. Recently, researchers pose a new and more practical problem, i.e., open-ended object detection, which discovers unseen objects without any object categories as inputs. In this paper, we present VL-SAM, a training-free framework that combines the generalized object recognition model (i.e., Vision-Language Model) with the generalized object localization model (i.e., Segment-Anything Model), to address the open-ended object detection and segmentation task. Without additional training, we connect these two generalized models with attention maps as the prompts. Specifically, we design an attention map generation module by employing head aggregation and a regularized attention flow to aggregate and propagate attention maps across all heads and layers in VLM, yielding high-quality attention maps. Then, we iteratively sample positive and negative points from the attention maps with a prompt generation module and send the sampled points to SAM to segment corresponding objects. Experimental results on the long-tail instance segmentation dataset (LVIS) show that our method surpasses the previous open-ended method on the object detection task and can provide additional instance segmentation masks. Besides, VL-SAM achieves favorable performance on the corner case object detection dataset (CODA), demonstrating the effectiveness of VL-SAM in real-world applications. Moreover, VL-SAM exhibits good model generalization that can incorporate various VLMs and SAMs.
State-Free Inference of State-Space Models: The Transfer Function Approach
We approach designing a state-space model for deep learning applications through its dual representation, the transfer function, and uncover a highly efficient sequence parallel inference algorithm that is state-free: unlike other proposed algorithms, state-free inference does not incur any significant memory or computational cost with an increase in state size. We achieve this using properties of the proposed frequency domain transfer function parametrization, which enables direct computation of its corresponding convolutional kernel's spectrum via a single Fast Fourier Transform. Our experimental results across multiple sequence lengths and state sizes illustrates, on average, a 35% training speed improvement over S4 layers -- parametrized in time-domain -- on the Long Range Arena benchmark, while delivering state-of-the-art downstream performances over other attention-free approaches. Moreover, we report improved perplexity in language modeling over a long convolutional Hyena baseline, by simply introducing our transfer function parametrization. Our code is available at https://github.com/ruke1ire/RTF.
Dreamguider: Improved Training free Diffusion-based Conditional Generation
Diffusion models have emerged as a formidable tool for training-free conditional generation.However, a key hurdle in inference-time guidance techniques is the need for compute-heavy backpropagation through the diffusion network for estimating the guidance direction. Moreover, these techniques often require handcrafted parameter tuning on a case-by-case basis. Although some recent works have introduced minimal compute methods for linear inverse problems, a generic lightweight guidance solution to both linear and non-linear guidance problems is still missing. To this end, we propose Dreamguider, a method that enables inference-time guidance without compute-heavy backpropagation through the diffusion network. The key idea is to regulate the gradient flow through a time-varying factor. Moreover, we propose an empirical guidance scale that works for a wide variety of tasks, hence removing the need for handcrafted parameter tuning. We further introduce an effective lightweight augmentation strategy that significantly boosts the performance during inference-time guidance. We present experiments using Dreamguider on multiple tasks across multiple datasets and models to show the effectiveness of the proposed modules. To facilitate further research, we will make the code public after the review process.
Training-free Subject-Enhanced Attention Guidance for Compositional Text-to-image Generation
Existing subject-driven text-to-image generation models suffer from tedious fine-tuning steps and struggle to maintain both text-image alignment and subject fidelity. For generating compositional subjects, it often encounters problems such as object missing and attribute mixing, where some subjects in the input prompt are not generated or their attributes are incorrectly combined. To address these limitations, we propose a subject-driven generation framework and introduce training-free guidance to intervene in the generative process during inference time. This approach strengthens the attention map, allowing for precise attribute binding and feature injection for each subject. Notably, our method exhibits exceptional zero-shot generation ability, especially in the challenging task of compositional generation. Furthermore, we propose a novel metric GroundingScore to evaluate subject alignment thoroughly. The obtained quantitative results serve as compelling evidence showcasing the effectiveness of our proposed method. The code will be released soon.
Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding
Diffusion-based large language models (Diffusion LLMs) have shown promise for non-autoregressive text generation with parallel decoding capabilities. However, the practical inference speed of open-sourced Diffusion LLMs often lags behind autoregressive models due to the lack of Key-Value (KV) Cache and quality degradation when decoding multiple tokens simultaneously. To bridge this gap, we introduce a novel block-wise approximate KV Cache mechanism tailored for bidirectional diffusion models, enabling cache reuse with negligible performance drop. Additionally, we identify the root cause of generation quality degradation in parallel decoding as the disruption of token dependencies under the conditional independence assumption. To address this, we propose a confidence-aware parallel decoding strategy that selectively decodes tokens exceeding a confidence threshold, mitigating dependency violations and maintaining generation quality. Experimental results on LLaDA and Dream models across multiple LLM benchmarks demonstrate up to 27.6times throughput improvement with minimal accuracy loss, closing the performance gap with autoregressive models and paving the way for practical deployment of Diffusion LLMs.
FasterCache: Training-Free Video Diffusion Model Acceleration with High Quality
In this paper, we present \textit{FasterCache}, a novel training-free strategy designed to accelerate the inference of video diffusion models with high-quality generation. By analyzing existing cache-based methods, we observe that directly reusing adjacent-step features degrades video quality due to the loss of subtle variations. We further perform a pioneering investigation of the acceleration potential of classifier-free guidance (CFG) and reveal significant redundancy between conditional and unconditional features within the same timestep. Capitalizing on these observations, we introduce FasterCache to substantially accelerate diffusion-based video generation. Our key contributions include a dynamic feature reuse strategy that preserves both feature distinction and temporal continuity, and CFG-Cache which optimizes the reuse of conditional and unconditional outputs to further enhance inference speed without compromising video quality. We empirically evaluate FasterCache on recent video diffusion models. Experimental results show that FasterCache can significantly accelerate video generation (\eg 1.67times speedup on Vchitect-2.0) while keeping video quality comparable to the baseline, and consistently outperform existing methods in both inference speed and video quality.
FastVGGT: Training-Free Acceleration of Visual Geometry Transformer
Foundation models for 3D vision have recently demonstrated remarkable capabilities in 3D perception. However, scaling these models to long-sequence image inputs remains a significant challenge due to inference-time inefficiency. In this work, we present a detailed analysis of VGGT, a state-of-the-art feed-forward visual geometry model and identify its primary bottleneck. Visualization further reveals a token collapse phenomenon in the attention maps. Motivated by these findings, we explore the potential of token merging in the feed-forward visual geometry model. Owing to the unique architectural and task-specific properties of 3D models, directly applying existing merging techniques proves challenging. To this end, we propose FastVGGT, which, for the first time, leverages token merging in the 3D domain through a training-free mechanism for accelerating VGGT. we devise a unique token partitioning strategy tailored to 3D architectures and tasks, effectively eliminating redundant computation while preserving VGGT's powerful reconstruction capacity. Extensive experiments on multiple 3D geometry benchmarks validate the effectiveness of our approach. Notably, with 1000 input images, FastVGGT achieves a 4x speedup over VGGT while mitigating error accumulation in long-sequence scenarios. These findings underscore the potential of token merging as a principled solution for scalable 3D vision systems. Code is available at: https://mystorm16.github.io/fastvggt/.
A Training-Free Style-Personalization via Scale-wise Autoregressive Model
We present a training-free framework for style-personalized image generation that controls content and style information during inference using a scale-wise autoregressive model. Our method employs a three-path design--content, style, and generation--each guided by a corresponding text prompt, enabling flexible and efficient control over image semantics without any additional training. A central contribution of this work is a step-wise and attention-wise intervention analysis. Through systematic prompt and feature injection, we find that early-to-middle generation steps play a pivotal role in shaping both content and style, and that query features predominantly encode content-specific information. Guided by these insights, we introduce two targeted mechanisms: Key Stage Attention Sharing, which aligns content and style during the semantically critical steps, and Adaptive Query Sharing, which reinforces content semantics in later steps through similarity-aware query blending. Extensive experiments demonstrate that our method achieves competitive style fidelity and prompt fidelity compared to fine-tuned baselines, while offering faster inference and greater deployment flexibility.
LanPaint: Training-Free Diffusion Inpainting with Asymptotically Exact and Fast Conditional Sampling
Diffusion models excel at joint pixel sampling for image generation but lack efficient training-free methods for partial conditional sampling (e.g., inpainting with known pixels). Prior work typically formulates this as an intractable inverse problem, relying on coarse variational approximations, heuristic losses requiring expensive backpropagation, or slow stochastic sampling. These limitations preclude: (1) accurate distributional matching in inpainting results, (2) efficient inference modes without gradient, (3) compatibility with fast ODE-based samplers. To address these limitations, we propose LanPaint: a training-free, asymptotically exact partial conditional sampling methods for ODE-based and rectified flow diffusion models. By leveraging carefully designed Langevin dynamics, LanPaint enables fast, backpropagation-free Monte Carlo sampling. Experiments demonstrate that our approach achieves superior performance with precise partial conditioning and visually coherent inpainting across diverse tasks.
DaWin: Training-free Dynamic Weight Interpolation for Robust Adaptation
Adapting a pre-trained foundation model on downstream tasks should ensure robustness against distribution shifts without the need to retrain the whole model. Although existing weight interpolation methods are simple yet effective, we argue their static nature limits downstream performance while achieving efficiency. In this work, we propose DaWin, a training-free dynamic weight interpolation method that leverages the entropy of individual models over each unlabeled test sample to assess model expertise, and compute per-sample interpolation coefficients dynamically. Unlike previous works that typically rely on additional training to learn such coefficients, our approach requires no training. Then, we propose a mixture modeling approach that greatly reduces inference overhead raised by dynamic interpolation. We validate DaWin on the large-scale visual recognition benchmarks, spanning 14 tasks across robust fine-tuning -- ImageNet and derived five distribution shift benchmarks -- and multi-task learning with eight classification tasks. Results demonstrate that DaWin achieves significant performance gain in considered settings, with minimal computational overhead. We further discuss DaWin's analytic behavior to explain its empirical success.
Playmate2: Training-Free Multi-Character Audio-Driven Animation via Diffusion Transformer with Reward Feedback
Recent advances in diffusion models have significantly improved audio-driven human video generation, surpassing traditional methods in both quality and controllability. However, existing approaches still face challenges in lip-sync accuracy, temporal coherence for long video generation, and multi-character animation. In this work, we propose a diffusion transformer (DiT)-based framework for generating lifelike talking videos of arbitrary length, and introduce a training-free method for multi-character audio-driven animation. First, we employ a LoRA-based training strategy combined with a position shift inference approach, which enables efficient long video generation while preserving the capabilities of the foundation model. Moreover, we combine partial parameter updates with reward feedback to enhance both lip synchronization and natural body motion. Finally, we propose a training-free approach, Mask Classifier-Free Guidance (Mask-CFG), for multi-character animation, which requires no specialized datasets or model modifications and supports audio-driven animation for three or more characters. Experimental results demonstrate that our method outperforms existing state-of-the-art approaches, achieving high-quality, temporally coherent, and multi-character audio-driven video generation in a simple, efficient, and cost-effective manner.
Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs
Vision-language large models have achieved remarkable success in various multi-modal tasks, yet applying them to video understanding remains challenging due to the inherent complexity and computational demands of video data. While training-based video-LLMs deliver high performance, they often require substantial resources for training and inference. Conversely, training-free approaches offer a more efficient alternative by adapting pre-trained image-LLMs models for video tasks without additional training, but they face inference efficiency bottlenecks due to the large number of visual tokens generated from video frames. In this work, we present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs. The proposed framework decouples spatial-temporal dimension and performs temporal frame sampling and spatial RoI cropping respectively based on task-specific prompts. Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks. Extensive experiments demonstrate that our approach achieves competitive results with significantly fewer tokens, offering an optimal trade-off between accuracy and computational efficiency compared to state-of-the-art video LLMs. The code will be available at https://github.com/contrastive/FreeVideoLLM.
AutoDiffusion: Training-Free Optimization of Time Steps and Architectures for Automated Diffusion Model Acceleration
Diffusion models are emerging expressive generative models, in which a large number of time steps (inference steps) are required for a single image generation. To accelerate such tedious process, reducing steps uniformly is considered as an undisputed principle of diffusion models. We consider that such a uniform assumption is not the optimal solution in practice; i.e., we can find different optimal time steps for different models. Therefore, we propose to search the optimal time steps sequence and compressed model architecture in a unified framework to achieve effective image generation for diffusion models without any further training. Specifically, we first design a unified search space that consists of all possible time steps and various architectures. Then, a two stage evolutionary algorithm is introduced to find the optimal solution in the designed search space. To further accelerate the search process, we employ FID score between generated and real samples to estimate the performance of the sampled examples. As a result, the proposed method is (i).training-free, obtaining the optimal time steps and model architecture without any training process; (ii). orthogonal to most advanced diffusion samplers and can be integrated to gain better sample quality. (iii). generalized, where the searched time steps and architectures can be directly applied on different diffusion models with the same guidance scale. Experimental results show that our method achieves excellent performance by using only a few time steps, e.g. 17.86 FID score on ImageNet 64 times 64 with only four steps, compared to 138.66 with DDIM. The code is available at https://github.com/lilijiangg/AutoDiffusion.
SEAP: Training-free Sparse Expert Activation Pruning Unlock the Brainpower of Large Language Models
Large Language Models have achieved remarkable success across various natural language processing tasks, yet their high computational cost during inference remains a major bottleneck. This paper introduces Sparse Expert Activation Pruning (SEAP), a training-free pruning method that selectively retains task-relevant parameters to reduce inference overhead. Inspired by the clustering patterns of hidden states and activations in LLMs, SEAP identifies task-specific expert activation patterns and prunes the model while preserving task performance and enhancing computational efficiency. Experimental results demonstrate that SEAP significantly reduces computational overhead while maintaining competitive accuracy. Notably, at 50% pruning, SEAP surpasses both WandA and FLAP by over 20%, and at 20% pruning, it incurs only a 2.2% performance drop compared to the dense model. These findings highlight SEAP's scalability and effectiveness, making it a promising approach for optimizing large-scale LLMs.
Rethinking Token Reduction in MLLMs: Towards a Unified Paradigm for Training-Free Acceleration
To accelerate the inference of heavy Multimodal Large Language Models (MLLMs), this study rethinks the current landscape of training-free token reduction research. We regret to find that the critical components of existing methods are tightly intertwined, with their interconnections and effects remaining unclear for comparison, transfer, and expansion. Therefore, we propose a unified ''filter-correlate-compress'' paradigm that decomposes the token reduction into three distinct stages within a pipeline, maintaining consistent design objectives and elements while allowing for unique implementations. We additionally demystify the popular works and subsume them into our paradigm to showcase its universality. Finally, we offer a suite of methods grounded in the paradigm, striking a balance between speed and accuracy throughout different phases of the inference. Experimental results across 10 benchmarks indicate that our methods can achieve up to an 82.4% reduction in FLOPs with a minimal impact on performance, simultaneously surpassing state-of-the-art training-free methods. Our project page is at https://ficoco-accelerate.github.io/.
Hash3D: Training-free Acceleration for 3D Generation
The evolution of 3D generative modeling has been notably propelled by the adoption of 2D diffusion models. Despite this progress, the cumbersome optimization process per se presents a critical hurdle to efficiency. In this paper, we introduce Hash3D, a universal acceleration for 3D generation without model training. Central to Hash3D is the insight that feature-map redundancy is prevalent in images rendered from camera positions and diffusion time-steps in close proximity. By effectively hashing and reusing these feature maps across neighboring timesteps and camera angles, Hash3D substantially prevents redundant calculations, thus accelerating the diffusion model's inference in 3D generation tasks. We achieve this through an adaptive grid-based hashing. Surprisingly, this feature-sharing mechanism not only speed up the generation but also enhances the smoothness and view consistency of the synthesized 3D objects. Our experiments covering 5 text-to-3D and 3 image-to-3D models, demonstrate Hash3D's versatility to speed up optimization, enhancing efficiency by 1.3 to 4 times. Additionally, Hash3D's integration with 3D Gaussian splatting largely speeds up 3D model creation, reducing text-to-3D processing to about 10 minutes and image-to-3D conversion to roughly 30 seconds. The project page is at https://adamdad.github.io/hash3D/.
TrimR: Verifier-based Training-Free Thinking Compression for Efficient Test-Time Scaling
Large Reasoning Models (LRMs) demonstrate exceptional capability in tackling complex mathematical, logical, and coding tasks by leveraging extended Chain-of-Thought (CoT) reasoning. Test-time scaling methods, such as prolonging CoT with explicit token-level exploration, can push LRMs' accuracy boundaries, but they incur significant decoding overhead. A key inefficiency source is LRMs often generate redundant thinking CoTs, which demonstrate clear structured overthinking and underthinking patterns. Inspired by human cognitive reasoning processes and numerical optimization theories, we propose TrimR, a verifier-based, training-free, efficient framework for dynamic CoT compression to trim reasoning and enhance test-time scaling, explicitly tailored for production-level deployment. Our method employs a lightweight, pretrained, instruction-tuned verifier to detect and truncate redundant intermediate thoughts of LRMs without any LRM or verifier fine-tuning. We present both the core algorithm and asynchronous online system engineered for high-throughput industrial applications. Empirical evaluations on Ascend NPUs and vLLM show that our framework delivers substantial gains in inference efficiency under large-batch workloads. In particular, on the four MATH500, AIME24, AIME25, and GPQA benchmarks, the reasoning runtime of Pangu Pro MoE, Pangu-R-38B, QwQ-32B, and DeepSeek-R1-Distill-Qwen-32B is improved by up to 70% with negligible impact on accuracy.
Compression with Global Guidance: Towards Training-free High-Resolution MLLMs Acceleration
Multimodal large language models (MLLMs) have attracted considerable attention due to their exceptional performance in visual content understanding and reasoning. However, their inference efficiency has been a notable concern, as the increasing length of multimodal contexts leads to quadratic complexity. Token compression techniques, which reduce the number of visual tokens, have demonstrated their effectiveness in reducing computational costs. Yet, these approaches have struggled to keep pace with the rapid advancements in MLLMs, especially the AnyRes strategy in the context of high-resolution image understanding. In this paper, we propose a novel token compression method, GlobalCom^2, tailored for high-resolution MLLMs that receive both the thumbnail and multiple crops. GlobalCom^2 treats the tokens derived from the thumbnail as the "commander" of the entire token compression process, directing the allocation of retention ratios and the specific compression for each crop. In this way, redundant tokens are eliminated while important local details are adaptively preserved to the highest extent feasible. Empirical results across 10 benchmarks reveal that GlobalCom^2 achieves an optimal balance between performance and efficiency, and consistently outperforms state-of-the-art token compression methods with LLaVA-NeXT-7B/13B models. Our code is released at https://github.com/xuyang-liu16/GlobalCom2.
Adaptive Guidance: Training-free Acceleration of Conditional Diffusion Models
This paper presents a comprehensive study on the role of Classifier-Free Guidance (CFG) in text-conditioned diffusion models from the perspective of inference efficiency. In particular, we relax the default choice of applying CFG in all diffusion steps and instead search for efficient guidance policies. We formulate the discovery of such policies in the differentiable Neural Architecture Search framework. Our findings suggest that the denoising steps proposed by CFG become increasingly aligned with simple conditional steps, which renders the extra neural network evaluation of CFG redundant, especially in the second half of the denoising process. Building upon this insight, we propose "Adaptive Guidance" (AG), an efficient variant of CFG, that adaptively omits network evaluations when the denoising process displays convergence. Our experiments demonstrate that AG preserves CFG's image quality while reducing computation by 25%. Thus, AG constitutes a plug-and-play alternative to Guidance Distillation, achieving 50% of the speed-ups of the latter while being training-free and retaining the capacity to handle negative prompts. Finally, we uncover further redundancies of CFG in the first half of the diffusion process, showing that entire neural function evaluations can be replaced by simple affine transformations of past score estimates. This method, termed LinearAG, offers even cheaper inference at the cost of deviating from the baseline model. Our findings provide insights into the efficiency of the conditional denoising process that contribute to more practical and swift deployment of text-conditioned diffusion models.
LightCache: Memory-Efficient, Training-Free Acceleration for Video Generation
Training-free acceleration has emerged as an advanced research area in video generation based on diffusion models. The redundancy of latents in diffusion model inference provides a natural entry point for acceleration. In this paper, we decompose the inference process into the encoding, denoising, and decoding stages, and observe that cache-based acceleration methods often lead to substantial memory surges in the latter two stages. To address this problem, we analyze the characteristics of inference across different stages and propose stage-specific strategies for reducing memory consumption: 1) Asynchronous Cache Swapping. 2) Feature chunk. 3) Slicing latents to decode. At the same time, we ensure that the time overhead introduced by these three strategies remains lower than the acceleration gains themselves. Compared with the baseline, our approach achieves faster inference speed and lower memory usage, while maintaining quality degradation within an acceptable range. The Code is available at https://github.com/NKUShaw/LightCache .
AB-Cache: Training-Free Acceleration of Diffusion Models via Adams-Bashforth Cached Feature Reuse
Diffusion models have demonstrated remarkable success in generative tasks, yet their iterative denoising process results in slow inference, limiting their practicality. While existing acceleration methods exploit the well-known U-shaped similarity pattern between adjacent steps through caching mechanisms, they lack theoretical foundation and rely on simplistic computation reuse, often leading to performance degradation. In this work, we provide a theoretical understanding by analyzing the denoising process through the second-order Adams-Bashforth method, revealing a linear relationship between the outputs of consecutive steps. This analysis explains why the outputs of adjacent steps exhibit a U-shaped pattern. Furthermore, extending Adams-Bashforth method to higher order, we propose a novel caching-based acceleration approach for diffusion models, instead of directly reusing cached results, with a truncation error bound of only \(O(h^k)\) where h is the step size. Extensive validation across diverse image and video diffusion models (including HunyuanVideo and FLUX.1-dev) with various schedulers demonstrates our method's effectiveness in achieving nearly 3times speedup while maintaining original performance levels, offering a practical real-time solution without compromising generation quality.
ComCLIP: Training-Free Compositional Image and Text Matching
Contrastive Language-Image Pretraining (CLIP) has demonstrated great zero-shot performance for matching images and text. However, it is still challenging to adapt vision-lanaguage pretrained models like CLIP to compositional image and text matching -- a more challenging image and text matching task requiring the model understanding of compositional word concepts and visual components. Towards better compositional generalization in zero-shot image and text matching, in this paper, we study the problem from a causal perspective: the erroneous semantics of individual entities are essentially confounders that cause the matching failure. Therefore, we propose a novel \textit{training-free} compositional CLIP model (ComCLIP). ComCLIP disentangles input images into subjects, objects, and action sub-images and composes CLIP's vision encoder and text encoder to perform evolving matching over compositional text embedding and sub-image embeddings. In this way, ComCLIP can mitigate spurious correlations introduced by the pretrained CLIP models and dynamically evaluate the importance of each component. Experiments on four compositional image-text matching datasets: SVO, ComVG, Winoground, and VL-checklist, and two general image-text retrieval datasets: Flick30K, and MSCOCO demonstrate the effectiveness of our plug-and-play method, which boosts the \textit{zero-shot} inference ability of CLIP, SLIP, and BLIP2 even without further training or fine-tuning. Our codes can be found at https://github.com/eric-ai-lab/ComCLIP.
Token Prepending: A Training-Free Approach for Eliciting Better Sentence Embeddings from LLMs
Extracting sentence embeddings from large language models (LLMs) is a promising direction, as LLMs have demonstrated stronger semantic understanding capabilities. Previous studies typically focus on prompt engineering to elicit sentence embeddings from LLMs by prompting the model to encode sentence information into the embedding of the last token. However, LLMs are mostly decoder-only models with causal attention and the earlier tokens in the sentence cannot attend to the latter tokens, resulting in biased encoding of sentence information and cascading effects on the final decoded token. To this end, we propose a novel Token Prepending (TP) technique that prepends each layer's decoded sentence embedding to the beginning of the sentence in the next layer's input, allowing earlier tokens to attend to the complete sentence information under the causal attention mechanism. The proposed TP technique is a plug-and-play and training-free technique, which means it can be seamlessly integrated with various prompt-based sentence embedding methods and autoregressive LLMs. Extensive experiments on various Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our proposed TP technique can significantly improve the performance of existing prompt-based sentence embedding methods across different LLMs, while incurring negligible additional inference cost.
First RAG, Second SEG: A Training-Free Paradigm for Camouflaged Object Detection
Camouflaged object detection (COD) poses a significant challenge in computer vision due to the high similarity between objects and their backgrounds. Existing approaches often rely on heavy training and large computational resources. While foundation models such as the Segment Anything Model (SAM) offer strong generalization, they still struggle to handle COD tasks without fine-tuning and require high-quality prompts to yield good performance. However, generating such prompts manually is costly and inefficient. To address these challenges, we propose First RAG, Second SEG (RAG-SEG), a training-free paradigm that decouples COD into two stages: Retrieval-Augmented Generation (RAG) for generating coarse masks as prompts, followed by SAM-based segmentation (SEG) for refinement. RAG-SEG constructs a compact retrieval database via unsupervised clustering, enabling fast and effective feature retrieval. During inference, the retrieved features produce pseudo-labels that guide precise mask generation using SAM2. Our method eliminates the need for conventional training while maintaining competitive performance. Extensive experiments on benchmark COD datasets demonstrate that RAG-SEG performs on par with or surpasses state-of-the-art methods. Notably, all experiments are conducted on a personal laptop, highlighting the computational efficiency and practicality of our approach. We present further analysis in the Appendix, covering limitations, salient object detection extension, and possible improvements. blue {Code: https://github.com/Lwt-diamond/RAG-SEG.}
A Context-Driven Training-Free Network for Lightweight Scene Text Segmentation and Recognition
Modern scene text recognition systems often depend on large end-to-end architectures that require extensive training and are prohibitively expensive for real-time scenarios. In such cases, the deployment of heavy models becomes impractical due to constraints on memory, computational resources, and latency. To address these challenges, we propose a novel, training-free plug-and-play framework that leverages the strengths of pre-trained text recognizers while minimizing redundant computations. Our approach uses context-based understanding and introduces an attention-based segmentation stage, which refines candidate text regions at the pixel level, improving downstream recognition. Instead of performing traditional text detection that follows a block-level comparison between feature map and source image and harnesses contextual information using pretrained captioners, allowing the framework to generate word predictions directly from scene context.Candidate texts are semantically and lexically evaluated to get a final score. Predictions that meet or exceed a pre-defined confidence threshold bypass the heavier process of end-to-end text STR profiling, ensuring faster inference and cutting down on unnecessary computations. Experiments on public benchmarks demonstrate that our paradigm achieves performance on par with state-of-the-art systems, yet requires substantially fewer resources.
AttenST: A Training-Free Attention-Driven Style Transfer Framework with Pre-Trained Diffusion Models
While diffusion models have achieved remarkable progress in style transfer tasks, existing methods typically rely on fine-tuning or optimizing pre-trained models during inference, leading to high computational costs and challenges in balancing content preservation with style integration. To address these limitations, we introduce AttenST, a training-free attention-driven style transfer framework. Specifically, we propose a style-guided self-attention mechanism that conditions self-attention on the reference style by retaining the query of the content image while substituting its key and value with those from the style image, enabling effective style feature integration. To mitigate style information loss during inversion, we introduce a style-preserving inversion strategy that refines inversion accuracy through multiple resampling steps. Additionally, we propose a content-aware adaptive instance normalization, which integrates content statistics into the normalization process to optimize style fusion while mitigating the content degradation. Furthermore, we introduce a dual-feature cross-attention mechanism to fuse content and style features, ensuring a harmonious synthesis of structural fidelity and stylistic expression. Extensive experiments demonstrate that AttenST outperforms existing methods, achieving state-of-the-art performance in style transfer dataset.
ConsistEdit: Highly Consistent and Precise Training-free Visual Editing
Recent advances in training-free attention control methods have enabled flexible and efficient text-guided editing capabilities for existing generation models. However, current approaches struggle to simultaneously deliver strong editing strength while preserving consistency with the source. This limitation becomes particularly critical in multi-round and video editing, where visual errors can accumulate over time. Moreover, most existing methods enforce global consistency, which limits their ability to modify individual attributes such as texture while preserving others, thereby hindering fine-grained editing. Recently, the architectural shift from U-Net to MM-DiT has brought significant improvements in generative performance and introduced a novel mechanism for integrating text and vision modalities. These advancements pave the way for overcoming challenges that previous methods failed to resolve. Through an in-depth analysis of MM-DiT, we identify three key insights into its attention mechanisms. Building on these, we propose ConsistEdit, a novel attention control method specifically tailored for MM-DiT. ConsistEdit incorporates vision-only attention control, mask-guided pre-attention fusion, and differentiated manipulation of the query, key, and value tokens to produce consistent, prompt-aligned edits. Extensive experiments demonstrate that ConsistEdit achieves state-of-the-art performance across a wide range of image and video editing tasks, including both structure-consistent and structure-inconsistent scenarios. Unlike prior methods, it is the first approach to perform editing across all inference steps and attention layers without handcraft, significantly enhancing reliability and consistency, which enables robust multi-round and multi-region editing. Furthermore, it supports progressive adjustment of structural consistency, enabling finer control.
Speculative Prefill: Turbocharging TTFT with Lightweight and Training-Free Token Importance Estimation
Improving time-to-first-token (TTFT) is an essentially important objective in modern large language model (LLM) inference engines. Optimizing TTFT directly results in higher maximal QPS and meets the requirements of many critical applications. However, boosting TTFT is notoriously challenging since it is compute-bounded and the performance bottleneck shifts from the self-attention that many prior works focus on to the MLP part. In this work, we present SpecPrefill, a training free framework that accelerates the inference TTFT for both long and medium context queries based on the following insight: LLMs are generalized enough to preserve the quality given only a carefully chosen subset of prompt tokens. At its core, SpecPrefill leverages a lightweight model to speculate locally important tokens based on the context. These tokens, along with the necessary positional information, are then sent to the main model for processing. We evaluate SpecPrefill with a diverse set of tasks, followed by a comprehensive benchmarking of performance improvement both in a real end-to-end setting and ablation studies. SpecPrefill manages to serve Llama-3.1-405B-Instruct-FP8 with up to 7times maximal end-to-end QPS on real downstream tasks and 7.66times TTFT improvement.
Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer
Despite the impressive generative capabilities of diffusion models, existing diffusion model-based style transfer methods require inference-stage optimization (e.g. fine-tuning or textual inversion of style) which is time-consuming, or fails to leverage the generative ability of large-scale diffusion models. To address these issues, we introduce a novel artistic style transfer method based on a pre-trained large-scale diffusion model without any optimization. Specifically, we manipulate the features of self-attention layers as the way the cross-attention mechanism works; in the generation process, substituting the key and value of content with those of style image. This approach provides several desirable characteristics for style transfer including 1) preservation of content by transferring similar styles into similar image patches and 2) transfer of style based on similarity of local texture (e.g. edge) between content and style images. Furthermore, we introduce query preservation and attention temperature scaling to mitigate the issue of disruption of original content, and initial latent Adaptive Instance Normalization (AdaIN) to deal with the disharmonious color (failure to transfer the colors of style). Our experimental results demonstrate that our proposed method surpasses state-of-the-art methods in both conventional and diffusion-based style transfer baselines.
Token Transforming: A Unified and Training-Free Token Compression Framework for Vision Transformer Acceleration
Vision transformers have been widely explored in various vision tasks. Due to heavy computational cost, much interest has aroused for compressing vision transformer dynamically in the aspect of tokens. Current methods mainly pay attention to token pruning or merging to reduce token numbers, in which tokens are compressed exclusively, causing great information loss and therefore post-training is inevitably required to recover the performance. In this paper, we rethink token reduction and unify the process as an explicit form of token matrix transformation, in which all existing methods are constructing special forms of matrices within the framework. Furthermore, we propose a many-to-many Token Transforming framework that serves as a generalization of all existing methods and reserves the most information, even enabling training-free acceleration. We conduct extensive experiments to validate our framework. Specifically, we reduce 40% FLOPs and accelerate DeiT-S by times1.5 with marginal 0.1% accuracy drop. Furthermore, we extend the method to dense prediction tasks including segmentation, object detection, depth estimation, and language model generation. Results demonstrate that the proposed method consistently achieves substantial improvements, offering a better computation-performance trade-off, impressive budget reduction and inference acceleration.
Grouping First, Attending Smartly: Training-Free Acceleration for Diffusion Transformers
Diffusion-based Transformers have demonstrated impressive generative capabilities, but their high computational costs hinder practical deployment, for example, generating an 8192times 8192 image can take over an hour on an A100 GPU. In this work, we propose GRAT (GRouping first, ATtending smartly), a training-free attention acceleration strategy for fast image and video generation without compromising output quality. The key insight is to exploit the inherent sparsity in learned attention maps (which tend to be locally focused) in pretrained Diffusion Transformers and leverage better GPU parallelism. Specifically, GRAT first partitions contiguous tokens into non-overlapping groups, aligning both with GPU execution patterns and the local attention structures learned in pretrained generative Transformers. It then accelerates attention by having all query tokens within the same group share a common set of attendable key and value tokens. These key and value tokens are further restricted to structured regions, such as surrounding blocks or criss-cross regions, significantly reducing computational overhead (e.g., attaining a 35.8times speedup over full attention when generating 8192times 8192 images) while preserving essential attention patterns and long-range context. We validate GRAT on pretrained Flux and HunyuanVideo for image and video generation, respectively. In both cases, GRAT achieves substantially faster inference without any fine-tuning, while maintaining the performance of full attention. We hope GRAT will inspire future research on accelerating Diffusion Transformers for scalable visual generation.
PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection
Visual instruction tuning refines pre-trained Multimodal Large Language Models (MLLMs) to enhance their real-world task performance. However, the rapid expansion of visual instruction datasets introduces significant data redundancy, leading to excessive computational costs. Existing data selection methods predominantly rely on proxy models or loss-based metrics, both of which impose substantial computational overheads due to the necessity of model inference and backpropagation. To address this challenge, we propose PRISM, a novel training-free approach for efficient multimodal data selection. Unlike existing methods, PRISM eliminates the reliance on proxy models, warm-up pretraining, and gradient-based optimization. Instead, it leverages Pearson correlation analysis to quantify the intrinsic visual encoding properties of MLLMs, computing a task-specific correlation score to identify high-value instances. This not only enbles data-efficient selection,but maintains the original performance. Empirical evaluations across multiple MLLMs demonstrate that PRISM reduces the overall time required for visual instruction tuning and data selection to just 30% of conventional methods, while surpassing fully fine-tuned models across eight multimodal and three language understanding benchmarks, achieving a 101.7% relative improvement in final performance.
Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding
The current large auto-regressive models can generate high-quality, high-resolution images, but these models require hundreds or even thousands of steps of next-token prediction during inference, resulting in substantial time consumption. In existing studies, Jacobi decoding, an iterative parallel decoding algorithm, has been used to accelerate the auto-regressive generation and can be executed without training. However, the Jacobi decoding relies on a deterministic criterion to determine the convergence of iterations. Thus, it works for greedy decoding but is incompatible with sampling-based decoding which is crucial for visual quality and diversity in the current auto-regressive text-to-image generation. In this paper, we propose a training-free probabilistic parallel decoding algorithm, Speculative Jacobi Decoding (SJD), to accelerate auto-regressive text-to-image generation. By introducing a probabilistic convergence criterion, our SJD accelerates the inference of auto-regressive text-to-image generation while maintaining the randomness in sampling-based token decoding and allowing the model to generate diverse images. Specifically, SJD facilitates the model to predict multiple tokens at each step and accepts tokens based on the probabilistic criterion, enabling the model to generate images with fewer steps than the conventional next-token-prediction paradigm. We also investigate the token initialization strategies that leverage the spatial locality of visual data to further improve the acceleration ratio under specific scenarios. We conduct experiments for our proposed SJD on multiple auto-regressive text-to-image generation models, showing the effectiveness of model acceleration without sacrificing the visual quality.
CoTMR: Chain-of-Thought Multi-Scale Reasoning for Training-Free Zero-Shot Composed Image Retrieval
Zero-Shot Composed Image Retrieval (ZS-CIR) aims to retrieve target images by integrating information from a composed query (reference image and modification text) without training samples. Existing methods primarily combine caption models and large language models (LLMs) to generate target captions based on composed queries but face various issues such as incompatibility, visual information loss, and insufficient reasoning. In this work, we propose CoTMR, a training-free framework crafted for ZS-CIR with novel Chain-of-thought (CoT) and Multi-scale Reasoning. Instead of relying on caption models for modality transformation, CoTMR employs the Large Vision-Language Model (LVLM) to achieve unified understanding and reasoning for composed queries. To enhance the reasoning reliability, we devise CIRCoT, which guides the LVLM through a step-by-step inference process using predefined subtasks. Considering that existing approaches focus solely on global-level reasoning, our CoTMR incorporates multi-scale reasoning to achieve more comprehensive inference via fine-grained predictions about the presence or absence of key elements at the object scale. Further, we design a Multi-Grained Scoring (MGS) mechanism, which integrates CLIP similarity scores of the above reasoning outputs with candidate images to realize precise retrieval. Extensive experiments demonstrate that our CoTMR not only drastically outperforms previous methods across four prominent benchmarks but also offers appealing interpretability.
Check, Locate, Rectify: A Training-Free Layout Calibration System for Text-to-Image Generation
Diffusion models have recently achieved remarkable progress in generating realistic images. However, challenges remain in accurately understanding and synthesizing the layout requirements in the textual prompts. To align the generated image with layout instructions, we present a training-free layout calibration system SimM that intervenes in the generative process on the fly during inference time. Specifically, following a "check-locate-rectify" pipeline, the system first analyses the prompt to generate the target layout and compares it with the intermediate outputs to automatically detect errors. Then, by moving the located activations and making intra- and inter-map adjustments, the rectification process can be performed with negligible computational overhead. To evaluate SimM over a range of layout requirements, we present a benchmark SimMBench that compensates for the lack of superlative spatial relations in existing datasets. And both quantitative and qualitative results demonstrate the effectiveness of the proposed SimM in calibrating the layout inconsistencies. Our project page is at https://simm-t2i.github.io/SimM.
Hyperparameters are all you need: Using five-step inference for an original diffusion model to generate images comparable to the latest distillation model
The diffusion model is a state-of-the-art generative model that generates an image by applying a neural network iteratively. Moreover, this generation process is regarded as an algorithm solving an ordinary differential equation or a stochastic differential equation. Based on the analysis of the truncation error of the diffusion ODE and SDE, our study proposes a training-free algorithm that generates high-quality 512 x 512 and 1024 x 1024 images in eight steps, with flexible guidance scales. To the best of my knowledge, our algorithm is the first one that samples a 1024 x 1024 resolution image in 8 steps with an FID performance comparable to that of the latest distillation model, but without additional training. Meanwhile, our algorithm can also generate a 512 x 512 image in 8 steps, and its FID performance is better than the inference result using state-of-the-art ODE solver DPM++ 2m in 20 steps. We validate our eight-step image generation algorithm using the COCO 2014, COCO 2017, and LAION datasets. And our best FID performance is 15.7, 22.35, and 17.52. While the FID performance of DPM++2m is 17.3, 23.75, and 17.33. Further, it also outperforms the state-of-the-art AMED-plugin solver, whose FID performance is 19.07, 25.50, and 18.06. We also apply the algorithm in five-step inference without additional training, for which the best FID performance in the datasets mentioned above is 19.18, 23.24, and 19.61, respectively, and is comparable to the performance of the state-of-the-art AMED Pulgin solver in eight steps, SDXL-turbo in four steps, and the state-of-the-art diffusion distillation model Flash Diffusion in five steps. We also validate our algorithm in synthesizing 1024 * 1024 images within 6 steps, whose FID performance only has a limited distance to the latest distillation algorithm. The code is in repo: https://github.com/TheLovesOfLadyPurple/Hyperparameters-are-all-you-need
Nudging: Inference-time Alignment via Model Collaboration
Large language models (LLMs) require alignment, such as instruction-tuning or reinforcement learning from human feedback, to effectively and safely follow user instructions. This process necessitates training aligned versions for every model size in each model family, resulting in significant computational overhead. In this work, we propose nudging, a simple, plug-and-play, and training-free algorithm that aligns any base model at inference time using a small aligned model. Nudging is motivated by recent findings that alignment primarily alters the model's behavior on a small subset of stylistic tokens, such as "Sure" or "Thank". We find that base models are significantly more uncertain when generating these tokens. Leveraging this observation, nudging employs a small aligned model to generate nudging tokens to steer the large base model's output toward desired directions when the base model's uncertainty is high. We evaluate the effectiveness of nudging across 3 model families and 13 tasks, covering reasoning, general knowledge, instruction following, and safety benchmarks. Without any additional training, nudging a large base model with a 7x - 14x smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. For example, nudging OLMo-7b with OLMo-1b-instruct, affecting less than 9% of tokens, achieves a 10% absolute improvement on GSM8K over OLMo-7b-instruct. Unlike prior inference-time tuning methods, nudging enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-2-7b-chat outperforms Llama-2-70b-chat on various tasks. Overall, this work introduces a simple yet powerful approach to token-level model collaboration, offering a modular solution to LLM alignment. Our project website: https://fywalter.github.io/nudging/ .
RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval
Transformer-based large Language Models (LLMs) become increasingly important in various domains. However, the quadratic time complexity of attention operation poses a significant challenge for scaling to longer contexts due to the extremely high inference latency and GPU memory consumption for caching key-value (KV) vectors. This paper proposes RetrievalAttention, a training-free approach to accelerate attention computation. To leverage the dynamic sparse property of attention, RetrievalAttention builds approximate nearest neighbor search (ANNS) indexes upon KV vectors in CPU memory and retrieves the most relevant ones via vector search during generation. Due to the out-of-distribution (OOD) between query vectors and key vectors, off-the-shelf ANNS indexes still need to scan O(N) (usually 30% of all keys) data for accurate retrieval, which fails to exploit the high sparsity. RetrievalAttention first identifies the OOD challenge of ANNS-based attention, and addresses it via an attention-aware vector search algorithm that can adapt to queries and only access 1--3% of data, thus achieving a sub-linear time complexity. RetrievalAttention greatly reduces the inference cost of long-context LLM with much lower GPU memory requirements while maintaining the model accuracy. Especially, RetrievalAttention only needs 16GB GPU memory for serving 128K tokens in LLMs with 8B parameters, which is capable of generating one token in 0.188 seconds on a single NVIDIA RTX4090 (24GB).
Efficient Prompt Compression with Evaluator Heads for Long-Context Transformer Inference
Although applications involving long-context inputs are crucial for the effective utilization of large language models (LLMs), they also result in increased computational costs and reduced performance. To address this challenge, we propose an efficient, training-free prompt compression method that retains key information within compressed prompts. We identify specific attention heads in transformer-based LLMs, which we designate as evaluator heads, that are capable of selecting tokens in long inputs that are most significant for inference. Building on this discovery, we develop EHPC, an Evaluator Head-based Prompt Compression method, which enables LLMs to rapidly "skim through" input prompts by leveraging only the first few layers with evaluator heads during the pre-filling stage, subsequently passing only the important tokens to the model for inference. EHPC achieves state-of-the-art results across two mainstream benchmarks: prompt compression and long-context inference acceleration. Consequently, it effectively reduces the complexity and costs associated with commercial API calls. We further demonstrate that EHPC attains competitive results compared to key-value cache-based acceleration methods, thereby highlighting its potential to enhance the efficiency of LLMs for long-context tasks.
PTQTP: Post-Training Quantization to Trit-Planes for Large Language Models
Post-training quantization (PTQ) of large language models (LLMs) to extremely low bit-widths remains challenging due to the fundamental trade-off between computational efficiency and model expressiveness. While existing ultra-low-bit PTQ methods rely on binary approximations or complex compensation mechanisms, they suffer from either limited representational capacity or computational overhead that undermines their efficiency gains. We introduce PTQ to Trit-Planes (PTQTP), the first ternary-weight PTQ framework that decomposes weight matrices into structured ternary {-1, 0, 1} trit-planes using 2x1.58-bit representation. PTQTP achieves multiplication-free inference, identical to 1-bit quantization, while maintaining superior expressiveness through its novel structured decomposition. Our approach provides: (1) a theoretically grounded progressive approximation algorithm ensuring global weight consistency; (2) model-agnostic deployment across diverse modern LLMs without architectural modifications; and (3) uniform ternary operations that eliminate the need for mixed-precision or compensation schemes. Comprehensive experiments across LLaMA3.x and Qwen3 model families (0.6B-70B parameters) demonstrate that PTQTP significantly outperforms existing low-bit PTQ methods, achieving 82.4% mathematical reasoning retention versus 0% for competing approaches. PTQTP approaches and sometimes surpasses 1.58-bit quantization-aware training performance while requiring only single-hour quantization compared to 10-14 GPU days for training-based methods. These results establish PTQTP as a practical solution for efficient LLM deployment in resource-constrained environments.
STAR: Stage-Wise Attention-Guided Token Reduction for Efficient Large Vision-Language Models Inference
Although large vision-language models (LVLMs) leverage rich visual token representations to achieve strong performance on multimodal tasks, these tokens also introduce significant computational overhead during inference. Existing training-free token pruning methods typically adopt a single-stage strategy, focusing either on visual self-attention or visual-textual cross-attention. However, such localized perspectives often overlook the broader information flow across the model, leading to substantial performance degradation, especially under high pruning ratios. In this work, we propose STAR (Stage-wise Attention-guided token Reduction), a training-free, plug-and-play framework that approaches token pruning from a global perspective. Instead of pruning at a single point, STAR performs attention-guided reduction in two complementary stages: an early-stage pruning based on visual self-attention to remove redundant low-level features, and a later-stage pruning guided by cross-modal attention to discard task-irrelevant tokens. This holistic approach allows STAR to significantly reduce computational cost while better preserving task-critical information. Extensive experiments across multiple LVLM architectures and benchmarks show that STAR achieves strong acceleration while maintaining comparable, and in some cases even improved performance.
Speculative Thinking: Enhancing Small-Model Reasoning with Large Model Guidance at Inference Time
Recent advances leverage post-training to enhance model reasoning performance, which typically requires costly training pipelines and still suffers from inefficient, overly lengthy outputs. We introduce Speculative Thinking, a training-free framework that enables large reasoning models to guide smaller ones during inference at the reasoning level, distinct from speculative decoding, which operates at the token level. Our approach is based on two observations: (1) reasoning-supportive tokens such as "wait" frequently appear after structural delimiters like "\n\n", serving as signals for reflection or continuation; and (2) larger models exhibit stronger control over reflective behavior, reducing unnecessary backtracking while improving reasoning quality. By strategically delegating reflective steps to a more capable model, our method significantly boosts the reasoning accuracy of reasoning models while shortening their output. With the assistance of the 32B reasoning model, the 1.5B model's accuracy on MATH500 increases from 83.2% to 89.4%, marking a substantial improvement of 6.2%. Simultaneously, the average output length is reduced from 5439 tokens to 4583 tokens, representing a 15.7% decrease. Moreover, when applied to a non-reasoning model (Qwen-2.5-7B-Instruct), our framework boosts its accuracy from 74.0% to 81.8% on the same benchmark, achieving a relative improvement of 7.8%.
Position-Aware Depth Decay Decoding ($D^3$): Boosting Large Language Model Inference Efficiency
Due to the large number of parameters, the inference phase of Large Language Models (LLMs) is resource-intensive. Unlike traditional model compression, which needs retraining, recent dynamic computation methods show that not all components are required for inference, enabling a training-free pipeline. In this paper, we focus on the dynamic depth of LLM generation. A token-position aware layer skipping framework is proposed to save 1.5x times operations efficiently while maintaining performance. We first observed that tokens predicted later have lower perplexity and thus require less computation. Then, we propose a training-free algorithm called Position-Aware Depth Decay Decoding (D^3), which leverages a power-law decay function, leftlfloor L times (alpha^i) rightrfloor, to determine the number of layers to retain when generating token T_i. Remarkably, without any retraining, the D^3 achieves success across a wide range of generation tasks for the first time. Experiments on large language models (\ie the Llama) with 7 sim 70 billion parameters show that D^3 can achieve an average 1.5x speedup compared with the full-inference pipeline while maintaining comparable performance with nearly no performance drop (<1%) on the GSM8K and BBH benchmarks.
Cross-Attention Makes Inference Cumbersome in Text-to-Image Diffusion Models
This study explores the role of cross-attention during inference in text-conditional diffusion models. We find that cross-attention outputs converge to a fixed point after few inference steps. Accordingly, the time point of convergence naturally divides the entire inference process into two stages: an initial semantics-planning stage, during which, the model relies on cross-attention to plan text-oriented visual semantics, and a subsequent fidelity-improving stage, during which the model tries to generate images from previously planned semantics. Surprisingly, ignoring text conditions in the fidelity-improving stage not only reduces computation complexity, but also maintains model performance. This yields a simple and training-free method called TGATE for efficient generation, which caches the cross-attention output once it converges and keeps it fixed during the remaining inference steps. Our empirical study on the MS-COCO validation set confirms its effectiveness. The source code of TGATE is available at https://github.com/HaozheLiu-ST/T-GATE.
PromptDistill: Query-based Selective Token Retention in Intermediate Layers for Efficient Large Language Model Inference
As large language models (LLMs) tackle increasingly complex tasks and longer documents, their computational and memory costs during inference become a major bottleneck. To address this, we propose PromptDistill, a novel, training-free method that improves inference efficiency while preserving generation quality. PromptDistill identifies and retains the most informative tokens by leveraging attention interactions in early layers, preserving their hidden states while reducing the computational burden in later layers. This allows the model to focus on essential contextual information without fully processing all tokens. Unlike previous methods such as H2O and SnapKV, which perform compression only after processing the entire input, or GemFilter, which selects a fixed portion of the initial prompt without considering contextual dependencies, PromptDistill dynamically allocates computational resources to the most relevant tokens while maintaining a global awareness of the input. Experiments using our method and baseline approaches with base models such as LLaMA 3.1 8B Instruct, Phi 3.5 Mini Instruct, and Qwen2 7B Instruct on benchmarks including LongBench, InfBench, and Needle in a Haystack demonstrate that PromptDistill significantly improves efficiency while having minimal impact on output quality compared to the original models. With a single-stage selection strategy, PromptDistill effectively balances performance and efficiency, outperforming prior methods like GemFilter, H2O, and SnapKV due to its superior ability to retain essential information. Specifically, compared to GemFilter, PromptDistill achieves an overall 1% to 5% performance improvement while also offering better time efficiency. Additionally, we explore multi-stage selection, which further improves efficiency while maintaining strong generation performance.
Fast and Memory-Efficient Video Diffusion Using Streamlined Inference
The rapid progress in artificial intelligence-generated content (AIGC), especially with diffusion models, has significantly advanced development of high-quality video generation. However, current video diffusion models exhibit demanding computational requirements and high peak memory usage, especially for generating longer and higher-resolution videos. These limitations greatly hinder the practical application of video diffusion models on standard hardware platforms. To tackle this issue, we present a novel, training-free framework named Streamlined Inference, which leverages the temporal and spatial properties of video diffusion models. Our approach integrates three core components: Feature Slicer, Operator Grouping, and Step Rehash. Specifically, Feature Slicer effectively partitions input features into sub-features and Operator Grouping processes each sub-feature with a group of consecutive operators, resulting in significant memory reduction without sacrificing the quality or speed. Step Rehash further exploits the similarity between adjacent steps in diffusion, and accelerates inference through skipping unnecessary steps. Extensive experiments demonstrate that our approach significantly reduces peak memory and computational overhead, making it feasible to generate high-quality videos on a single consumer GPU (e.g., reducing peak memory of AnimateDiff from 42GB to 11GB, featuring faster inference on 2080Ti).
KeDiff: Key Similarity-Based KV Cache Eviction for Long-Context LLM Inference in Resource-Constrained Environments
In this work, we demonstrate that distinctive keys during LLM inference tend to have high attention scores. We explore this phenomenon and propose KeyDiff, a training-free KV cache eviction method based on key similarity. This method facilitates the deployment of LLM-based application requiring long input prompts in resource-constrained environments with limited memory and compute budgets. Unlike other KV cache eviction methods, KeyDiff can process arbitrarily long prompts within strict resource constraints and efficiently generate responses. We demonstrate that KeyDiff computes the optimal solution to a KV cache selection problem that maximizes key diversity, providing a theoretical understanding of KeyDiff. Notably,KeyDiff does not rely on attention scores, allowing the use of optimized attention mechanisms like FlashAttention. We demonstrate the effectiveness of KeyDiff across diverse tasks and models, illustrating a performance gap of less than 0.04\% with 8K cache budget (sim 23\% KV cache reduction) from the non-evicting baseline on the LongBench benchmark for Llama 3.1-8B and Llama 3.2-3B.
Accelerating Diffusion Language Model Inference via Efficient KV Caching and Guided Diffusion
Diffusion language models offer parallel token generation and inherent bidirectionality, promising more efficient and powerful sequence modeling compared to autoregressive approaches. However, state-of-the-art diffusion models (e.g., Dream 7B, LLaDA 8B) suffer from slow inference. While they match the quality of similarly sized Autoregressive (AR) Models (e.g., Qwen2.5 7B, Llama3 8B), their iterative denoising requires multiple full-sequence forward passes, resulting in high computational costs and latency, particularly for long input prompts and long-context scenarios. Furthermore, parallel token generation introduces token incoherence problems, and current sampling heuristics suffer from significant quality drops with decreasing denoising steps. We address these limitations with two training-free techniques. First, we propose FreeCache, a Key-Value (KV) approximation caching technique that reuses stable KV projections across denoising steps, effectively reducing the computational cost of DLM inference. Second, we introduce Guided Diffusion, a training-free method that uses a lightweight pretrained autoregressive model to supervise token unmasking, dramatically reducing the total number of denoising iterations without sacrificing quality. We conduct extensive evaluations on open-source reasoning benchmarks, and our combined methods deliver up to a 34x end-to-end speedup without compromising accuracy. For the first time, diffusion language models achieve a comparable and even faster latency as the widely adopted autoregressive models. Our work successfully paved the way for scaling up the diffusion language model to a broader scope of applications across different domains.
Accelerating Diffusion LLM Inference via Local Determinism Propagation
Diffusion large language models (dLLMs) represent a significant advancement in text generation, offering parallel token decoding capabilities. However, existing open-source implementations suffer from quality-speed trade-offs that impede their practical deployment. Conservative sampling strategies typically decode only the most confident token per step to ensure quality (i.e., greedy decoding), at the cost of inference efficiency due to repeated redundant refinement iterations--a phenomenon we term delayed decoding. Through systematic analysis of dLLM decoding dynamics, we characterize this delayed decoding behavior and propose a training-free adaptive parallel decoding strategy, named LocalLeap, to address these inefficiencies. LocalLeap is built on two fundamental empirical principles: local determinism propagation centered on high-confidence anchors and progressive spatial consistency decay. By applying these principles, LocalLeap identifies anchors and performs localized relaxed parallel decoding within bounded neighborhoods, achieving substantial inference step reduction through early commitment of already-determined tokens without compromising output quality. Comprehensive evaluation on various benchmarks demonstrates that LocalLeap achieves 6.94times throughput improvements and reduces decoding steps to just 14.2\% of the original requirement, achieving these gains with negligible performance impact. The source codes are available at: https://github.com/friedrichor/LocalLeap.
EAGER: Entropy-Aware GEneRation for Adaptive Inference-Time Scaling
With the rise of reasoning language models and test-time scaling methods as a paradigm for improving model performance, substantial computation is often required to generate multiple candidate sequences from the same prompt. This enables exploration of different reasoning paths toward the correct solution, however, allocates the same compute budget for each prompt. Grounded on the assumption that different prompts carry different degrees of complexity, and thus different computation needs, we propose EAGer, a training-free generation method that leverages model uncertainty through token-wise entropy distribution to reduce redundant computation and concurrently improve overall performance. EAGer allows branching to multiple reasoning paths only in the presence of high-entropy tokens, and then reallocates the saved compute budget to the instances where exploration of alternative paths is most needed. We find that across multiple open-source models on complex reasoning benchmarks such as AIME 2025, EAGer can reallocate the budget without accessing target labels, achieving the best efficiency-performance trade-off in terms of reasoning length and Pass@k. When target labels are accessible, EAGer generates up to 65% fewer tokens (hence saving compute) and achieves up to 37% improvement in Pass@k compared to the Full Parallel Sampling.
AdaBlock-dLLM: Semantic-Aware Diffusion LLM Inference via Adaptive Block Size
Diffusion-based large language models (dLLMs) are gaining attention for their inherent capacity for parallel decoding, offering a compelling alternative to autoregressive LLMs. Among various decoding strategies, blockwise semi-autoregressive (semi-AR) approaches are widely adopted due to their natural support for KV caching and their favorable accuracy-speed trade-off. However, this paper identifies two fundamental limitations in the conventional semi-AR decoding approach that applies a fixed block size: i) late decoding overhead, where the unmasking of high-confidence tokens outside the current block is unnecessarily delayed, and ii) premature decoding error, where low-confidence tokens inside the current block are committed too early, leading to incorrect tokens. This paper presents the first systematic investigation challenging the fixed block size assumption in semi-AR decoding. Through a statistical analysis of confidence dynamics during the denoising process, we identify a volatility band (VB) region during dLLM decoding, which encodes local semantic structure and can be used to guide adaptive block sizing. Leveraging these insights, we introduce AdaBlock-dLLM, a training-free, plug-and-play scheduler that adaptively aligns block boundaries with semantic steps by adjusting block size during runtime. Extensive experiments across diverse benchmarks show that AdaBlock-dLLM achieves up to 5.3% accuracy improvement under the same throughput budget. Beyond inference-time optimization, we hope our semantics-aware adaptive scheduling approach and confidence-based analysis will inspire future training strategies for dLLMs.
DITTO: Diffusion Inference-Time T-Optimization for Music Generation
We propose Diffusion Inference-Time T-Optimization (DITTO), a general-purpose frame-work for controlling pre-trained text-to-music diffusion models at inference-time via optimizing initial noise latents. Our method can be used to optimize through any differentiable feature matching loss to achieve a target (stylized) output and leverages gradient checkpointing for memory efficiency. We demonstrate a surprisingly wide-range of applications for music generation including inpainting, outpainting, and looping as well as intensity, melody, and musical structure control - all without ever fine-tuning the underlying model. When we compare our approach against related training, guidance, and optimization-based methods, we find DITTO achieves state-of-the-art performance on nearly all tasks, including outperforming comparable approaches on controllability, audio quality, and computational efficiency, thus opening the door for high-quality, flexible, training-free control of diffusion models. Sound examples can be found at https://DITTO-Music.github.io/web/.
FPSAttention: Training-Aware FP8 and Sparsity Co-Design for Fast Video Diffusion
Diffusion generative models have become the standard for producing high-quality, coherent video content, yet their slow inference speeds and high computational demands hinder practical deployment. Although both quantization and sparsity can independently accelerate inference while maintaining generation quality, naively combining these techniques in existing training-free approaches leads to significant performance degradation due to the lack of joint optimization. We introduce FPSAttention, a novel training-aware co-design of FP8 quantization and sparsity for video generation, with a focus on the 3D bi-directional attention mechanism. Our approach features three key innovations: 1) A unified 3D tile-wise granularity that simultaneously supports both quantization and sparsity; 2) A denoising step-aware strategy that adapts to the noise schedule, addressing the strong correlation between quantization/sparsity errors and denoising steps; 3) A native, hardware-friendly kernel that leverages FlashAttention and is implemented with optimized Hopper architecture features for highly efficient execution. Trained on Wan2.1's 1.3B and 14B models and evaluated on the VBench benchmark, FPSAttention achieves a 7.09x kernel speedup for attention operations and a 4.96x end-to-end speedup for video generation compared to the BF16 baseline at 720p resolution-without sacrificing generation quality.
WINA: Weight Informed Neuron Activation for Accelerating Large Language Model Inference
The growing computational demands of large language models (LLMs) make efficient inference and activation strategies increasingly critical. While recent approaches, such as Mixture-of-Experts (MoE), leverage selective activation but require specialized training, training-free sparse activation methods offer broader applicability and superior resource efficiency through their plug-and-play design. However, many existing methods rely solely on hidden state magnitudes to determine activation, resulting in high approximation errors and suboptimal inference accuracy. To address these limitations, we propose WINA (Weight Informed Neuron Activation), a novel, simple, and training-free sparse activation framework that jointly considers hidden state magnitudes and the column-wise ell_2-norms of weight matrices. We show that this leads to a sparsification strategy that obtains optimal approximation error bounds with theoretical guarantees tighter than existing techniques. Empirically, WINA also outperforms state-of-the-art methods (e.g., TEAL) by up to 2.94% in average performance at the same sparsity levels, across a diverse set of LLM architectures and datasets. These results position WINA as a new performance frontier for training-free sparse activation in LLM inference, advancing training-free sparse activation methods and setting a robust baseline for efficient inference. The source code is available at https://github.com/microsoft/wina.
Activation-aware Probe-Query: Effective Key-Value Retrieval for Long-Context LLMs Inference
Recent advances in large language models (LLMs) have showcased exceptional performance in long-context tasks, while facing significant inference efficiency challenges with limited GPU memory. Existing solutions first proposed the sliding-window approach to accumulate a set of historical key-value (KV) pairs for reuse, then further improvements selectively retain its subsets at each step. However, due to the sparse attention distribution across a long context, it is hard to identify and recall relevant KV pairs, as the attention is distracted by massive candidate pairs. Additionally, we found it promising to select representative tokens as probe-Query in each sliding window to effectively represent the entire context, which is an approach overlooked by existing methods. Thus, we propose ActQKV, a training-free, Activation-aware approach that dynamically determines probe-Query and leverages it to retrieve the relevant KV pairs for inference. Specifically, ActQKV monitors a token-level indicator, Activation Bias, within each context window, enabling the proper construction of probe-Query for retrieval at pre-filling stage. To accurately recall the relevant KV pairs and minimize the irrelevant ones, we design a dynamic KV cut-off mechanism guided by information density across layers at the decoding stage. Experiments on the Long-Bench and infty Benchmarks demonstrate its state-of-the-art performance with competitive inference quality and resource efficiency.
TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection
With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a model-agnostic, training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a small number of critical KV cache tokens in the attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we designed the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead of token selection. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
SparseVLM: Visual Token Sparsification for Efficient Vision-Language Model Inference
In vision-language models (VLMs), visual tokens usually consume a significant amount of computational overhead, despite their sparser information density compared to text tokens. To address this, most existing methods learn a network to prune redundant visual tokens and require additional training data. Differently, we propose an efficient training-free token optimization mechanism dubbed SparseVLM without extra parameters or fine-tuning costs. Concretely, given that visual tokens complement text tokens in VLMs for linguistic reasoning, we select visual-relevant text tokens to rate the significance of vision tokens within the self-attention matrix extracted from the VLMs. Then we progressively prune irrelevant tokens. To maximize sparsity while retaining essential information, we introduce a rank-based strategy to adaptively determine the sparsification ratio for each layer, alongside a token recycling method that compresses pruned tokens into more compact representations. Experimental results show that our SparseVLM improves the efficiency of various VLMs across a range of image and video understanding tasks. In particular, LLaVA equipped with SparseVLM reduces 61% to 67% FLOPs with a compression ratio of 78% while maintaining 93% of the accuracy. Our code is available at https://github.com/Gumpest/SparseVLMs.
HARP: Hesitation-Aware Reframing in Transformer Inference Pass
This paper aims to improve the performance of large language models by addressing the variable computational demands in inference steps, where some tokens require more computational resources than others. We present HARP, a simple modification to "off-the-shelf" Transformer forward pass. Drawing from hesitation and the framing effect in decision-making, HARP selectively applies additional computation when the model encounters uncertainty during token generation. Our method mimics human cognitive processes by pausing at difficult decision points and reframing inputs for a different perspective. Unlike other approaches, HARP is model-agnostic, training-free, and easy to implement. We thoroughly evaluate our method across various downstream tasks and model sizes, demonstrating performance improvements up to +5.16%. Notably, HARP achieves these gains while maintaining inference times twice faster than beam search. Simple and yet with significant gains, HARP offers a practical solution for enhancing the performance of Transformer-based language models with minimal computational impact.
DriftLite: Lightweight Drift Control for Inference-Time Scaling of Diffusion Models
We study inference-time scaling for diffusion models, where the goal is to adapt a pre-trained model to new target distributions without retraining. Existing guidance-based methods are simple but introduce bias, while particle-based corrections suffer from weight degeneracy and high computational cost. We introduce DriftLite, a lightweight, training-free particle-based approach that steers the inference dynamics on the fly with provably optimal stability control. DriftLite exploits a previously unexplored degree of freedom in the Fokker-Planck equation between the drift and particle potential, and yields two practical instantiations: Variance- and Energy-Controlling Guidance (VCG/ECG) for approximating the optimal drift with minimal overhead. Across Gaussian mixture models, particle systems, and large-scale protein-ligand co-folding problems, DriftLite consistently reduces variance and improves sample quality over pure guidance and sequential Monte Carlo baselines. These results highlight a principled, efficient route toward scalable inference-time adaptation of diffusion models.
Think Twice, Act Once: Token-Aware Compression and Action Reuse for Efficient Inference in Vision-Language-Action Models
Vision-Language-Action (VLA) models have emerged as a powerful paradigm for general-purpose robot control through natural language instructions. However, their high inference cost-stemming from large-scale token computation and autoregressive decoding-poses significant challenges for real-time deployment and edge applications. While prior work has primarily focused on architectural optimization, we take a different perspective by identifying a dual form of redundancy in VLA models: (i) high similarity across consecutive action steps, and (ii) substantial redundancy in visual tokens. Motivated by these observations, we propose FlashVLA, the first training-free and plug-and-play acceleration framework that enables action reuse in VLA models. FlashVLA improves inference efficiency through a token-aware action reuse mechanism that avoids redundant decoding across stable action steps, and an information-guided visual token selection strategy that prunes low-contribution tokens. Extensive experiments on the LIBERO benchmark show that FlashVLA reduces FLOPs by 55.7% and latency by 36.0%, with only a 0.7% drop in task success rate. These results demonstrate the effectiveness of FlashVLA in enabling lightweight, low-latency VLA inference without retraining.
Fractional Reasoning via Latent Steering Vectors Improves Inference Time Compute
Test-time compute has emerged as a powerful paradigm for improving the performance of large language models (LLMs), where generating multiple outputs or refining individual chains can significantly boost answer accuracy. However, existing methods like Best-of-N, majority voting, and self-reflection typically apply reasoning in a uniform way across inputs, overlooking the fact that different problems may require different levels of reasoning depth. In this work, we propose Fractional Reasoning, a training-free and model-agnostic framework that enables continuous control over reasoning intensity at inference time, going beyond the limitations of fixed instructional prompts. Our method operates by extracting the latent steering vector associated with deeper reasoning and reapplying it with a tunable scaling factor, allowing the model to tailor its reasoning process to the complexity of each input. This supports two key modes of test-time scaling: (1) improving output quality in breadth-based strategies (e.g., Best-of-N, majority voting), and (2) enhancing the correctness of individual reasoning chains in depth-based strategies (e.g., self-reflection). Experiments on GSM8K, MATH500, and GPQA demonstrate that Fractional Reasoning consistently improves performance across diverse reasoning tasks and models.
R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference
Large Language Models (LLMs), while demonstrating remarkable capabilities across various applications, present significant challenges during inference due to their substantial model size, especially when deployed on edge devices. Activation sparsity offers a promising solution to reduce computation and memory movement, enabling more efficient inference, particularly for small-batch on-device applications. However, current approaches face limitations with non-ReLU activation function, which are foundational to most advanced LLMs, or require heavy continual training. Additionally, the difficulty in predicting active channels and limited achievable sparsity ratios constrain the effectiveness of activation sparsity-based methods. In this paper, we introduce R-Sparse, a training-free activation sparsity approach capable of achieving high sparsity levels in advanced LLMs. We conducted two preliminary investigations into how different components contribute to the output within a single linear layer and found two key observations: (i) the non-sparse components of the input function can be regarded as a few bias terms, and (ii) The full computation can be effectively approximated by an appropriate combination of input channels and weight singular values. Building on this, we replace the linear layers in LLMs with a rank-aware sparse inference method that leverages the sparsity of input channels and singular value components, eliminating the need for active channel prediction like the output sparsity based approaches. Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate that R-Sparse achieves comparable performance at 50% model-level sparsity, resulting in a significant 43% end-to-end efficient improvements with customized kernels.
Inference-Time Hyper-Scaling with KV Cache Compression
Inference-time scaling trades efficiency for increased reasoning accuracy by generating longer or more parallel sequences. However, in Transformer LLMs, generation cost is bottlenecked by the size of the key-value (KV) cache, rather than the number of generated tokens. Hence, we explore inference-time hyper-scaling: by compressing the KV cache, we can generate more tokens within the same compute budget and further improve the accuracy of scaled inference. The success of this approach, however, hinges on the ability of compression methods to preserve accuracy even at high compression ratios. To make hyper-scaling practical, we introduce Dynamic Memory Sparsification (DMS), a novel method for sparsifying KV caches that only requires 1K training steps to achieve 8times compression, while maintaining better accuracy than training-free sparse attention. Instead of prematurely discarding cached tokens, DMS delays token eviction, implicitly merging representations and preserving critical information. We demonstrate the effectiveness of inference-time hyper-scaling with DMS on multiple families of LLMs, showing that it boosts accuracy for comparable inference runtime and memory load. For instance, we enhance Qwen-R1 32B by an average of 9.1 points on AIME 24, 7.6 on GPQA, and 9.6 on LiveCodeBench across compute budgets.
Unveiling and Harnessing Hidden Attention Sinks: Enhancing Large Language Models without Training through Attention Calibration
Attention is a fundamental component behind the remarkable achievements of large language models (LLMs). However, our current understanding of the attention mechanism, especially regarding how attention distributions are established, remains limited. Inspired by recent studies that explore the presence of attention sink in the initial token, which receives disproportionately large attention scores despite their lack of semantic importance, this work delves deeper into this phenomenon. We aim to provide a more profound understanding of the existence of attention sinks within LLMs and to uncover ways to enhance the achievable accuracy of LLMs by directly optimizing the attention distributions, without the need for weight finetuning. Specifically, this work begins with comprehensive visualizations of the attention distributions in LLMs during inference across various inputs and tasks. Based on these visualizations, to the best of our knowledge, we are the first to discover that (1) attention sinks occur not only at the start of sequences but also within later tokens of the input, and (2) not all attention sinks have a positive impact on the achievable accuracy of LLMs. Building upon our findings, we propose a training-free Attention Calibration Technique (ACT) that automatically optimizes the attention distributions on the fly during inference in an input-adaptive manner. Extensive experiments validate that ACT consistently enhances the accuracy of various LLMs across different applications. Specifically, ACT achieves an average improvement of up to 7.30% in accuracy across different datasets when applied to Llama-30B. Our code is available at https://github.com/GATECH-EIC/ACT.
Evaluating Language Model Context Windows: A "Working Memory" Test and Inference-time Correction
Large language models are prominently used in real-world applications, often tasked with reasoning over large volumes of documents. An exciting development in this space is models boasting extended context capabilities, with some accommodating over 2 million tokens. Such long context model capabilities remain uncertain in production systems, motivating the need to benchmark their performance on real world use cases. We address this challenge by proposing SWiM, an evaluation framework that addresses the limitations of standard tests. Testing the framework on eight long context models, we find that even strong models such as GPT-4 and Claude 3 Opus degrade in performance when information is present in the middle of the context window (lost-in-the-middle effect). Next, in addition to our benchmark, we propose medoid voting, a simple, but effective training-free approach that helps alleviate this effect, by generating responses a few times, each time randomly permuting documents in the context, and selecting the medoid answer. We evaluate medoid voting on single document QA tasks, achieving up to a 24% lift in accuracy.
Timestep Embedding Tells: It's Time to Cache for Video Diffusion Model
As a fundamental backbone for video generation, diffusion models are challenged by low inference speed due to the sequential nature of denoising. Previous methods speed up the models by caching and reusing model outputs at uniformly selected timesteps. However, such a strategy neglects the fact that differences among model outputs are not uniform across timesteps, which hinders selecting the appropriate model outputs to cache, leading to a poor balance between inference efficiency and visual quality. In this study, we introduce Timestep Embedding Aware Cache (TeaCache), a training-free caching approach that estimates and leverages the fluctuating differences among model outputs across timesteps. Rather than directly using the time-consuming model outputs, TeaCache focuses on model inputs, which have a strong correlation with the modeloutputs while incurring negligible computational cost. TeaCache first modulates the noisy inputs using the timestep embeddings to ensure their differences better approximating those of model outputs. TeaCache then introduces a rescaling strategy to refine the estimated differences and utilizes them to indicate output caching. Experiments show that TeaCache achieves up to 4.41x acceleration over Open-Sora-Plan with negligible (-0.07% Vbench score) degradation of visual quality.
ToDo: Token Downsampling for Efficient Generation of High-Resolution Images
Attention mechanism has been crucial for image diffusion models, however, their quadratic computational complexity limits the sizes of images we can process within reasonable time and memory constraints. This paper investigates the importance of dense attention in generative image models, which often contain redundant features, making them suitable for sparser attention mechanisms. We propose a novel training-free method ToDo that relies on token downsampling of key and value tokens to accelerate Stable Diffusion inference by up to 2x for common sizes and up to 4.5x or more for high resolutions like 2048x2048. We demonstrate that our approach outperforms previous methods in balancing efficient throughput and fidelity.
TSPulse: Dual Space Tiny Pre-Trained Models for Rapid Time-Series Analysis
The rise of time-series pre-trained models has advanced temporal representation learning, but current state-of-the-art models are often large-scale, requiring substantial compute. We introduce TSPulse, ultra-compact time-series pre-trained models with only 1M parameters, specialized to perform strongly across classification, anomaly detection, imputation, and retrieval tasks. TSPulse introduces innovations at both the architecture and task levels. At the architecture level, it employs a dual-space masked reconstruction, learning from both time and frequency domains to capture complementary signals. This is further enhanced by a dual-embedding disentanglement, generating both detailed embeddings for fine-grained analysis and high-level semantic embeddings for broader task understanding. Notably, TSPulse's semantic embeddings are robust to shifts in time, magnitude, and noise, which is important for robust retrieval. At the task level, TSPulse incorporates TSLens, a fine-tuning component enabling task-specific feature attention. It also introduces a multi-head triangulation technique that correlates deviations from multiple prediction heads, enhancing anomaly detection by fusing complementary model outputs. Additionally, a hybrid mask pretraining is proposed to improves zero-shot imputation by reducing pre-training bias. These architecture and task innovations collectively contribute to TSPulse's significant performance gains: 5-16% on the UEA classification benchmarks, +20% on the TSB-AD anomaly detection leaderboard, +50% in zero-shot imputation, and +25% in time-series retrieval. Remarkably, these results are achieved with just 1M parameters, making TSPulse 10-100X smaller than existing pre-trained models. Its efficiency enables GPU-free inference and rapid pre-training, setting a new standard for efficient time-series pre-trained models. Models will be open-sourced soon.
Enhancing Physical Plausibility in Video Generation by Reasoning the Implausibility
Diffusion models can generate realistic videos, but existing methods rely on implicitly learning physical reasoning from large-scale text-video datasets, which is costly, difficult to scale, and still prone to producing implausible motions that violate fundamental physical laws. We introduce a training-free framework that improves physical plausibility at inference time by explicitly reasoning about implausibility and guiding the generation away from it. Specifically, we employ a lightweight physics-aware reasoning pipeline to construct counterfactual prompts that deliberately encode physics-violating behaviors. Then, we propose a novel Synchronized Decoupled Guidance (SDG) strategy, which leverages these prompts through synchronized directional normalization to counteract lagged suppression and trajectory-decoupled denoising to mitigate cumulative trajectory bias, ensuring that implausible content is suppressed immediately and consistently throughout denoising. Experiments across different physical domains show that our approach substantially enhances physical fidelity while maintaining photorealism, despite requiring no additional training. Ablation studies confirm the complementary effectiveness of both the physics-aware reasoning component and SDG. In particular, the aforementioned two designs of SDG are also individually validated to contribute critically to the suppression of implausible content and the overall gains in physical plausibility. This establishes a new and plug-and-play physics-aware paradigm for video generation.
Forecasting When to Forecast: Accelerating Diffusion Models with Confidence-Gated Taylor
Diffusion Transformers (DiTs) have demonstrated remarkable performance in visual generation tasks. However, their low inference speed limits their deployment in low-resource applications. Recent training-free approaches exploit the redundancy of features across timesteps by caching and reusing past representations to accelerate inference. Building on this idea, TaylorSeer instead uses cached features to predict future ones via Taylor expansion. However, its module-level prediction across all transformer blocks (e.g., attention or feedforward modules) requires storing fine-grained intermediate features, leading to notable memory and computation overhead. Moreover, it adopts a fixed caching schedule without considering the varying accuracy of predictions across timesteps, which can lead to degraded outputs when prediction fails. To address these limitations, we propose a novel approach to better leverage Taylor-based acceleration. First, we shift the Taylor prediction target from the module level to the last block level, significantly reducing the number of cached features. Furthermore, observing strong sequential dependencies among Transformer blocks, we propose to use the error between the Taylor-estimated and actual outputs of the first block as an indicator of prediction reliability. If the error is small, we trust the Taylor prediction for the last block; otherwise, we fall back to full computation, thereby enabling a dynamic caching mechanism. Empirical results show that our method achieves a better balance between speed and quality, achieving a 3.17x acceleration on FLUX, 2.36x on DiT, and 4.14x on Wan Video with negligible quality drop. The Project Page is https://cg-taylor-acce.github.io/CG-Taylor/{here.}
ImageBind-LLM: Multi-modality Instruction Tuning
We present ImageBind-LLM, a multi-modality instruction tuning method of large language models (LLMs) via ImageBind. Existing works mainly focus on language and image instruction tuning, different from which, our ImageBind-LLM can respond to multi-modality conditions, including audio, 3D point clouds, video, and their embedding-space arithmetic by only image-text alignment training. During training, we adopt a learnable bind network to align the embedding space between LLaMA and ImageBind's image encoder. Then, the image features transformed by the bind network are added to word tokens of all layers in LLaMA, which progressively injects visual instructions via an attention-free and zero-initialized gating mechanism. Aided by the joint embedding of ImageBind, the simple image-text training enables our model to exhibit superior multi-modality instruction-following capabilities. During inference, the multi-modality inputs are fed into the corresponding ImageBind encoders, and processed by a proposed visual cache model for further cross-modal embedding enhancement. The training-free cache model retrieves from three million image features extracted by ImageBind, which effectively mitigates the training-inference modality discrepancy. Notably, with our approach, ImageBind-LLM can respond to instructions of diverse modalities and demonstrate significant language generation quality. Code is released at https://github.com/OpenGVLab/LLaMA-Adapter.
PEEKABOO: Interactive Video Generation via Masked-Diffusion
Recently there has been a lot of progress in text-to-video generation, with state-of-the-art models being capable of generating high quality, realistic videos. However, these models lack the capability for users to interactively control and generate videos, which can potentially unlock new areas of application. As a first step towards this goal, we tackle the problem of endowing diffusion-based video generation models with interactive spatio-temporal control over their output. To this end, we take inspiration from the recent advances in segmentation literature to propose a novel spatio-temporal masked attention module - Peekaboo. This module is a training-free, no-inference-overhead addition to off-the-shelf video generation models which enables spatio-temporal control. We also propose an evaluation benchmark for the interactive video generation task. Through extensive qualitative and quantitative evaluation, we establish that Peekaboo enables control video generation and even obtains a gain of upto 3.8x in mIoU over baseline models.
Evolving Symbolic 3D Visual Grounder with Weakly Supervised Reflection
3D visual grounding (3DVG) is challenging because of the requirement of understanding on visual information, language and spatial relationships. While supervised approaches have achieved superior performance, they are constrained by the scarcity and high cost of 3D vision-language datasets. On the other hand, LLM/VLM based agents are proposed for 3DVG, eliminating the need for training data. However, these methods incur prohibitive time and token costs during inference. To address the challenges, we introduce a novel training-free symbolic framework for 3D visual grounding, namely Evolvable Symbolic Visual Grounder, that offers significantly reduced inference costs compared to previous agent-based methods while maintaining comparable performance. EaSe uses LLM generated codes to compute on spatial relationships. EaSe also implements an automatic pipeline to evaluate and optimize the quality of these codes and integrate VLMs to assist in the grounding process. Experimental results demonstrate that EaSe achieves 52.9% accuracy on Nr3D dataset and 49.2% [email protected] on ScanRefer, which is top-tier among training-free methods. Moreover, it substantially reduces the inference time and cost, offering a balanced trade-off between performance and efficiency. Codes are available at https://github.com/OpenRobotLab/EaSe.
Search for Efficient Large Language Models
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research. Numerous efficient techniques, including weight pruning, quantization, and distillation, have been embraced to compress LLMs, targeting memory reduction and inference acceleration, which underscore the redundancy in LLMs. However, most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures. Besides, traditional architecture search methods, limited by the elevated complexity with extensive parameters, struggle to demonstrate their effectiveness on LLMs. In this paper, we propose a training-free architecture search framework to identify optimal subnets that preserve the fundamental strengths of the original LLMs while achieving inference acceleration. Furthermore, after generating subnets that inherit specific weights from the original LLMs, we introduce a reformation algorithm that utilizes the omitted weights to rectify the inherited weights with a small amount of calibration data. Compared with SOTA training-free structured pruning works that can generate smaller networks, our method demonstrates superior performance across standard benchmarks. Furthermore, our generated subnets can directly reduce the usage of GPU memory and achieve inference acceleration.
Top-Theta Attention: Sparsifying Transformers by Compensated Thresholding
We present Top-Theta (Top-theta) Attention, a training-free method for sparsifying transformer attention during inference. Our key insight is that static, per-head thresholds can be calibrated to retain the desired constant number of significant elements per attention row. This approach enables content-based sparsity without retraining, and it remains robust across data domains. We further introduce compensation techniques to preserve accuracy under aggressive sparsification, establishing attention thresholding as a practical and principled alternative to top-k attention. We provide extensive evaluation on natural language processing tasks, showing that Top-theta achieves 3-10x reduction in V-cache usage and up to 10x fewer attention elements during inference while degrading no more than 1% in accuracy.
SHiNe: Semantic Hierarchy Nexus for Open-vocabulary Object Detection
Open-vocabulary object detection (OvOD) has transformed detection into a language-guided task, empowering users to freely define their class vocabularies of interest during inference. However, our initial investigation indicates that existing OvOD detectors exhibit significant variability when dealing with vocabularies across various semantic granularities, posing a concern for real-world deployment. To this end, we introduce Semantic Hierarchy Nexus (SHiNe), a novel classifier that uses semantic knowledge from class hierarchies. It runs offline in three steps: i) it retrieves relevant super-/sub-categories from a hierarchy for each target class; ii) it integrates these categories into hierarchy-aware sentences; iii) it fuses these sentence embeddings to generate the nexus classifier vector. Our evaluation on various detection benchmarks demonstrates that SHiNe enhances robustness across diverse vocabulary granularities, achieving up to +31.9% mAP50 with ground truth hierarchies, while retaining improvements using hierarchies generated by large language models. Moreover, when applied to open-vocabulary classification on ImageNet-1k, SHiNe improves the CLIP zero-shot baseline by +2.8% accuracy. SHiNe is training-free and can be seamlessly integrated with any off-the-shelf OvOD detector, without incurring additional computational overhead during inference. The code is open source.
ConsisSR: Delving Deep into Consistency in Diffusion-based Image Super-Resolution
Real-world image super-resolution (Real-ISR) aims at restoring high-quality (HQ) images from low-quality (LQ) inputs corrupted by unknown and complex degradations. In particular, pretrained text-to-image (T2I) diffusion models provide strong generative priors to reconstruct credible and intricate details. However, T2I generation focuses on semantic consistency while Real-ISR emphasizes pixel-level reconstruction, which hinders existing methods from fully exploiting diffusion priors. To address this challenge, we introduce ConsisSR to handle both semantic and pixel-level consistency. Specifically, compared to coarse-grained text prompts, we exploit the more powerful CLIP image embedding and effectively leverage both modalities through our Hybrid Prompt Adapter (HPA) for semantic guidance. Secondly, we introduce Time-aware Latent Augmentation (TALA) to mitigate the inherent gap between T2I generation and Real-ISR consistency requirements. By randomly mixing LQ and HQ latent inputs, our model not only handle timestep-specific diffusion noise but also refine the accumulated latent representations. Last but not least, our GAN-Embedding strategy employs the pretrained Real-ESRGAN model to refine the diffusion start point. This accelerates the inference process to 10 steps while preserving sampling quality, in a training-free manner. Our method demonstrates state-of-the-art performance among both full-scale and accelerated models. The code will be made publicly available.
TinyDrop: Tiny Model Guided Token Dropping for Vision Transformers
Vision Transformers (ViTs) achieve strong performance in image classification but incur high computational costs from processing all image tokens. To reduce inference costs in large ViTs without compromising accuracy, we propose TinyDrop, a training-free token dropping framework guided by a lightweight vision model. The guidance model estimates the importance of tokens while performing inference, thereby selectively discarding low-importance tokens if large vit models need to perform attention calculations. The framework operates plug-and-play, requires no architectural modifications, and is compatible with diverse ViT architectures. Evaluations on standard image classification benchmarks demonstrate that our framework reduces FLOPs by up to 80% for ViTs with minimal accuracy degradation, highlighting its generalization capability and practical utility for efficient ViT-based classification.
MixCache: Mixture-of-Cache for Video Diffusion Transformer Acceleration
Leveraging the Transformer architecture and the diffusion process, video DiT models have emerged as a dominant approach for high-quality video generation. However, their multi-step iterative denoising process incurs high computational cost and inference latency. Caching, a widely adopted optimization method in DiT models, leverages the redundancy in the diffusion process to skip computations in different granularities (e.g., step, cfg, block). Nevertheless, existing caching methods are limited to single-granularity strategies, struggling to balance generation quality and inference speed in a flexible manner. In this work, we propose MixCache, a training-free caching-based framework for efficient video DiT inference. It first distinguishes the interference and boundary between different caching strategies, and then introduces a context-aware cache triggering strategy to determine when caching should be enabled, along with an adaptive hybrid cache decision strategy for dynamically selecting the optimal caching granularity. Extensive experiments on diverse models demonstrate that, MixCache can significantly accelerate video generation (e.g., 1.94times speedup on Wan 14B, 1.97times speedup on HunyuanVideo) while delivering both superior generation quality and inference efficiency compared to baseline methods.
MotionBooth: Motion-Aware Customized Text-to-Video Generation
In this work, we present MotionBooth, an innovative framework designed for animating customized subjects with precise control over both object and camera movements. By leveraging a few images of a specific object, we efficiently fine-tune a text-to-video model to capture the object's shape and attributes accurately. Our approach presents subject region loss and video preservation loss to enhance the subject's learning performance, along with a subject token cross-attention loss to integrate the customized subject with motion control signals. Additionally, we propose training-free techniques for managing subject and camera motions during inference. In particular, we utilize cross-attention map manipulation to govern subject motion and introduce a novel latent shift module for camera movement control as well. MotionBooth excels in preserving the appearance of subjects while simultaneously controlling the motions in generated videos. Extensive quantitative and qualitative evaluations demonstrate the superiority and effectiveness of our method. Our project page is at https://jianzongwu.github.io/projects/motionbooth
Diffusion Language Models Know the Answer Before Decoding
Diffusion language models (DLMs) have recently emerged as an alternative to autoregressive approaches, offering parallel sequence generation and flexible token orders. However, their inference remains slower than that of autoregressive models, primarily due to the cost of bidirectional attention and the large number of refinement steps required for high quality outputs. In this work, we highlight and leverage an overlooked property of DLMs early answer convergence: in many cases, the correct answer can be internally identified by half steps before the final decoding step, both under semi-autoregressive and random remasking schedules. For example, on GSM8K and MMLU, up to 97% and 99% of instances, respectively, can be decoded correctly using only half of the refinement steps. Building on this observation, we introduce Prophet, a training-free fast decoding paradigm that enables early commit decoding. Specifically, Prophet dynamically decides whether to continue refinement or to go "all-in" (i.e., decode all remaining tokens in one step), using the confidence gap between the top-2 prediction candidates as the criterion. It integrates seamlessly into existing DLM implementations, incurs negligible overhead, and requires no additional training. Empirical evaluations of LLaDA-8B and Dream-7B across multiple tasks show that Prophet reduces the number of decoding steps by up to 3.4x while preserving high generation quality. These results recast DLM decoding as a problem of when to stop sampling, and demonstrate that early decode convergence provides a simple yet powerful mechanism for accelerating DLM inference, complementary to existing speedup techniques. Our code is publicly available at https://github.com/pixeli99/Prophet.
Señorita-2M: A High-Quality Instruction-based Dataset for General Video Editing by Video Specialists
Recent advancements in video generation have spurred the development of video editing techniques, which can be divided into inversion-based and end-to-end methods. However, current video editing methods still suffer from several challenges. Inversion-based methods, though training-free and flexible, are time-consuming during inference, struggle with fine-grained editing instructions, and produce artifacts and jitter. On the other hand, end-to-end methods, which rely on edited video pairs for training, offer faster inference speeds but often produce poor editing results due to a lack of high-quality training video pairs. In this paper, to close the gap in end-to-end methods, we introduce Se\~norita-2M, a high-quality video editing dataset. Se\~norita-2M consists of approximately 2 millions of video editing pairs. It is built by crafting four high-quality, specialized video editing models, each crafted and trained by our team to achieve state-of-the-art editing results. We also propose a filtering pipeline to eliminate poorly edited video pairs. Furthermore, we explore common video editing architectures to identify the most effective structure based on current pre-trained generative model. Extensive experiments show that our dataset can help to yield remarkably high-quality video editing results. More details are available at https://senorita.github.io.
METok: Multi-Stage Event-based Token Compression for Efficient Long Video Understanding
Recent advances in Video Large Language Models (VLLMs) have significantly enhanced their ability to understand video content. Nonetheless, processing long videos remains challenging due to high computational demands and the redundancy present in the visual data. In this work, we propose METok, a training-free, Multi-stage Event-based Token compression framework designed to accelerate VLLMs' inference while preserving accuracy. METok progressively eliminates redundant visual tokens across three critical stages: (1) event-aware compression during vision encoding, (2) hierarchical token pruning in the prefilling stage based on semantic alignment and event importance, and (3) a decoding-stage KV Cache optimization that further reduces memory consumption. Our experiments on diverse video benchmarks demonstrate that METok achieves an optimal trade-off between efficiency and accuracy by dynamically selecting informative visual tokens. For instance, equipping LongVA-7B with METok realizes an 80.6% FLOPs reduction and 93.5% KV Cache memory savings, all while maintaining comparable or even superior accuracy.
TryOn-Adapter: Efficient Fine-Grained Clothing Identity Adaptation for High-Fidelity Virtual Try-On
Virtual try-on focuses on adjusting the given clothes to fit a specific person seamlessly while avoiding any distortion of the patterns and textures of the garment. However, the clothing identity uncontrollability and training inefficiency of existing diffusion-based methods, which struggle to maintain the identity even with full parameter training, are significant limitations that hinder the widespread applications. In this work, we propose an effective and efficient framework, termed TryOn-Adapter. Specifically, we first decouple clothing identity into fine-grained factors: style for color and category information, texture for high-frequency details, and structure for smooth spatial adaptive transformation. Our approach utilizes a pre-trained exemplar-based diffusion model as the fundamental network, whose parameters are frozen except for the attention layers. We then customize three lightweight modules (Style Preserving, Texture Highlighting, and Structure Adapting) incorporated with fine-tuning techniques to enable precise and efficient identity control. Meanwhile, we introduce the training-free T-RePaint strategy to further enhance clothing identity preservation while maintaining the realistic try-on effect during the inference. Our experiments demonstrate that our approach achieves state-of-the-art performance on two widely-used benchmarks. Additionally, compared with recent full-tuning diffusion-based methods, we only use about half of their tunable parameters during training. The code will be made publicly available at https://github.com/jiazheng-xing/TryOn-Adapter.
I4VGen: Image as Stepping Stone for Text-to-Video Generation
Text-to-video generation has lagged behind text-to-image synthesis in quality and diversity due to the complexity of spatio-temporal modeling and limited video-text datasets. This paper presents I4VGen, a training-free and plug-and-play video diffusion inference framework, which enhances text-to-video generation by leveraging robust image techniques. Specifically, following text-to-image-to-video, I4VGen decomposes the text-to-video generation into two stages: anchor image synthesis and anchor image-guided video synthesis. Correspondingly, a well-designed generation-selection pipeline is employed to achieve visually-realistic and semantically-faithful anchor image, and an innovative Noise-Invariant Video Score Distillation Sampling is incorporated to animate the image to a dynamic video, followed by a video regeneration process to refine the video. This inference strategy effectively mitigates the prevalent issue of non-zero terminal signal-to-noise ratio. Extensive evaluations show that I4VGen not only produces videos with higher visual realism and textual fidelity but also integrates seamlessly into existing image-to-video diffusion models, thereby improving overall video quality.
Reasoning Path Compression: Compressing Generation Trajectories for Efficient LLM Reasoning
Recent reasoning-focused language models achieve high accuracy by generating lengthy intermediate reasoning paths before producing final answers. While this approach is effective in solving problems that require logical thinking, long reasoning paths significantly increase memory usage and throughput of token generation, limiting the practical deployment of such models. We propose Reasoning Path Compression (RPC), a training-free method that accelerates inference by leveraging the semantic sparsity of reasoning paths. RPC periodically compresses the KV cache by retaining KV cache that receive high importance score, which are computed using a selector window composed of recently generated queries. Experiments show that RPC improves generation throughput of QwQ-32B by up to 1.60times compared to the inference with full KV cache, with an accuracy drop of 1.2% on the AIME 2024 benchmark. Our findings demonstrate that semantic sparsity in reasoning traces can be effectively exploited for compression, offering a practical path toward efficient deployment of reasoning LLMs. Our code is available at https://github.com/jiwonsong-dev/ReasoningPathCompression.
Ouroboros: Speculative Decoding with Large Model Enhanced Drafting
Drafting-then-verifying decoding methods such as speculative decoding are widely adopted training-free methods to accelerate the inference of large language models (LLMs). Instead of employing an autoregressive process to decode tokens sequentially, speculative decoding initially creates drafts with an efficient small model. Then LLMs are required to conduct verification and correction in a non-autoregressive fashion to minimize time overhead. Generating longer drafts can lead to even more significant speedups once verified, but also incurs substantial trial and error costs if it fails. Suffering from the high verification failure probability, existing decoding methods cannot draft too much content for verification at one time, achieving sub-optimal inference acceleration. In this paper, we introduce Ouroboros, which constructs a phrase candidate pool from the verification process of LLMs to provide candidates for draft generation of the small model. Thereby, Ouroboros can further improve the efficiency and effectiveness of the initial drafts. The experimental results on typical text generation tasks show that Ouroboros achieves speedups of up to 1.9x and 2.8x compared to lookahead decoding and speculative decoding, respectively. The source code of Ouroboros is available at https://github.com/thunlp/Ouroboros.
BlindSight: Harnessing Sparsity for Efficient VLMs
Large vision-language models (VLMs) enable the joint processing of text and images. However, the inclusion of vision data significantly expands the prompt length. Along with the quadratic complexity of the attention computation, this results in a longer prefill duration. An approach to mitigate this bottleneck is to leverage the inherent sparsity in the attention computation. In our analysis of attention patterns in VLMs, we observe that a substantial portion of layers exhibit minimal cross-image attention, except through attention-sink tokens per image. These sparse attention patterns fall into distinct categories: sink-only, document mask and a hybrid document-sink mask. Based on this, we propose BlindSight: a training-free approach to optimize VLM inference using a input template-aware attention sparsity mask. We utilize samples from a dataset to derive a prompt-agnostic sparsity categorization for every attention head. We evaluate the proposed technique using VLMs such as Qwen2-VL, Qwen2.5-VL and Gemma-3. BlindSight results in a 32%-41% reduction in FLOPs on average with -2%-+2% accuracy compared to the original model in most evaluated multi-image understanding benchmarks.
LAVID: An Agentic LVLM Framework for Diffusion-Generated Video Detection
The impressive achievements of generative models in creating high-quality videos have raised concerns about digital integrity and privacy vulnerabilities. Recent works of AI-generated content detection have been widely studied in the image field (e.g., deepfake), yet the video field has been unexplored. Large Vision Language Model (LVLM) has become an emerging tool for AI-generated content detection for its strong reasoning and multimodal capabilities. It breaks the limitations of traditional deep learning based methods faced with like lack of transparency and inability to recognize new artifacts. Motivated by this, we propose LAVID, a novel LVLMs-based ai-generated video detection with explicit knowledge enhancement. Our insight list as follows: (1) The leading LVLMs can call external tools to extract useful information to facilitate its own video detection task; (2) Structuring the prompt can affect LVLM's reasoning ability to interpret information in video content. Our proposed pipeline automatically selects a set of explicit knowledge tools for detection, and then adaptively adjusts the structure prompt by self-rewriting. Different from prior SOTA that trains additional detectors, our method is fully training-free and only requires inference of the LVLM for detection. To facilitate our research, we also create a new benchmark \vidfor with high-quality videos generated from multiple sources of video generation tools. Evaluation results show that LAVID improves F1 scores by 6.2 to 30.2% over the top baselines on our datasets across four SOTA LVLMs.
Diffusion Soup: Model Merging for Text-to-Image Diffusion Models
We present Diffusion Soup, a compartmentalization method for Text-to-Image Generation that averages the weights of diffusion models trained on sharded data. By construction, our approach enables training-free continual learning and unlearning with no additional memory or inference costs, since models corresponding to data shards can be added or removed by re-averaging. We show that Diffusion Soup samples from a point in weight space that approximates the geometric mean of the distributions of constituent datasets, which offers anti-memorization guarantees and enables zero-shot style mixing. Empirically, Diffusion Soup outperforms a paragon model trained on the union of all data shards and achieves a 30% improvement in Image Reward (.34 to .44) on domain sharded data, and a 59% improvement in IR (.37 to .59) on aesthetic data. In both cases, souping also prevails in TIFA score (respectively, 85.5 to 86.5 and 85.6 to 86.8). We demonstrate robust unlearning -- removing any individual domain shard only lowers performance by 1% in IR (.45 to .44) -- and validate our theoretical insights on anti-memorization using real data. Finally, we showcase Diffusion Soup's ability to blend the distinct styles of models finetuned on different shards, resulting in the zero-shot generation of hybrid styles.
Reflection of Thought: Inversely Eliciting Numerical Reasoning in Language Models via Solving Linear Systems
Numerical reasoning over natural language has been a long-standing goal for the research community. However, cutting-edge language models have proven difficult to reliably generalize to a broad range of numbers, although they have shown proficiency in reasoning over common and simple numbers. In this paper, we propose a novel method to elicit and exploit the numerical reasoning knowledge hidden in pre-trained language models using simple anchor numbers. Concretely, we first leverage simple numbers as anchors to probe the implicitly inferred arithmetic expressions from language models, and then explicitly apply the expressions on complex numbers to get corresponding answers. To inversely elicit arithmetic expressions, we transform and formulate the task as an analytically solvable linear system. Experimental results on several numerical reasoning benchmarks demonstrate that our approach significantly improves numerical reasoning capabilities of existing LMs. More importantly, our approach is training-free and simply works in the inference phase, making it highly portable and achieving consistent performance benefits across a variety of language models (GPT-3, T5, BART, etc) in all zero-shot, few-shot, and fine-tuning scenarios.
Sparse VideoGen: Accelerating Video Diffusion Transformers with Spatial-Temporal Sparsity
Diffusion Transformers (DiTs) dominate video generation but their high computational cost severely limits real-world applicability, usually requiring tens of minutes to generate a few seconds of video even on high-performance GPUs. This inefficiency primarily arises from the quadratic computational complexity of 3D Full Attention with respect to the context length. In this paper, we propose a training-free framework termed Sparse VideoGen (SVG) that leverages the inherent sparsity in 3D Full Attention to boost inference efficiency. We reveal that the attention heads can be dynamically classified into two groups depending on distinct sparse patterns: (1) Spatial Head, where only spatially-related tokens within each frame dominate the attention output, and (2) Temporal Head, where only temporally-related tokens across different frames dominate. Based on this insight, SVG proposes an online profiling strategy to capture the dynamic sparse patterns and predicts the type of attention head. Combined with a novel hardware-efficient tensor layout transformation and customized kernel implementations, SVG achieves up to 2.28x and 2.33x end-to-end speedup on CogVideoX-v1.5 and HunyuanVideo, respectively, while preserving generation quality.
Flattery in Motion: Benchmarking and Analyzing Sycophancy in Video-LLMs
As video large language models (Video-LLMs) become increasingly integrated into real-world applications that demand grounded multimodal reasoning, ensuring their factual consistency and reliability is of critical importance. However, sycophancy, the tendency of these models to align with user input even when it contradicts the visual evidence, undermines their trustworthiness in such contexts. Current sycophancy research has largely overlooked its specific manifestations in the video-language domain, resulting in a notable absence of systematic benchmarks and targeted evaluations to understand how Video-LLMs respond under misleading user input. To fill this gap, we propose VISE (Video-LLM Sycophancy Benchmarking and Evaluation), the first benchmark designed to evaluate sycophantic behavior in state-of-the-art Video-LLMs across diverse question formats, prompt biases, and visual reasoning tasks. Specifically, VISE pioneeringly brings linguistic perspectives on sycophancy into the video domain, enabling fine-grained analysis across multiple sycophancy types and interaction patterns. Furthermore, we propose two potential training-free mitigation strategies, revealing potential paths for reducing sycophantic bias: (i) enhancing visual grounding through interpretable key-frame selection and (ii) steering model behavior away from sycophancy via targeted, inference-time intervention on its internal neural representations. Our code is available at https://github.com/William030422/Video-Sycophancy.
VLM-Guided Adaptive Negative Prompting for Creative Generation
Creative generation is the synthesis of new, surprising, and valuable samples that reflect user intent yet cannot be envisioned in advance. This task aims to extend human imagination, enabling the discovery of visual concepts that exist in the unexplored spaces between familiar domains. While text-to-image diffusion models excel at rendering photorealistic scenes that faithfully match user prompts, they still struggle to generate genuinely novel content. Existing approaches to enhance generative creativity either rely on interpolation of image features, which restricts exploration to predefined categories, or require time-intensive procedures such as embedding optimization or model fine-tuning. We propose VLM-Guided Adaptive Negative-Prompting, a training-free, inference-time method that promotes creative image generation while preserving the validity of the generated object. Our approach utilizes a vision-language model (VLM) that analyzes intermediate outputs of the generation process and adaptively steers it away from conventional visual concepts, encouraging the emergence of novel and surprising outputs. We evaluate creativity through both novelty and validity, using statistical metrics in the CLIP embedding space. Through extensive experiments, we show consistent gains in creative novelty with negligible computational overhead. Moreover, unlike existing methods that primarily generate single objects, our approach extends to complex scenarios, such as generating coherent sets of creative objects and preserving creativity within elaborate compositional prompts. Our method integrates seamlessly into existing diffusion pipelines, offering a practical route to producing creative outputs that venture beyond the constraints of textual descriptions.
SEED: Accelerating Reasoning Tree Construction via Scheduled Speculative Decoding
Large Language Models (LLMs) demonstrate remarkable emergent abilities across various tasks, yet fall short of complex reasoning and planning tasks. The tree-search-based reasoning methods address this by surpassing the capabilities of chain-of-thought prompting, encouraging exploration of intermediate steps. However, such methods introduce significant inference latency due to the systematic exploration and evaluation of multiple thought paths. This paper introduces SeeD, a novel and efficient inference framework to optimize runtime speed and GPU memory management concurrently. By employing a scheduled speculative execution, SeeD efficiently handles multiple iterations for the thought generation and the state evaluation, leveraging a rounds-scheduled strategy to manage draft model dispatching. Extensive experimental evaluations on three reasoning datasets demonstrate superior speedup performance of SeeD, providing a viable path for batched inference in training-free speculative decoding.
KVCOMM: Online Cross-context KV-cache Communication for Efficient LLM-based Multi-agent Systems
Multi-agent large language model (LLM) systems are increasingly adopted for complex language processing tasks that require communication and coordination among agents. However, these systems often suffer substantial overhead from repeated reprocessing of overlapping contexts across agents. In typical pipelines, once an agent receives a message from its predecessor, the full context-including prior turns-must be reprocessed from scratch, leading to inefficient processing. While key-value (KV) caching is an effective solution for avoiding redundant computation in single-agent settings where prefixes remain unchanged, it cannot be directly reused in multi-agent scenarios due to diverging prefixes introduced by agent-specific context extensions. We identify that the core challenge lies in the offset variance of KV-caches across agents. To address this, we propose KVCOMM, a training-free framework that enables efficient prefilling in multi-agent inference by reusing KV-caches and aligning cache offsets of overlapping contexts under diverse prefix contexts. KVCOMM estimates and adjusts KV-caches for shared content by referencing a pool of cached examples-termed anchors-that store observed cache deviations under varying prefixes. The anchor pool is maintained and updated online, allowing dynamic adaptation to distinct user requests and context structures. KVCOMM achieves over 70% reuse rate across diverse multi-agent workloads, including retrieval-augmented generation, math reasoning, and collaborative coding tasks, all without quality degradation. Particularly, when each fully-connected agent receives 1K input tokens with 512 prefix tokens and 512 output tokens under a five-agent setting, KVCOMM achieves up to 7.8x speedup compared to the standard prefill pipeline, reducing TTFT from ~430 ms to ~55 ms.
MOS: Model Surgery for Pre-Trained Model-Based Class-Incremental Learning
Class-Incremental Learning (CIL) requires models to continually acquire knowledge of new classes without forgetting old ones. Despite Pre-trained Models (PTMs) have shown excellent performance in CIL, catastrophic forgetting still occurs as the model learns new concepts. Existing work seeks to utilize lightweight components to adjust the PTM, while the forgetting phenomenon still comes from {\em parameter and retrieval} levels. Specifically, iterative updates of the model result in parameter drift, while mistakenly retrieving irrelevant modules leads to the mismatch during inference. To this end, we propose MOdel Surgery (MOS) to rescue the model from forgetting previous knowledge. By training task-specific adapters, we continually adjust the PTM to downstream tasks. To mitigate parameter-level forgetting, we present an adapter merging approach to learn task-specific adapters, which aims to bridge the gap between different components while reserve task-specific information. Besides, to address retrieval-level forgetting, we introduce a training-free self-refined adapter retrieval mechanism during inference, which leverages the model's inherent ability for better adapter retrieval. By jointly rectifying the model with those steps, MOS can robustly resist catastrophic forgetting in the learning process. Extensive experiments on seven benchmark datasets validate MOS's state-of-the-art performance. Code is available at: https://github.com/sun-hailong/AAAI25-MOS
MVInpainter: Learning Multi-View Consistent Inpainting to Bridge 2D and 3D Editing
Novel View Synthesis (NVS) and 3D generation have recently achieved prominent improvements. However, these works mainly focus on confined categories or synthetic 3D assets, which are discouraged from generalizing to challenging in-the-wild scenes and fail to be employed with 2D synthesis directly. Moreover, these methods heavily depended on camera poses, limiting their real-world applications. To overcome these issues, we propose MVInpainter, re-formulating the 3D editing as a multi-view 2D inpainting task. Specifically, MVInpainter partially inpaints multi-view images with the reference guidance rather than intractably generating an entirely novel view from scratch, which largely simplifies the difficulty of in-the-wild NVS and leverages unmasked clues instead of explicit pose conditions. To ensure cross-view consistency, MVInpainter is enhanced by video priors from motion components and appearance guidance from concatenated reference key&value attention. Furthermore, MVInpainter incorporates slot attention to aggregate high-level optical flow features from unmasked regions to control the camera movement with pose-free training and inference. Sufficient scene-level experiments on both object-centric and forward-facing datasets verify the effectiveness of MVInpainter, including diverse tasks, such as multi-view object removal, synthesis, insertion, and replacement. The project page is https://ewrfcas.github.io/MVInpainter/.
PixelMan: Consistent Object Editing with Diffusion Models via Pixel Manipulation and Generation
Recent research explores the potential of Diffusion Models (DMs) for consistent object editing, which aims to modify object position, size, and composition, etc., while preserving the consistency of objects and background without changing their texture and attributes. Current inference-time methods often rely on DDIM inversion, which inherently compromises efficiency and the achievable consistency of edited images. Recent methods also utilize energy guidance which iteratively updates the predicted noise and can drive the latents away from the original image, resulting in distortions. In this paper, we propose PixelMan, an inversion-free and training-free method for achieving consistent object editing via Pixel Manipulation and generation, where we directly create a duplicate copy of the source object at target location in the pixel space, and introduce an efficient sampling approach to iteratively harmonize the manipulated object into the target location and inpaint its original location, while ensuring image consistency by anchoring the edited image to be generated to the pixel-manipulated image as well as by introducing various consistency-preserving optimization techniques during inference. Experimental evaluations based on benchmark datasets as well as extensive visual comparisons show that in as few as 16 inference steps, PixelMan outperforms a range of state-of-the-art training-based and training-free methods (usually requiring 50 steps) on multiple consistent object editing tasks.
VidHalluc: Evaluating Temporal Hallucinations in Multimodal Large Language Models for Video Understanding
Multimodal large language models (MLLMs) have recently shown significant advancements in video understanding, excelling in content reasoning and instruction-following tasks. However, hallucination, where models generate inaccurate or misleading content, remains underexplored in the video domain. Building on the observation that MLLM visual encoders often fail to distinguish visually different yet semantically similar video pairs, we introduce VidHalluc, the largest benchmark designed to examine hallucinations in MLLMs for video understanding. It consists of 5,002 videos, paired to highlight cases prone to hallucinations. VidHalluc assesses hallucinations across three critical dimensions: (1) action, (2) temporal sequence, and (3) scene transition. Comprehensive testing shows that most MLLMs are vulnerable to hallucinations across these dimensions. Furthermore, we propose DINO-HEAL, a training-free method that reduces hallucinations by incorporating spatial saliency from DINOv2 to reweight visual features during inference. Our results show that DINO-HEAL consistently improves performance on VidHalluc, achieving an average improvement of 3.02% in mitigating hallucinations across all tasks. Both the VidHalluc benchmark and DINO-HEAL code are available at https://people-robots.github.io/vidhalluc.
Semantic Guidance Tuning for Text-To-Image Diffusion Models
Recent advancements in Text-to-Image (T2I) diffusion models have demonstrated impressive success in generating high-quality images with zero-shot generalization capabilities. Yet, current models struggle to closely adhere to prompt semantics, often misrepresenting or overlooking specific attributes. To address this, we propose a simple, training-free approach that modulates the guidance direction of diffusion models during inference. We first decompose the prompt semantics into a set of concepts, and monitor the guidance trajectory in relation to each concept. Our key observation is that deviations in model's adherence to prompt semantics are highly correlated with divergence of the guidance from one or more of these concepts. Based on this observation, we devise a technique to steer the guidance direction towards any concept from which the model diverges. Extensive experimentation validates that our method improves the semantic alignment of images generated by diffusion models in response to prompts. Project page is available at: https://korguy.github.io/
Upsample What Matters: Region-Adaptive Latent Sampling for Accelerated Diffusion Transformers
Diffusion transformers have emerged as an alternative to U-net-based diffusion models for high-fidelity image and video generation, offering superior scalability. However, their heavy computation remains a major obstacle to real-world deployment. Existing acceleration methods primarily exploit the temporal dimension such as reusing cached features across diffusion timesteps. Here, we propose Region-Adaptive Latent Upsampling (RALU), a training-free framework that accelerates inference along spatial dimension. RALU performs mixed-resolution sampling across three stages: 1) low-resolution denoising latent diffusion to efficiently capture global semantic structure, 2) region-adaptive upsampling on specific regions prone to artifacts at full-resolution, and 3) all latent upsampling at full-resolution for detail refinement. To stabilize generations across resolution transitions, we leverage noise-timestep rescheduling to adapt the noise level across varying resolutions. Our method significantly reduces computation while preserving image quality by achieving up to 7.0times speed-up on FLUX and 3.0times on Stable Diffusion 3 with minimal degradation. Furthermore, RALU is complementary to existing temporal accelerations such as caching methods, thus can be seamlessly integrated to further reduce inference latency without compromising generation quality.
Accelerating Flow-Matching-Based Text-to-Speech via Empirically Pruned Step Sampling
Flow-matching-based text-to-speech (TTS) models, such as Voicebox, E2 TTS, and F5-TTS, have attracted significant attention in recent years. These models require multiple sampling steps to reconstruct speech from noise, making inference speed a key challenge. Reducing the number of sampling steps can greatly improve inference efficiency. To this end, we introduce Fast F5-TTS, a training-free approach to accelerate the inference of flow-matching-based TTS models. By inspecting the sampling trajectory of F5-TTS, we identify redundant steps and propose Empirically Pruned Step Sampling (EPSS), a non-uniform time-step sampling strategy that effectively reduces the number of sampling steps. Our approach achieves a 7-step generation with an inference RTF of 0.030 on an NVIDIA RTX 3090 GPU, making it 4 times faster than the original F5-TTS while maintaining comparable performance. Furthermore, EPSS performs well on E2 TTS models, demonstrating its strong generalization ability.
Attention Tracker: Detecting Prompt Injection Attacks in LLMs
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks, where malicious inputs manipulate the model into ignoring original instructions and executing designated action. In this paper, we investigate the underlying mechanisms of these attacks by analyzing the attention patterns within LLMs. We introduce the concept of the distraction effect, where specific attention heads, termed important heads, shift focus from the original instruction to the injected instruction. Building on this discovery, we propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks without the need for additional LLM inference. Our method generalizes effectively across diverse models, datasets, and attack types, showing an AUROC improvement of up to 10.0% over existing methods, and performs well even on small LLMs. We demonstrate the robustness of our approach through extensive evaluations and provide insights into safeguarding LLM-integrated systems from prompt injection vulnerabilities.
MAG-Edit: Localized Image Editing in Complex Scenarios via $\underline{M}$ask-Based $\underline{A}$ttention-Adjusted $\underline{G}$uidance
Recent diffusion-based image editing approaches have exhibited impressive editing capabilities in images with simple compositions. However, localized editing in complex scenarios has not been well-studied in the literature, despite its growing real-world demands. Existing mask-based inpainting methods fall short of retaining the underlying structure within the edit region. Meanwhile, mask-free attention-based methods often exhibit editing leakage and misalignment in more complex compositions. In this work, we develop MAG-Edit, a training-free, inference-stage optimization method, which enables localized image editing in complex scenarios. In particular, MAG-Edit optimizes the noise latent feature in diffusion models by maximizing two mask-based cross-attention constraints of the edit token, which in turn gradually enhances the local alignment with the desired prompt. Extensive quantitative and qualitative experiments demonstrate the effectiveness of our method in achieving both text alignment and structure preservation for localized editing within complex scenarios.
TTOM: Test-Time Optimization and Memorization for Compositional Video Generation
Video Foundation Models (VFMs) exhibit remarkable visual generation performance, but struggle in compositional scenarios (e.g., motion, numeracy, and spatial relation). In this work, we introduce Test-Time Optimization and Memorization (TTOM), a training-free framework that aligns VFM outputs with spatiotemporal layouts during inference for better text-image alignment. Rather than direct intervention to latents or attention per-sample in existing work, we integrate and optimize new parameters guided by a general layout-attention objective. Furthermore, we formulate video generation within a streaming setting, and maintain historical optimization contexts with a parametric memory mechanism that supports flexible operations, such as insert, read, update, and delete. Notably, we found that TTOM disentangles compositional world knowledge, showing powerful transferability and generalization. Experimental results on the T2V-CompBench and Vbench benchmarks establish TTOM as an effective, practical, scalable, and efficient framework to achieve cross-modal alignment for compositional video generation on the fly.
LaCache: Ladder-Shaped KV Caching for Efficient Long-Context Modeling of Large Language Models
Recent advancements in Large Language Models (LLMs) have spurred interest in numerous applications requiring robust long-range capabilities, essential for processing extensive input contexts and continuously generating extended outputs. As sequence lengths increase, the number of Key-Value (KV) pairs in LLMs escalates, creating a significant efficiency bottleneck. In this paper, we propose a new KV cache optimization paradigm called LaCache, a training-free method for efficient and accurate generative inference of LLMs. LaCache enables LLMs to simultaneously address both of the critical challenges in long-range modeling: robust long-range capabilities and continuous generation without running out-of-memory (OOM). Specifically, LaCache integrates two key innovations: (1) a ladder-shaped KV cache pattern that stores KV pairs not only sequentially (left-to-right within each layer) but also across layers (from shallow to deep), providing an extended span for capturing long-range dependencies under a fixed storage budget, thereby boosting long-range capabilities; and (2) an iterative compaction mechanism that progressively compresses older caches, freeing up space for new tokens within a fixed cache size. This token distance-based dynamic compression enables more effective continuous generation under constrained cache budgets. Experiments across various tasks, benchmarks, and LLM models consistently validate LaCache's effectiveness in enhancing LLMs' long-range capabilities. Our code is available at https://github.com/GATECH-EIC/LaCache.
Manifold Preserving Guided Diffusion
Despite the recent advancements, conditional image generation still faces challenges of cost, generalizability, and the need for task-specific training. In this paper, we propose Manifold Preserving Guided Diffusion (MPGD), a training-free conditional generation framework that leverages pretrained diffusion models and off-the-shelf neural networks with minimal additional inference cost for a broad range of tasks. Specifically, we leverage the manifold hypothesis to refine the guided diffusion steps and introduce a shortcut algorithm in the process. We then propose two methods for on-manifold training-free guidance using pre-trained autoencoders and demonstrate that our shortcut inherently preserves the manifolds when applied to latent diffusion models. Our experiments show that MPGD is efficient and effective for solving a variety of conditional generation applications in low-compute settings, and can consistently offer up to 3.8x speed-ups with the same number of diffusion steps while maintaining high sample quality compared to the baselines.
DreamTuner: Single Image is Enough for Subject-Driven Generation
Diffusion-based models have demonstrated impressive capabilities for text-to-image generation and are expected for personalized applications of subject-driven generation, which require the generation of customized concepts with one or a few reference images. However, existing methods based on fine-tuning fail to balance the trade-off between subject learning and the maintenance of the generation capabilities of pretrained models. Moreover, other methods that utilize additional image encoders tend to lose important details of the subject due to encoding compression. To address these challenges, we propose DreamTurner, a novel method that injects reference information from coarse to fine to achieve subject-driven image generation more effectively. DreamTurner introduces a subject-encoder for coarse subject identity preservation, where the compressed general subject features are introduced through an attention layer before visual-text cross-attention. We then modify the self-attention layers within pretrained text-to-image models to self-subject-attention layers to refine the details of the target subject. The generated image queries detailed features from both the reference image and itself in self-subject-attention. It is worth emphasizing that self-subject-attention is an effective, elegant, and training-free method for maintaining the detailed features of customized subjects and can serve as a plug-and-play solution during inference. Finally, with additional subject-driven fine-tuning, DreamTurner achieves remarkable performance in subject-driven image generation, which can be controlled by a text or other conditions such as pose. For further details, please visit the project page at https://dreamtuner-diffusion.github.io/.
d$^2$Cache: Accelerating Diffusion-Based LLMs via Dual Adaptive Caching
Diffusion-based large language models (dLLMs), despite their promising performance, still suffer from inferior inference efficiency. This is because dLLMs rely on bidirectional attention and cannot directly benefit from the standard key-value (KV) cache as autoregressive models (ARMs) do. To tackle this issue, we introduce Dual aDaptive Cache (d^2Cache), which is a training-free approximate KV cache framework for accelerating dLLM inference. d^2Cache features a two-stage fine-grained selection strategy to identify tokens and adaptively update their KV states at each decoding step, while caching the KV states of the remaining tokens for reuse. Furthermore, d^2Cache naturally offers a more reliable decoding alternative, which can enable quasi left-to-right generation and mitigate premature overconfidence in tokens at the end of the sequence. Extensive experimental results on two representative dLLMs (\ie, LLaDA and Dream) demonstrate that d^2Cache not only achieves substantial inference speedups, but also yields consistent improvements in generation quality. The code is available at https://github.com/Kamichanw/d2Cache.
Knowledge Overshadowing Causes Amalgamated Hallucination in Large Language Models
Hallucination is often regarded as a major impediment for using large language models (LLMs), especially for knowledge-intensive tasks. Even when the training corpus consists solely of true statements, language models still generate hallucinations in the form of amalgamations of multiple facts. We coin this phenomenon as ``knowledge overshadowing'': when we query knowledge from a language model with multiple conditions, some conditions overshadow others, leading to hallucinated outputs. This phenomenon partially stems from training data imbalance, which we verify on both pretrained models and fine-tuned models, over a wide range of LM model families and sizes.From a theoretical point of view, knowledge overshadowing can be interpreted as over-generalization of the dominant conditions (patterns). We show that the hallucination rate grows with both the imbalance ratio (between the popular and unpopular condition) and the length of dominant condition description, consistent with our derived generalization bound. Finally, we propose to utilize overshadowing conditions as a signal to catch hallucination before it is produced, along with a training-free self-contrastive decoding method to alleviate hallucination during inference. Our proposed approach showcases up to 82% F1 for hallucination anticipation and 11.2% to 39.4% hallucination control, with different models and datasets.
Unchosen Experts Can Contribute Too: Unleashing MoE Models' Power by Self-Contrast
Mixture-of-Experts (MoE) has emerged as a prominent architecture for scaling model size while maintaining computational efficiency. In MoE, each token in the input sequence activates a different subset of experts determined by a routing mechanism. However, the unchosen experts in MoE models do not contribute to the output, potentially leading to underutilization of the model's capacity. In this work, we first conduct exploratory studies to demonstrate that increasing the number of activated experts does not necessarily improve and can even degrade the output quality. Then, we show that output distributions from an MoE model using different routing strategies substantially differ, indicating that different experts do not always act synergistically. Motivated by these findings, we propose Self-Contrast Mixture-of-Experts (SCMoE), a training-free strategy that utilizes unchosen experts in a self-contrast manner during inference. In SCMoE, the next-token probabilities are determined by contrasting the outputs from strong and weak activation using the same MoE model. Our method is conceptually simple and computationally lightweight, as it incurs minimal latency compared to greedy decoding. Experiments on several benchmarks (GSM8K, StrategyQA, MBPP and HumanEval) demonstrate that SCMoE can consistently enhance Mixtral 8x7B's reasoning capability across various domains. For example, it improves the accuracy on GSM8K from 61.79 to 66.94. Moreover, combining SCMoE with self-consistency yields additional gains, increasing major@20 accuracy from 75.59 to 78.31.
DeltaEdit: Exploring Text-free Training for Text-Driven Image Manipulation
Text-driven image manipulation remains challenging in training or inference flexibility. Conditional generative models depend heavily on expensive annotated training data. Meanwhile, recent frameworks, which leverage pre-trained vision-language models, are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. In this work, we propose a novel framework named DeltaEdit to address these problems. Our key idea is to investigate and identify a space, namely delta image and text space that has well-aligned distribution between CLIP visual feature differences of two images and CLIP textual embedding differences of source and target texts. Based on the CLIP delta space, the DeltaEdit network is designed to map the CLIP visual features differences to the editing directions of StyleGAN at training phase. Then, in inference phase, DeltaEdit predicts the StyleGAN's editing directions from the differences of the CLIP textual features. In this way, DeltaEdit is trained in a text-free manner. Once trained, it can well generalize to various text prompts for zero-shot inference without bells and whistles. Code is available at https://github.com/Yueming6568/DeltaEdit.
Backpropagation-free Training of Deep Physical Neural Networks
Recent years have witnessed the outstanding success of deep learning in various fields such as vision and natural language processing. This success is largely indebted to the massive size of deep learning models that is expected to increase unceasingly. This growth of the deep learning models is accompanied by issues related to their considerable energy consumption, both during the training and inference phases, as well as their scalability. Although a number of work based on unconventional physical systems have been proposed which addresses the issue of energy efficiency in the inference phase, efficient training of deep learning models has remained unaddressed. So far, training of digital deep learning models mainly relies on backpropagation, which is not suitable for physical implementation as it requires perfect knowledge of the computation performed in the so-called forward pass of the neural network. Here, we tackle this issue by proposing a simple deep neural network architecture augmented by a biologically plausible learning algorithm, referred to as "model-free forward-forward training". The proposed architecture enables training deep physical neural networks consisting of layers of physical nonlinear systems, without requiring detailed knowledge of the nonlinear physical layers' properties. We show that our method outperforms state-of-the-art hardware-aware training methods by improving training speed, decreasing digital computations, and reducing power consumption in physical systems. We demonstrate the adaptability of the proposed method, even in systems exposed to dynamic or unpredictable external perturbations. To showcase the universality of our approach, we train diverse wave-based physical neural networks that vary in the underlying wave phenomenon and the type of non-linearity they use, to perform vowel and image classification tasks experimentally.
Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers
Learned sparse retrieval, which can efficiently perform retrieval through mature inverted-index engines, has garnered growing attention in recent years. Particularly, the inference-free sparse retrievers are attractive as they eliminate online model inference in the retrieval phase thereby avoids huge computational cost, offering reasonable throughput and latency. However, even the state-of-the-art (SOTA) inference-free sparse models lag far behind in terms of search relevance when compared to both sparse and dense siamese models. Towards competitive search relevance for inference-free sparse retrievers, we argue that they deserve dedicated training methods other than using same ones with siamese encoders. In this paper, we propose two different approaches for performance improvement. First, we introduce the IDF-aware FLOPS loss, which introduces Inverted Document Frequency (IDF) to the sparsification of representations. We find that it mitigates the negative impact of the FLOPS regularization on search relevance, allowing the model to achieve a better balance between accuracy and efficiency. Moreover, we propose a heterogeneous ensemble knowledge distillation framework that combines siamese dense and sparse retrievers to generate supervisory signals during the pre-training phase. The ensemble framework of dense and sparse retriever capitalizes on their strengths respectively, providing a strong upper bound for knowledge distillation. To concur the diverse feedback from heterogeneous supervisors, we normalize and then aggregate the outputs of the teacher models to eliminate score scale differences. On the BEIR benchmark, our model outperforms existing SOTA inference-free sparse model by 3.3 NDCG@10 score. It exhibits search relevance comparable to siamese sparse retrievers and client-side latency only 1.1x that of BM25.
DeltaSpace: A Semantic-aligned Feature Space for Flexible Text-guided Image Editing
Text-guided image editing faces significant challenges to training and inference flexibility. Much literature collects large amounts of annotated image-text pairs to train text-conditioned generative models from scratch, which is expensive and not efficient. After that, some approaches that leverage pre-trained vision-language models are put forward to avoid data collection, but they are also limited by either per text-prompt optimization or inference-time hyper-parameters tuning. To address these issues, we investigate and identify a specific space, referred to as CLIP DeltaSpace, where the CLIP visual feature difference of two images is semantically aligned with the CLIP textual feature difference of their corresponding text descriptions. Based on DeltaSpace, we propose a novel framework called DeltaEdit, which maps the CLIP visual feature differences to the latent space directions of a generative model during the training phase, and predicts the latent space directions from the CLIP textual feature differences during the inference phase. And this design endows DeltaEdit with two advantages: (1) text-free training; (2) generalization to various text prompts for zero-shot inference. Extensive experiments validate the effectiveness and versatility of DeltaEdit with different generative models, including both the GAN model and the diffusion model, in achieving flexible text-guided image editing. Code is available at https://github.com/Yueming6568/DeltaEdit.
YOLOv10: Real-Time End-to-End Object Detection
Over the past years, YOLOs have emerged as the predominant paradigm in the field of real-time object detection owing to their effective balance between computational cost and detection performance. Researchers have explored the architectural designs, optimization objectives, data augmentation strategies, and others for YOLOs, achieving notable progress. However, the reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs and adversely impacts the inference latency. Besides, the design of various components in YOLOs lacks the comprehensive and thorough inspection, resulting in noticeable computational redundancy and limiting the model's capability. It renders the suboptimal efficiency, along with considerable potential for performance improvements. In this work, we aim to further advance the performance-efficiency boundary of YOLOs from both the post-processing and model architecture. To this end, we first present the consistent dual assignments for NMS-free training of YOLOs, which brings competitive performance and low inference latency simultaneously. Moreover, we introduce the holistic efficiency-accuracy driven model design strategy for YOLOs. We comprehensively optimize various components of YOLOs from both efficiency and accuracy perspectives, which greatly reduces the computational overhead and enhances the capability. The outcome of our effort is a new generation of YOLO series for real-time end-to-end object detection, dubbed YOLOv10. Extensive experiments show that YOLOv10 achieves state-of-the-art performance and efficiency across various model scales. For example, our YOLOv10-S is 1.8times faster than RT-DETR-R18 under the similar AP on COCO, meanwhile enjoying 2.8times smaller number of parameters and FLOPs. Compared with YOLOv9-C, YOLOv10-B has 46\% less latency and 25\% fewer parameters for the same performance.
Multiplication-Free Transformer Training via Piecewise Affine Operations
Multiplications are responsible for most of the computational cost involved in neural network training and inference. Recent research has thus looked for ways to reduce the cost associated with them. Inspired by Mogami (2020), we replace multiplication with a cheap piecewise affine approximation that is achieved by adding the bit representation of the floating point numbers together as integers. We show that transformers can be trained with the resulting modified matrix multiplications on both vision and language tasks with little to no performance impact, and without changes to the training hyperparameters. We further replace all non-linearities in the networks making them fully and jointly piecewise affine in both inputs and weights. Finally, we show that we can eliminate all multiplications in the entire training process, including operations in the forward pass, backward pass and optimizer update, demonstrating the first successful training of modern neural network architectures in a fully multiplication-free fashion.
TreePO: Bridging the Gap of Policy Optimization and Efficacy and Inference Efficiency with Heuristic Tree-based Modeling
Recent advancements in aligning large language models via reinforcement learning have achieved remarkable gains in solving complex reasoning problems, but at the cost of expensive on-policy rollouts and limited exploration of diverse reasoning paths. In this work, we introduce TreePO, involving a self-guided rollout algorithm that views sequence generation as a tree-structured searching process. Composed of dynamic tree sampling policy and fixed-length segment decoding, TreePO leverages local uncertainty to warrant additional branches. By amortizing computation across common prefixes and pruning low-value paths early, TreePO essentially reduces the per-update compute burden while preserving or enhancing exploration diversity. Key contributions include: (1) a segment-wise sampling algorithm that alleviates the KV cache burden through contiguous segments and spawns new branches along with an early-stop mechanism; (2) a tree-based segment-level advantage estimation that considers both global and local proximal policy optimization. and (3) analysis on the effectiveness of probability and quality-driven dynamic divergence and fallback strategy. We empirically validate the performance gain of TreePO on a set reasoning benchmarks and the efficiency saving of GPU hours from 22\% up to 43\% of the sampling design for the trained models, meanwhile showing up to 40\% reduction at trajectory-level and 35\% at token-level sampling compute for the existing models. While offering a free lunch of inference efficiency, TreePO reveals a practical path toward scaling RL-based post-training with fewer samples and less compute. Home page locates at https://m-a-p.ai/TreePO.
DiTAS: Quantizing Diffusion Transformers via Enhanced Activation Smoothing
Diffusion Transformers (DiTs) have recently attracted significant interest from both industry and academia due to their enhanced capabilities in visual generation, surpassing the performance of traditional diffusion models that employ U-Net. However, the improved performance of DiTs comes at the expense of higher parameter counts and implementation costs, which significantly limits their deployment on resource-constrained devices like mobile phones. We propose DiTAS, a data-free post-training quantization (PTQ) method for efficient DiT inference. DiTAS relies on the proposed temporal-aggregated smoothing techniques to mitigate the impact of the channel-wise outliers within the input activations, leading to much lower quantization error under extremely low bitwidth. To further enhance the performance of the quantized DiT, we adopt the layer-wise grid search strategy to optimize the smoothing factor. Experimental results demonstrate that our approach enables 4-bit weight, 8-bit activation (W4A8) quantization for DiTs while maintaining comparable performance as the full-precision model.
SeedLM: Compressing LLM Weights into Seeds of Pseudo-Random Generators
Large Language Models (LLMs) have transformed natural language processing, but face significant challenges in widespread deployment due to their high runtime cost. In this paper, we introduce SeedLM, a novel post-training compression method that uses seeds of pseudo-random generators to encode and compress model weights. Specifically, for each block of weights, we find a seed that is fed into a Linear Feedback Shift Register (LFSR) during inference to efficiently generate a random matrix. This matrix is then linearly combined with compressed coefficients to reconstruct the weight block. SeedLM reduces memory access and leverages idle compute cycles during inference, effectively speeding up memory-bound tasks by trading compute for fewer memory accesses. Unlike state-of-the-art compression methods that rely on calibration data, our approach is data-free and generalizes well across diverse tasks. Our experiments with Llama 3 70B, which is particularly challenging to compress, show that SeedLM achieves significantly better zero-shot accuracy retention at 4- and 3-bit than state-of-the-art techniques, while maintaining performance comparable to FP16 baselines. Additionally, FPGA-based tests demonstrate that 4-bit SeedLM, as model size increases to 70B, approaches a 4x speed-up over an FP16 Llama 2/3 baseline.
Compute as Teacher: Turning Inference Compute Into Reference-Free Supervision
Where do learning signals come from when there is no ground truth in post-training? We propose turning exploration into supervision through Compute as Teacher (CaT), which converts the model's own exploration at inference-time into reference-free supervision by synthesizing a single reference from a group of parallel rollouts and then optimizing toward it. Concretely, the current policy produces a group of rollouts; a frozen anchor (the initial policy) reconciles omissions and contradictions to estimate a reference, turning extra inference-time compute into a teacher signal. We turn this into rewards in two regimes: (i) verifiable tasks use programmatic equivalence on final answers; (ii) non-verifiable tasks use self-proposed rubrics-binary, auditable criteria scored by an independent LLM judge, with reward given by the fraction satisfied. Unlike selection methods (best-of-N, majority, perplexity, or judge scores), synthesis may disagree with the majority and be correct even when all rollouts are wrong; performance scales with the number of rollouts. As a test-time procedure, CaT improves Gemma 3 4B, Qwen 3 4B, and Llama 3.1 8B (up to +27% on MATH-500; +12% on HealthBench). With reinforcement learning (CaT-RL), we obtain further gains (up to +33% and +30%), with the trained policy surpassing the initial teacher signal.
Local Mixtures of Experts: Essentially Free Test-Time Training via Model Merging
Mixture of expert (MoE) models are a promising approach to increasing model capacity without increasing inference cost, and are core components of many state-of-the-art language models. However, current MoE models typically use only few experts due to prohibitive training and inference cost. We propose Test-Time Model Merging (TTMM) which scales the MoE paradigm to an order of magnitude more experts and uses model merging to avoid almost any test-time overhead. We show that TTMM is an approximation of test-time training (TTT), which fine-tunes an expert model for each prediction task, i.e., prompt. TTT has recently been shown to significantly improve language models, but is computationally expensive. We find that performance of TTMM improves with more experts and approaches the performance of TTT. Moreover, we find that with a 1B parameter base model, TTMM is more than 100x faster than TTT at test-time by amortizing the cost of TTT at train-time. Thus, TTMM offers a promising cost-effective approach to scale test-time training.
No Training, No Problem: Rethinking Classifier-Free Guidance for Diffusion Models
Classifier-free guidance (CFG) has become the standard method for enhancing the quality of conditional diffusion models. However, employing CFG requires either training an unconditional model alongside the main diffusion model or modifying the training procedure by periodically inserting a null condition. There is also no clear extension of CFG to unconditional models. In this paper, we revisit the core principles of CFG and introduce a new method, independent condition guidance (ICG), which provides the benefits of CFG without the need for any special training procedures. Our approach streamlines the training process of conditional diffusion models and can also be applied during inference on any pre-trained conditional model. Additionally, by leveraging the time-step information encoded in all diffusion networks, we propose an extension of CFG, called time-step guidance (TSG), which can be applied to any diffusion model, including unconditional ones. Our guidance techniques are easy to implement and have the same sampling cost as CFG. Through extensive experiments, we demonstrate that ICG matches the performance of standard CFG across various conditional diffusion models. Moreover, we show that TSG improves generation quality in a manner similar to CFG, without relying on any conditional information.
Lattica: A Decentralized Cross-NAT Communication Framework for Scalable AI Inference and Training
The rapid expansion of distributed Artificial Intelligence (AI) workloads beyond centralized data centers creates a demand for new communication substrates. These substrates must operate reliably in heterogeneous and permissionless environments, where Network Address Translators (NATs) and firewalls impose significant constraints. Existing solutions, however, are either designed for controlled data center deployments or implemented as monolithic systems that tightly couple machine learning logic with networking code. To address these limitations, we present Lattica, a decentralized cross-NAT communication framework designed to support distributed AI systems. Lattica integrates three core components. First, it employs a robust suite of NAT traversal mechanisms to establish a globally addressable peer-to-peer mesh. Second, it provides a decentralized data store based on Conflict-free Replicated Data Types (CRDTs), ensuring verifiable and eventually consistent state replication. Third, it incorporates a content discovery layer that leverages distributed hash tables (DHTs) together with an optimized RPC protocol for efficient model synchronization. By integrating these components, Lattica delivers a complete protocol stack for sovereign, resilient, and scalable AI systems that operate independently of centralized intermediaries. It is directly applicable to edge intelligence, collaborative reinforcement learning, and other large-scale distributed machine learning scenarios.
When Does Metadata Conditioning (NOT) Work for Language Model Pre-Training? A Study with Context-Free Grammars
The ability to acquire latent semantics is one of the key properties that determines the performance of language models. One convenient approach to invoke this ability is to prepend metadata (e.g. URLs, domains, and styles) at the beginning of texts in the pre-training data, making it easier for the model to access latent semantics before observing the entire text. Previous studies have reported that this technique actually improves the performance of trained models in downstream tasks; however, this improvement has been observed only in specific downstream tasks, without consistent enhancement in average next-token prediction loss. To understand this phenomenon, we closely investigate how prepending metadata during pre-training affects model performance by examining its behavior using artificial data. Interestingly, we found that this approach produces both positive and negative effects on the downstream tasks. We demonstrate that the effectiveness of the approach depends on whether latent semantics can be inferred from the downstream task's prompt. Specifically, through investigations using data generated by probabilistic context-free grammars, we show that training with metadata helps improve model's performance when the given context is long enough to infer the latent semantics. In contrast, the technique negatively impacts performance when the context lacks the necessary information to make an accurate posterior inference.
Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models
Linear attention is an efficient attention mechanism that has recently emerged as a promising alternative to conventional softmax attention. With its ability to process tokens in linear computational complexities, linear attention, in theory, can handle sequences of unlimited length without sacrificing speed, i.e., maintaining a constant training speed for various sequence lengths with a fixed memory consumption. However, due to the issue with cumulative summation (cumsum), current linear attention algorithms cannot demonstrate their theoretical advantage in a causal setting. In this paper, we present Lightning Attention-2, the first linear attention implementation that enables linear attention to realize its theoretical computational benefits. To achieve this, we leverage the thought of tiling, separately handling the intra-block and inter-block components in linear attention calculation. Specifically, we utilize the conventional attention computation mechanism for the intra-blocks and apply linear attention kernel tricks for the inter-blocks. A tiling technique is adopted through both forward and backward procedures to take full advantage of the GPU hardware. We implement our algorithm in Triton to make it IO-aware and hardware-friendly. Various experiments are conducted on different model sizes and sequence lengths. Lightning Attention-2 retains consistent training and inference speed regardless of input sequence length and is significantly faster than other attention mechanisms. The source code is available at https://github.com/OpenNLPLab/lightning-attention.
Efficient Distillation of Classifier-Free Guidance using Adapters
While classifier-free guidance (CFG) is essential for conditional diffusion models, it doubles the number of neural function evaluations (NFEs) per inference step. To mitigate this inefficiency, we introduce adapter guidance distillation (AGD), a novel approach that simulates CFG in a single forward pass. AGD leverages lightweight adapters to approximate CFG, effectively doubling the sampling speed while maintaining or even improving sample quality. Unlike prior guidance distillation methods that tune the entire model, AGD keeps the base model frozen and only trains minimal additional parameters (sim2%) to significantly reduce the resource requirement of the distillation phase. Additionally, this approach preserves the original model weights and enables the adapters to be seamlessly combined with other checkpoints derived from the same base model. We also address a key mismatch between training and inference in existing guidance distillation methods by training on CFG-guided trajectories instead of standard diffusion trajectories. Through extensive experiments, we show that AGD achieves comparable or superior FID to CFG across multiple architectures with only half the NFEs. Notably, our method enables the distillation of large models (sim2.6B parameters) on a single consumer GPU with 24 GB of VRAM, making it more accessible than previous approaches that require multiple high-end GPUs. We will publicly release the implementation of our method.
Turning Trash into Treasure: Accelerating Inference of Large Language Models with Token Recycling
The rapid growth in the parameters of large language models (LLMs) has made inference latency a fundamental bottleneck, limiting broader application of LLMs. Speculative decoding represents a lossless approach to accelerate inference through a guess-and-verify paradigm, leveraging the parallel capabilities of modern hardware. Some speculative decoding methods rely on additional structures to guess draft tokens, such as small models or parameter-efficient architectures, which need extra training before use. Alternatively, retrieval-based train-free techniques build libraries from pre-existing corpora or by n-gram generation. However, they face challenges like large storage requirements, time-consuming retrieval, and limited adaptability. Observing that candidate tokens generated during the decoding process are likely to reoccur in future sequences, we propose Token Recycling. This approach stores candidate tokens in an adjacency matrix and employs a breadth-first search (BFS)-like algorithm on the matrix to construct a draft tree. The tree is then validated through tree attention. New candidate tokens from the decoding process are then used to update the matrix. Token Recycling requires \textless2MB of additional storage and achieves approximately 2x speedup across all sizes of LLMs. It significantly outperforms existing train-free methods by 30\% and even a training method by 25\%. It can be directly applied to any existing LLMs and tasks without the need for adaptation.
Efficient LLM Training and Serving with Heterogeneous Context Sharding among Attention Heads
Existing LLM training and inference frameworks struggle in boosting efficiency with sparsity while maintaining the integrity of context and model architecture. Inspired by the sharding concept in database and the fact that attention parallelizes over heads on accelerators, we propose Sparsely-Sharded (S2) Attention, an attention algorithm that allocates heterogeneous context partitions for different attention heads to divide and conquer. S2-Attention enforces each attention head to only attend to a partition of contexts following a strided sparsity pattern, while the full context is preserved as the union of all the shards. As attention heads are processed in separate thread blocks, the context reduction for each head can thus produce end-to-end speed-up and memory reduction. At inference, LLMs trained with S2-Attention can then take the KV cache reduction as free meals with guaranteed model quality preserve. In experiments, we show S2-Attentioncan provide as much as (1) 25.3X wall-clock attention speed-up over FlashAttention-2, resulting in 6X reduction in end-to-end training time and 10X inference latency, (2) on-par model training quality compared to default attention, (3)perfect needle retrieval accuracy over 32K context window. On top of the algorithm, we build DKernel, an LLM training and inference kernel library that allows users to customize sparsity patterns for their own models. We open-sourced DKerneland make it compatible with Megatron, Pytorch, and vLLM.
DreamCache: Finetuning-Free Lightweight Personalized Image Generation via Feature Caching
Personalized image generation requires text-to-image generative models that capture the core features of a reference subject to allow for controlled generation across different contexts. Existing methods face challenges due to complex training requirements, high inference costs, limited flexibility, or a combination of these issues. In this paper, we introduce DreamCache, a scalable approach for efficient and high-quality personalized image generation. By caching a small number of reference image features from a subset of layers and a single timestep of the pretrained diffusion denoiser, DreamCache enables dynamic modulation of the generated image features through lightweight, trained conditioning adapters. DreamCache achieves state-of-the-art image and text alignment, utilizing an order of magnitude fewer extra parameters, and is both more computationally effective and versatile than existing models.
Diffusion Models without Classifier-free Guidance
This paper presents Model-guidance (MG), a novel objective for training diffusion model that addresses and removes of the commonly used Classifier-free guidance (CFG). Our innovative approach transcends the standard modeling of solely data distribution to incorporating the posterior probability of conditions. The proposed technique originates from the idea of CFG and is easy yet effective, making it a plug-and-play module for existing models. Our method significantly accelerates the training process, doubles the inference speed, and achieve exceptional quality that parallel and even surpass concurrent diffusion models with CFG. Extensive experiments demonstrate the effectiveness, efficiency, scalability on different models and datasets. Finally, we establish state-of-the-art performance on ImageNet 256 benchmarks with an FID of 1.34. Our code is available at https://github.com/tzco/Diffusion-wo-CFG.
PHLoRA: data-free Post-hoc Low-Rank Adapter extraction from full-rank checkpoint
We introduce PHLoRA (Pronounced "flora"). (Post-hoc LoRA), a simple yet powerful method to extract low-rank adaptation adapters from full-rank fine-tuned models without requiring access to training data or gradients. By computing the low-rank decomposition of weight differences between a base model and its fine-tuned counterpart, our method reconstructs adapter modules that can be merged or dynamically routed at inference time via S-LoRA, or served in scalable, industry settings using platforms like NVIDIA NIM. This approach amortizes latency overhead across requests and yields substantial cost savings. Unlike prior work that trains each adapter explicitly, our approach decouples fine-tuning from adapter generation, allowing adapter extraction from existing full-rank models or third-party checkpoints. Experiments on text, image, and video benchmarks using the Amazon Nova model family demonstrate that extracted adapters preserve high energy from the full weight delta, can be pruned safely, and yield negligible degradation in downstream task performance when re-merged. Overall, PHLoRA provides a practical path for making all existing full-rank checkpoints adapter-ready, democratizing scalable inference for all models.
Towards Label-Efficient Human Matting: A Simple Baseline for Weakly Semi-Supervised Trimap-Free Human Matting
This paper presents a new practical training method for human matting, which demands delicate pixel-level human region identification and significantly laborious annotations. To reduce the annotation cost, most existing matting approaches often rely on image synthesis to augment the dataset. However, the unnaturalness of synthesized training images brings in a new domain generalization challenge for natural images. To address this challenge, we introduce a new learning paradigm, weakly semi-supervised human matting (WSSHM), which leverages a small amount of expensive matte labels and a large amount of budget-friendly segmentation labels, to save the annotation cost and resolve the domain generalization problem. To achieve the goal of WSSHM, we propose a simple and effective training method, named Matte Label Blending (MLB), that selectively guides only the beneficial knowledge of the segmentation and matte data to the matting model. Extensive experiments with our detailed analysis demonstrate our method can substantially improve the robustness of the matting model using a few matte data and numerous segmentation data. Our training method is also easily applicable to real-time models, achieving competitive accuracy with breakneck inference speed (328 FPS on NVIDIA V100 GPU). The implementation code is available at https://github.com/clovaai/WSSHM.
M2TRec: Metadata-aware Multi-task Transformer for Large-scale and Cold-start free Session-based Recommendations
Session-based recommender systems (SBRSs) have shown superior performance over conventional methods. However, they show limited scalability on large-scale industrial datasets since most models learn one embedding per item. This leads to a large memory requirement (of storing one vector per item) and poor performance on sparse sessions with cold-start or unpopular items. Using one public and one large industrial dataset, we experimentally show that state-of-the-art SBRSs have low performance on sparse sessions with sparse items. We propose M2TRec, a Metadata-aware Multi-task Transformer model for session-based recommendations. Our proposed method learns a transformation function from item metadata to embeddings, and is thus, item-ID free (i.e., does not need to learn one embedding per item). It integrates item metadata to learn shared representations of diverse item attributes. During inference, new or unpopular items will be assigned identical representations for the attributes they share with items previously observed during training, and thus will have similar representations with those items, enabling recommendations of even cold-start and sparse items. Additionally, M2TRec is trained in a multi-task setting to predict the next item in the session along with its primary category and subcategories. Our multi-task strategy makes the model converge faster and significantly improves the overall performance. Experimental results show significant performance gains using our proposed approach on sparse items on the two datasets.
PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models
Current methods for few-shot fine-tuning of pretrained masked language models (PLMs) require carefully engineered prompts and verbalizers for each new task to convert examples into a cloze-format that the PLM can score. In this work, we propose PERFECT, a simple and efficient method for few-shot fine-tuning of PLMs without relying on any such handcrafting, which is highly effective given as few as 32 data points. PERFECT makes two key design choices: First, we show that manually engineered task prompts can be replaced with task-specific adapters that enable sample-efficient fine-tuning and reduce memory and storage costs by roughly factors of 5 and 100, respectively. Second, instead of using handcrafted verbalizers, we learn new multi-token label embeddings during fine-tuning, which are not tied to the model vocabulary and which allow us to avoid complex auto-regressive decoding. These embeddings are not only learnable from limited data but also enable nearly 100x faster training and inference. Experiments on a wide range of few-shot NLP tasks demonstrate that PERFECT, while being simple and efficient, also outperforms existing state-of-the-art few-shot learning methods. Our code is publicly available at https://github.com/facebookresearch/perfect.git.
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
Deep learning techniques have provided significant improvements in hyperspectral image (HSI) classification. The current deep learning based HSI classifiers follow a patch-based learning framework by dividing the image into overlapping patches. As such, these methods are local learning methods, which have a high computational cost. In this paper, a fast patch-free global learning (FPGA) framework is proposed for HSI classification. In FPGA, an encoder-decoder based FCN is utilized to consider the global spatial information by processing the whole image, which results in fast inference. However, it is difficult to directly utilize the encoder-decoder based FCN for HSI classification as it always fails to converge due to the insufficiently diverse gradients caused by the limited training samples. To solve the divergence problem and maintain the abilities of FCN of fast inference and global spatial information mining, a global stochastic stratified sampling strategy is first proposed by transforming all the training samples into a stochastic sequence of stratified samples. This strategy can obtain diverse gradients to guarantee the convergence of the FCN in the FPGA framework. For a better design of FCN architecture, FreeNet, which is a fully end-to-end network for HSI classification, is proposed to maximize the exploitation of the global spatial information and boost the performance via a spectral attention based encoder and a lightweight decoder. A lateral connection module is also designed to connect the encoder and decoder, fusing the spatial details in the encoder and the semantic features in the decoder. The experimental results obtained using three public benchmark datasets suggest that the FPGA framework is superior to the patch-based framework in both speed and accuracy for HSI classification. Code has been made available at: https://github.com/Z-Zheng/FreeNet.
TFRank: Think-Free Reasoning Enables Practical Pointwise LLM Ranking
Reasoning-intensive ranking models built on Large Language Models (LLMs) have made notable progress, but existing approaches often rely on large-scale LLMs and explicit Chain-of-Thought (CoT) reasoning, resulting in high computational cost and latency that limit real-world use. To address this, we propose TFRank, an efficient pointwise reasoning ranker based on small-scale LLMs. To improve ranking performance, TFRank effectively integrates CoT data, fine-grained score supervision, and multi-task training. Furthermore, it achieves an efficient ``Think-Free" reasoning capability by employing a ``think-mode switch'' and pointwise format constraints. Specifically, this allows the model to leverage explicit reasoning during training while delivering precise relevance scores for complex queries at inference without generating any reasoning chains. Experiments show that TFRank (e.g., 1.7B) achieves performance comparable to models with four times more parameters on the BRIGHT benchmark, and demonstrates strong competitiveness on the BEIR benchmark. Further analysis shows that TFRank achieves an effective balance between performance and efficiency, providing a practical solution for integrating advanced reasoning into real-world systems. Our code and data are released in the repository: https://github.com/JOHNNY-fans/TFRank.
Exemplar-Free Continual Transformer with Convolutions
Continual Learning (CL) involves training a machine learning model in a sequential manner to learn new information while retaining previously learned tasks without the presence of previous training data. Although there has been significant interest in CL, most recent CL approaches in computer vision have focused on convolutional architectures only. However, with the recent success of vision transformers, there is a need to explore their potential for CL. Although there have been some recent CL approaches for vision transformers, they either store training instances of previous tasks or require a task identifier during test time, which can be limiting. This paper proposes a new exemplar-free approach for class/task incremental learning called ConTraCon, which does not require task-id to be explicitly present during inference and avoids the need for storing previous training instances. The proposed approach leverages the transformer architecture and involves re-weighting the key, query, and value weights of the multi-head self-attention layers of a transformer trained on a similar task. The re-weighting is done using convolution, which enables the approach to maintain low parameter requirements per task. Additionally, an image augmentation-based entropic task identification approach is used to predict tasks without requiring task-ids during inference. Experiments on four benchmark datasets demonstrate that the proposed approach outperforms several competitive approaches while requiring fewer parameters.
Alias-Free Latent Diffusion Models:Improving Fractional Shift Equivariance of Diffusion Latent Space
Latent Diffusion Models (LDMs) are known to have an unstable generation process, where even small perturbations or shifts in the input noise can lead to significantly different outputs. This hinders their applicability in applications requiring consistent results. In this work, we redesign LDMs to enhance consistency by making them shift-equivariant. While introducing anti-aliasing operations can partially improve shift-equivariance, significant aliasing and inconsistency persist due to the unique challenges in LDMs, including 1) aliasing amplification during VAE training and multiple U-Net inferences, and 2) self-attention modules that inherently lack shift-equivariance. To address these issues, we redesign the attention modules to be shift-equivariant and propose an equivariance loss that effectively suppresses the frequency bandwidth of the features in the continuous domain. The resulting alias-free LDM (AF-LDM) achieves strong shift-equivariance and is also robust to irregular warping. Extensive experiments demonstrate that AF-LDM produces significantly more consistent results than vanilla LDM across various applications, including video editing and image-to-image translation. Code is available at: https://github.com/SingleZombie/AFLDM
ByT5: Towards a token-free future with pre-trained byte-to-byte models
Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. By comparison, token-free models that operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments.
Deep3DSketch+: Rapid 3D Modeling from Single Free-hand Sketches
The rapid development of AR/VR brings tremendous demands for 3D content. While the widely-used Computer-Aided Design (CAD) method requires a time-consuming and labor-intensive modeling process, sketch-based 3D modeling offers a potential solution as a natural form of computer-human interaction. However, the sparsity and ambiguity of sketches make it challenging to generate high-fidelity content reflecting creators' ideas. Precise drawing from multiple views or strategic step-by-step drawings is often required to tackle the challenge but is not friendly to novice users. In this work, we introduce a novel end-to-end approach, Deep3DSketch+, which performs 3D modeling using only a single free-hand sketch without inputting multiple sketches or view information. Specifically, we introduce a lightweight generation network for efficient inference in real-time and a structural-aware adversarial training approach with a Stroke Enhancement Module (SEM) to capture the structural information to facilitate learning of the realistic and fine-detailed shape structures for high-fidelity performance. Extensive experiments demonstrated the effectiveness of our approach with the state-of-the-art (SOTA) performance on both synthetic and real datasets.
SPFSplatV2: Efficient Self-Supervised Pose-Free 3D Gaussian Splatting from Sparse Views
We introduce SPFSplatV2, an efficient feed-forward framework for 3D Gaussian splatting from sparse multi-view images, requiring no ground-truth poses during training and inference. It employs a shared feature extraction backbone, enabling simultaneous prediction of 3D Gaussian primitives and camera poses in a canonical space from unposed inputs. A masked attention mechanism is introduced to efficiently estimate target poses during training, while a reprojection loss enforces pixel-aligned Gaussian primitives, providing stronger geometric constraints. We further demonstrate the compatibility of our training framework with different reconstruction architectures, resulting in two model variants. Remarkably, despite the absence of pose supervision, our method achieves state-of-the-art performance in both in-domain and out-of-domain novel view synthesis, even under extreme viewpoint changes and limited image overlap, and surpasses recent methods that rely on geometric supervision for relative pose estimation. By eliminating dependence on ground-truth poses, our method offers the scalability to leverage larger and more diverse datasets. Code and pretrained models will be available on our project page: https://ranrhuang.github.io/spfsplatv2/.
SortedNet, a Place for Every Network and Every Network in its Place: Towards a Generalized Solution for Training Many-in-One Neural Networks
As the size of deep learning models continues to grow, finding optimal models under memory and computation constraints becomes increasingly more important. Although usually the architecture and constituent building blocks of neural networks allow them to be used in a modular way, their training process is not aware of this modularity. Consequently, conventional neural network training lacks the flexibility to adapt the computational load of the model during inference. This paper proposes SortedNet, a generalized and scalable solution to harness the inherent modularity of deep neural networks across various dimensions for efficient dynamic inference. Our training considers a nested architecture for the sub-models with shared parameters and trains them together with the main model in a sorted and probabilistic manner. This sorted training of sub-networks enables us to scale the number of sub-networks to hundreds using a single round of training. We utilize a novel updating scheme during training that combines random sampling of sub-networks with gradient accumulation to improve training efficiency. Furthermore, the sorted nature of our training leads to a search-free sub-network selection at inference time; and the nested architecture of the resulting sub-networks leads to minimal storage requirement and efficient switching between sub-networks at inference. Our general dynamic training approach is demonstrated across various architectures and tasks, including large language models and pre-trained vision models. Experimental results show the efficacy of the proposed approach in achieving efficient sub-networks while outperforming state-of-the-art dynamic training approaches. Our findings demonstrate the feasibility of training up to 160 different sub-models simultaneously, showcasing the extensive scalability of our proposed method while maintaining 96% of the model performance.
Efficient block contrastive learning via parameter-free meta-node approximation
Contrastive learning has recently achieved remarkable success in many domains including graphs. However contrastive loss, especially for graphs, requires a large number of negative samples which is unscalable and computationally prohibitive with a quadratic time complexity. Sub-sampling is not optimal and incorrect negative sampling leads to sampling bias. In this work, we propose a meta-node based approximation technique that can (a) proxy all negative combinations (b) in quadratic cluster size time complexity, (c) at graph level, not node level, and (d) exploit graph sparsity. By replacing node-pairs with additive cluster-pairs, we compute the negatives in cluster-time at graph level. The resulting Proxy approximated meta-node Contrastive (PamC) loss, based on simple optimized GPU operations, captures the full set of negatives, yet is efficient with a linear time complexity. By avoiding sampling, we effectively eliminate sample bias. We meet the criterion for larger number of samples, thus achieving block-contrastiveness, which is proven to outperform pair-wise losses. We use learnt soft cluster assignments for the meta-node constriction, and avoid possible heterophily and noise added during edge creation. Theoretically, we show that real world graphs easily satisfy conditions necessary for our approximation. Empirically, we show promising accuracy gains over state-of-the-art graph clustering on 6 benchmarks. Importantly, we gain substantially in efficiency; up to 3x in training time, 1.8x in inference time and over 5x in GPU memory reduction.
No Pose at All: Self-Supervised Pose-Free 3D Gaussian Splatting from Sparse Views
We introduce SPFSplat, an efficient framework for 3D Gaussian splatting from sparse multi-view images, requiring no ground-truth poses during training or inference. It employs a shared feature extraction backbone, enabling simultaneous prediction of 3D Gaussian primitives and camera poses in a canonical space from unposed inputs within a single feed-forward step. Alongside the rendering loss based on estimated novel-view poses, a reprojection loss is integrated to enforce the learning of pixel-aligned Gaussian primitives for enhanced geometric constraints. This pose-free training paradigm and efficient one-step feed-forward design make SPFSplat well-suited for practical applications. Remarkably, despite the absence of pose supervision, SPFSplat achieves state-of-the-art performance in novel view synthesis even under significant viewpoint changes and limited image overlap. It also surpasses recent methods trained with geometry priors in relative pose estimation. Code and trained models are available on our project page: https://ranrhuang.github.io/spfsplat/.
ABC Easy as 123: A Blind Counter for Exemplar-Free Multi-Class Class-agnostic Counting
Class-agnostic counting methods enumerate objects of an arbitrary class, providing tremendous utility in many fields. Prior works have limited usefulness as they require either a set of examples of the type to be counted or that the query image contains only a single type of object. A significant factor in these shortcomings is the lack of a dataset to properly address counting in settings with more than one kind of object present. To address these issues, we propose the first Multi-class, Class-Agnostic Counting dataset (MCAC) and A Blind Counter (ABC123), a method that can count multiple types of objects simultaneously without using examples of type during training or inference. ABC123 introduces a new paradigm where instead of requiring exemplars to guide the enumeration, examples are found after the counting stage to help a user understand the generated outputs. We show that ABC123 outperforms contemporary methods on MCAC without needing human in-the-loop annotations. We also show that this performance transfers to FSC-147, the standard class-agnostic counting dataset. MCAC is available at MCAC.active.vision and ABC123 is available at ABC123.active.vision.
SynthLight: Portrait Relighting with Diffusion Model by Learning to Re-render Synthetic Faces
We introduce SynthLight, a diffusion model for portrait relighting. Our approach frames image relighting as a re-rendering problem, where pixels are transformed in response to changes in environmental lighting conditions. Using a physically-based rendering engine, we synthesize a dataset to simulate this lighting-conditioned transformation with 3D head assets under varying lighting. We propose two training and inference strategies to bridge the gap between the synthetic and real image domains: (1) multi-task training that takes advantage of real human portraits without lighting labels; (2) an inference time diffusion sampling procedure based on classifier-free guidance that leverages the input portrait to better preserve details. Our method generalizes to diverse real photographs and produces realistic illumination effects, including specular highlights and cast shadows, while preserving the subject's identity. Our quantitative experiments on Light Stage data demonstrate results comparable to state-of-the-art relighting methods. Our qualitative results on in-the-wild images showcase rich and unprecedented illumination effects. Project Page: https://vrroom.github.io/synthlight/
Generative Regression Based Watch Time Prediction for Short-Video Recommendation
Watch time prediction (WTP) has emerged as a pivotal task in short video recommendation systems, designed to quantify user engagement through continuous interaction modeling. Predicting users' watch times on videos often encounters fundamental challenges, including wide value ranges and imbalanced data distributions, which can lead to significant estimation bias when directly applying regression techniques. Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task. While these methods demonstrate partial effectiveness, they exhibit notable limitations: (1) the discretization process frequently relies on bucket partitioning, inherently reducing prediction flexibility and accuracy and (2) the interdependencies among different partition intervals remain underutilized, missing opportunities for effective error correction. Inspired by language modeling paradigms, we propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task. Our approach employs structural discretization to enable nearly lossless value reconstruction while maintaining prediction fidelity. Through carefully designed vocabulary construction and label encoding schemes, each watch time is bijectively mapped to a token sequence. To mitigate the training-inference discrepancy caused by teacher-forcing, we introduce a curriculum learning with embedding mixup strategy that gradually transitions from guided to free-generation modes. We evaluate our method against state-of-the-art approaches on two public datasets and one industrial dataset. We also perform online A/B testing on the Kuaishou App to confirm the real-world effectiveness. The results conclusively show that GR outperforms existing techniques significantly.
ReNeg: Learning Negative Embedding with Reward Guidance
In text-to-image (T2I) generation applications, negative embeddings have proven to be a simple yet effective approach for enhancing generation quality. Typically, these negative embeddings are derived from user-defined negative prompts, which, while being functional, are not necessarily optimal. In this paper, we introduce ReNeg, an end-to-end method designed to learn improved Negative embeddings guided by a Reward model. We employ a reward feedback learning framework and integrate classifier-free guidance (CFG) into the training process, which was previously utilized only during inference, thus enabling the effective learning of negative embeddings. We also propose two strategies for learning both global and per-sample negative embeddings. Extensive experiments show that the learned negative embedding significantly outperforms null-text and handcrafted counterparts, achieving substantial improvements in human preference alignment. Additionally, the negative embedding learned within the same text embedding space exhibits strong generalization capabilities. For example, using the same CLIP text encoder, the negative embedding learned on SD1.5 can be seamlessly transferred to text-to-image or even text-to-video models such as ControlNet, ZeroScope, and VideoCrafter2, resulting in consistent performance improvements across the board.
LeLaN: Learning A Language-Conditioned Navigation Policy from In-the-Wild Videos
The world is filled with a wide variety of objects. For robots to be useful, they need the ability to find arbitrary objects described by people. In this paper, we present LeLaN(Learning Language-conditioned Navigation policy), a novel approach that consumes unlabeled, action-free egocentric data to learn scalable, language-conditioned object navigation. Our framework, LeLaN leverages the semantic knowledge of large vision-language models, as well as robotic foundation models, to label in-the-wild data from a variety of indoor and outdoor environments. We label over 130 hours of data collected in real-world indoor and outdoor environments, including robot observations, YouTube video tours, and human walking data. Extensive experiments with over 1000 real-world trials show that our approach enables training a policy from unlabeled action-free videos that outperforms state-of-the-art robot navigation methods, while being capable of inference at 4 times their speed on edge compute. We open-source our models, datasets and provide supplementary videos on our project page (https://learning-language-navigation.github.io/).
CDUL: CLIP-Driven Unsupervised Learning for Multi-Label Image Classification
This paper presents a CLIP-based unsupervised learning method for annotation-free multi-label image classification, including three stages: initialization, training, and inference. At the initialization stage, we take full advantage of the powerful CLIP model and propose a novel approach to extend CLIP for multi-label predictions based on global-local image-text similarity aggregation. To be more specific, we split each image into snippets and leverage CLIP to generate the similarity vector for the whole image (global) as well as each snippet (local). Then a similarity aggregator is introduced to leverage the global and local similarity vectors. Using the aggregated similarity scores as the initial pseudo labels at the training stage, we propose an optimization framework to train the parameters of the classification network and refine pseudo labels for unobserved labels. During inference, only the classification network is used to predict the labels of the input image. Extensive experiments show that our method outperforms state-of-the-art unsupervised methods on MS-COCO, PASCAL VOC 2007, PASCAL VOC 2012, and NUS datasets and even achieves comparable results to weakly supervised classification methods.
Token-Level Adaptation of LoRA Adapters for Downstream Task Generalization
This paper introduces a method for adapting LoRA adapters in smaller-sized language models to arbitrary downstream tasks. Unlike standard mixture-of-expert architectures, our method employs a gradient-free routing function to choose a weighted combination of experts without increasing the compute requirements for training or inference. The results show that token-level adaptation of LoRA adapters outperforms the base Llama-2-7b model across mathematical (GSM8K), scientific (ARC-Challenge), reading comprehension (SQuAD), and coding (CodeAlpaca-20k) tasks. Further evaluations also show that the average performance of token-level adaptation outperforms individual models fine-tuned for each of the tasks with the best performance observed in adaptation of every-other token during inference. The code for this study is made available through a public repository.
PanoDiffusion: 360-degree Panorama Outpainting via Diffusion
Generating complete 360-degree panoramas from narrow field of view images is ongoing research as omnidirectional RGB data is not readily available. Existing GAN-based approaches face some barriers to achieving higher quality output, and have poor generalization performance over different mask types. In this paper, we present our 360-degree indoor RGB-D panorama outpainting model using latent diffusion models (LDM), called PanoDiffusion. We introduce a new bi-modal latent diffusion structure that utilizes both RGB and depth panoramic data during training, which works surprisingly well to outpaint depth-free RGB images during inference. We further propose a novel technique of introducing progressive camera rotations during each diffusion denoising step, which leads to substantial improvement in achieving panorama wraparound consistency. Results show that our PanoDiffusion not only significantly outperforms state-of-the-art methods on RGB-D panorama outpainting by producing diverse well-structured results for different types of masks, but can also synthesize high-quality depth panoramas to provide realistic 3D indoor models.
Efficient Scale-Invariant Generator with Column-Row Entangled Pixel Synthesis
Any-scale image synthesis offers an efficient and scalable solution to synthesize photo-realistic images at any scale, even going beyond 2K resolution. However, existing GAN-based solutions depend excessively on convolutions and a hierarchical architecture, which introduce inconsistency and the ``texture sticking" issue when scaling the output resolution. From another perspective, INR-based generators are scale-equivariant by design, but their huge memory footprint and slow inference hinder these networks from being adopted in large-scale or real-time systems. In this work, we propose Column-Row Entangled Pixel Synthesis (CREPS), a new generative model that is both efficient and scale-equivariant without using any spatial convolutions or coarse-to-fine design. To save memory footprint and make the system scalable, we employ a novel bi-line representation that decomposes layer-wise feature maps into separate ``thick" column and row encodings. Experiments on various datasets, including FFHQ, LSUN-Church, MetFaces, and Flickr-Scenery, confirm CREPS' ability to synthesize scale-consistent and alias-free images at any arbitrary resolution with proper training and inference speed. Code is available at https://github.com/VinAIResearch/CREPS.
EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation
Recent work on human animation usually involves audio, pose, or movement maps conditions, thereby achieves vivid animation quality. However, these methods often face practical challenges due to extra control conditions, cumbersome condition injection modules, or limitation to head region driving. Hence, we ask if it is possible to achieve striking half-body human animation while simplifying unnecessary conditions. To this end, we propose a half-body human animation method, dubbed EchoMimicV2, that leverages a novel Audio-Pose Dynamic Harmonization strategy, including Pose Sampling and Audio Diffusion, to enhance half-body details, facial and gestural expressiveness, and meanwhile reduce conditions redundancy. To compensate for the scarcity of half-body data, we utilize Head Partial Attention to seamlessly accommodate headshot data into our training framework, which can be omitted during inference, providing a free lunch for animation. Furthermore, we design the Phase-specific Denoising Loss to guide motion, detail, and low-level quality for animation in specific phases, respectively. Besides, we also present a novel benchmark for evaluating the effectiveness of half-body human animation. Extensive experiments and analyses demonstrate that EchoMimicV2 surpasses existing methods in both quantitative and qualitative evaluations.
EchoMimicV3: 1.3B Parameters are All You Need for Unified Multi-Modal and Multi-Task Human Animation
Recent work on human animation usually incorporates large-scale video models, thereby achieving more vivid performance. However, the practical use of such methods is hindered by the slow inference speed and high computational demands. Moreover, traditional work typically employs separate models for each animation task, increasing costs in multi-task scenarios and worsening the dilemma. To address these limitations, we introduce EchoMimicV3, an efficient framework that unifies multi-task and multi-modal human animation. At the core of EchoMimicV3 lies a threefold design: a Soup-of-Tasks paradigm, a Soup-of-Modals paradigm, and a novel training and inference strategy. The Soup-of-Tasks leverages multi-task mask inputs and a counter-intuitive task allocation strategy to achieve multi-task gains without multi-model pains. Meanwhile, the Soup-of-Modals introduces a Coupled-Decoupled Multi-Modal Cross Attention module to inject multi-modal conditions, complemented by a Multi-Modal Timestep Phase-aware Dynamical Allocation mechanism to modulate multi-modal mixtures. Besides, we propose Negative Direct Preference Optimization, Phase-aware Negative Classifier-Free Guidance (CFG), and Long Video CFG, which ensure stable training and inference. Extensive experiments and analyses demonstrate that EchoMimicV3, with a minimal model size of 1.3 billion parameters, achieves competitive performance in both quantitative and qualitative evaluations. We are committed to open-sourcing our code for community use.
Ultralytics YOLO Evolution: An Overview of YOLO26, YOLO11, YOLOv8 and YOLOv5 Object Detectors for Computer Vision and Pattern Recognition
This paper presents a comprehensive overview of the Ultralytics YOLO(You Only Look Once) family of object detectors, focusing the architectural evolution, benchmarking, deployment perspectives, and future challenges. The review begins with the most recent release, YOLO26 (YOLOv26), which introduces key innovations including Distribution Focal Loss (DFL) removal, native NMS-free inference, Progressive Loss Balancing (ProgLoss), Small-Target-Aware Label Assignment (STAL), and the MuSGD optimizer for stable training. The progression is then traced through YOLO11, with its hybrid task assignment and efficiency-focused modules; YOLOv8, which advanced with a decoupled detection head and anchor-free predictions; and YOLOv5, which established the modular PyTorch foundation that enabled modern YOLO development. Benchmarking on the MS COCO dataset provides a detailed quantitative comparison of YOLOv5, YOLOv8, YOLO11, and YOLO26, alongside cross-comparisons with YOLOv12, YOLOv13, RT-DETR, and DEIM. Metrics including precision, recall, F1 score, mean Average Precision, and inference speed are analyzed to highlight trade-offs between accuracy and efficiency. Deployment and application perspectives are further discussed, covering export formats, quantization strategies, and real-world use in robotics, agriculture, surveillance, and manufacturing. Finally, the paper identifies challenges and future directions, including dense-scene limitations, hybrid CNN-Transformer integration, open-vocabulary detection, and edge-aware training approaches.
Batch Prompting: Efficient Inference with Large Language Model APIs
Performing inference on hundreds of thousands of samples with large language models (LLMs) can be computationally and financially costly. We propose batch prompting, a simple alternative prompting approach that enables the LLM to run inference in batches, instead of one sample at a time. Our method reduces both token and time costs while retaining downstream performance. We theoretically demonstrate that under a few-shot in-context learning setting, the inference costs decrease almost inverse linearly with the number of samples in each batch. We extensively validate the effectiveness of batch prompting on ten datasets across commonsense QA, arithmetic reasoning, and NLI/NLU: batch prompting significantly~(up to 5times with six samples in batch) reduces the LLM (Codex) inference token and time costs while achieving better or comparable performance. Our analysis shows that the number of samples in each batch and the complexity of tasks affect its performance. Further, batch prompting can be applied across different LLMs and reasoning methods.
Exploring ell_0 Sparsification for Inference-free Sparse Retrievers
With increasing demands for efficiency, information retrieval has developed a branch of sparse retrieval, further advancing towards inference-free retrieval where the documents are encoded during indexing time and there is no model-inference for queries. Existing sparse retrieval models rely on FLOPS regularization for sparsification, while this mechanism was originally designed for Siamese encoders, it is considered to be suboptimal in inference-free scenarios which is asymmetric. Previous attempts to adapt FLOPS for inference-free scenarios have been limited to rule-based methods, leaving the potential of sparsification approaches for inference-free retrieval models largely unexplored. In this paper, we explore ell_0 inspired sparsification manner for inference-free retrievers. Through comprehensive out-of-domain evaluation on the BEIR benchmark, our method achieves state-of-the-art performance among inference-free sparse retrieval models and is comparable to leading Siamese sparse retrieval models. Furthermore, we provide insights into the trade-off between retrieval effectiveness and computational efficiency, demonstrating practical value for real-world applications.
Meaning Representations from Trajectories in Autoregressive Models
We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models. Our code is available at: https://github.com/tianyu139/meaning-as-trajectories
Generating Pragmatic Examples to Train Neural Program Synthesizers
Programming-by-example is the task of synthesizing a program that is consistent with a set of user-provided input-output examples. As examples are often an under-specification of one's intent, a good synthesizer must choose the intended program from the many that are consistent with the given set of examples. Prior work frames program synthesis as a cooperative game between a listener (that synthesizes programs) and a speaker (a user choosing examples), and shows that models of computational pragmatic inference are effective in choosing the user intended programs. However, these models require counterfactual reasoning over a large set of programs and examples, which is infeasible in realistic program spaces. In this paper, we propose a novel way to amortize this search with neural networks. We sample pairs of programs and examples via self-play between listener and speaker models, and use pragmatic inference to choose informative training examples from this sample.We then use the informative dataset to train models to improve the synthesizer's ability to disambiguate user-provided examples without human supervision. We validate our method on the challenging task of synthesizing regular expressions from example strings, and find that our method (1) outperforms models trained without choosing pragmatic examples by 23% (a 51% relative increase) (2) matches the performance of supervised learning on a dataset of pragmatic examples provided by humans, despite using no human data in training.
Reasoning to Learn from Latent Thoughts
Compute scaling for language model (LM) pretraining has outpaced the growth of human-written texts, leading to concerns that data will become the bottleneck to LM scaling. To continue scaling pretraining in this data-constrained regime, we propose that explicitly modeling and inferring the latent thoughts that underlie the text generation process can significantly improve pretraining data efficiency. Intuitively, our approach views web text as the compressed final outcome of a verbose human thought process and that the latent thoughts contain important contextual knowledge and reasoning steps that are critical to data-efficient learning. We empirically demonstrate the effectiveness of our approach through data-constrained continued pretraining for math. We first show that synthetic data approaches to inferring latent thoughts significantly improve data efficiency, outperforming training on the same amount of raw data (5.7\% rightarrow 25.4\% on MATH). Furthermore, we demonstrate latent thought inference without a strong teacher, where an LM bootstraps its own performance by using an EM algorithm to iteratively improve the capability of the trained LM and the quality of thought-augmented pretraining data. We show that a 1B LM can bootstrap its performance across at least three iterations and significantly outperform baselines trained on raw data, with increasing gains from additional inference compute when performing the E-step. The gains from inference scaling and EM iterations suggest new opportunities for scaling data-constrained pretraining.
Pruning All-Rounder: Rethinking and Improving Inference Efficiency for Large Vision Language Models
Although Large Vision-Language Models (LVLMs) have achieved impressive results, their high computational cost poses a significant barrier to wider application. To enhance inference efficiency, most existing approaches depend on parameter-dependent or token-dependent strategies to reduce computational demands. However, these methods typically require complex training processes and struggle to consistently select the most relevant tokens. In this paper, we systematically analyze the above challenges and provide a series of valuable insights for inference acceleration. Based on these findings, we propose a novel framework, the Pruning All-Rounder (PAR). Different from previous works, PAR develops a meta-router to adaptively organize pruning flows across both tokens and layers. With a self-supervised learning manner, our method achieves a superior balance between performance and efficiency. Notably, PAR is highly flexible, offering multiple pruning versions to address a range of pruning scenarios. The code for this work will be made publicly available.
Lookahead: An Inference Acceleration Framework for Large Language Model with Lossless Generation Accuracy
As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. To address this, Alipay has developed a Retrieval-Augmented Generation (RAG) system that grounds LLMs on the most accurate and up-to-date information. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our RAG system, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named lookahead, introduces a multi-branch strategy. Instead of generating a single token at a time, we propose a Trie-based Retrieval (TR) process that enables the generation of multiple branches simultaneously, each of which is a sequence of tokens. Subsequently, for each branch, a Verification and Accept (VA) process is performed to identify the longest correct sub-sequence as the final output. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Code is avaliable: https://github.com/alipay/PainlessInferenceAcceleration.
Exploring Discrete Diffusion Models for Image Captioning
The image captioning task is typically realized by an auto-regressive method that decodes the text tokens one by one. We present a diffusion-based captioning model, dubbed the name DDCap, to allow more decoding flexibility. Unlike image generation, where the output is continuous and redundant with a fixed length, texts in image captions are categorical and short with varied lengths. Therefore, naively applying the discrete diffusion model to text decoding does not work well, as shown in our experiments. To address the performance gap, we propose several key techniques including best-first inference, concentrated attention mask, text length prediction, and image-free training. On COCO without additional caption pre-training, it achieves a CIDEr score of 117.8, which is +5.0 higher than the auto-regressive baseline with the same architecture in the controlled setting. It also performs +26.8 higher CIDEr score than the auto-regressive baseline (230.3 v.s.203.5) on a caption infilling task. With 4M vision-language pre-training images and the base-sized model, we reach a CIDEr score of 125.1 on COCO, which is competitive to the best well-developed auto-regressive frameworks. The code is available at https://github.com/buxiangzhiren/DDCap.
Stay on topic with Classifier-Free Guidance
Classifier-Free Guidance (CFG) has recently emerged in text-to-image generation as a lightweight technique to encourage prompt-adherence in generations. In this work, we demonstrate that CFG can be used broadly as an inference-time technique in pure language modeling. We show that CFG (1) improves the performance of Pythia, GPT-2 and LLaMA-family models across an array of tasks: Q\&A, reasoning, code generation, and machine translation, achieving SOTA on LAMBADA with LLaMA-7B over PaLM-540B; (2) brings improvements equivalent to a model with twice the parameter-count; (3) can stack alongside other inference-time methods like Chain-of-Thought and Self-Consistency, yielding further improvements in difficult tasks; (4) can be used to increase the faithfulness and coherence of assistants in challenging form-driven and content-driven prompts: in a human evaluation we show a 75\% preference for GPT4All using CFG over baseline.
Static Word Embeddings for Sentence Semantic Representation
We propose new static word embeddings optimised for sentence semantic representation. We first extract word embeddings from a pre-trained Sentence Transformer, and improve them with sentence-level principal component analysis, followed by either knowledge distillation or contrastive learning. During inference, we represent sentences by simply averaging word embeddings, which requires little computational cost. We evaluate models on both monolingual and cross-lingual tasks and show that our model substantially outperforms existing static models on sentence semantic tasks, and even rivals a basic Sentence Transformer model (SimCSE) on some data sets. Lastly, we perform a variety of analyses and show that our method successfully removes word embedding components that are irrelevant to sentence semantics, and adjusts the vector norms based on the influence of words on sentence semantics.
Accelerated Test-Time Scaling with Model-Free Speculative Sampling
Language models have demonstrated remarkable capabilities in reasoning tasks through test-time scaling techniques like best-of-N sampling and tree search. However, these approaches often demand substantial computational resources, creating a critical trade-off between performance and efficiency. We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach that leverages the inherent redundancy in reasoning trajectories to achieve significant acceleration without compromising accuracy. Our analysis reveals that reasoning paths frequently reuse similar reasoning patterns, enabling efficient model-free token prediction without requiring separate draft models. By introducing stochastic drafting and preserving probabilistic information through a memory-efficient logit-based N-gram module, combined with optimized Gumbel-Top-K sampling and data-driven tree construction, STAND significantly improves token acceptance rates. Extensive evaluations across multiple models and reasoning tasks (AIME-2024, GPQA-Diamond, and LiveCodeBench) demonstrate that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding while maintaining accuracy. Furthermore, STAND outperforms state-of-the-art speculative decoding methods by 14-28% in throughput and shows strong performance even in single-trajectory scenarios, reducing inference latency by 48-58%. As a model-free approach, STAND can be applied to any existing language model without additional training, being a powerful plug-and-play solution for accelerating language model reasoning.
PromptIntern: Saving Inference Costs by Internalizing Recurrent Prompt during Large Language Model Fine-tuning
Large language models (LLMs) have played a fundamental role in various natural language processing tasks with powerful prompt techniques. However, in real-world applications, there are often similar prompt components for repeated queries, which causes significant computational burdens during inference. Existing prompt compression and direct fine-tuning methods aim to tackle these challenges, yet they frequently struggle to strike an optimal balance between cost-efficiency and performance effectiveness, especially in complex tasks such as NL2Code. In this paper, we propose a novel method namely PromptIntern to internalize the prompt knowledge into model parameters via progressive fine-tuning. Our method enables LLMs to emulate the human learning process for a new task, where detailed templates and examples in a prompt are gradually internalized and phased out progressively as the model grows accustomed to the task. Extensive experiments demonstrate that our method reduces inference tokens over 90%, speedups inference by 4.2 times, and saves 88.3% monetary cost.
Annotation Artifacts in Natural Language Inference Data
Large-scale datasets for natural language inference are created by presenting crowd workers with a sentence (premise), and asking them to generate three new sentences (hypotheses) that it entails, contradicts, or is logically neutral with respect to. We show that, in a significant portion of such data, this protocol leaves clues that make it possible to identify the label by looking only at the hypothesis, without observing the premise. Specifically, we show that a simple text categorization model can correctly classify the hypothesis alone in about 67% of SNLI (Bowman et. al, 2015) and 53% of MultiNLI (Williams et. al, 2017). Our analysis reveals that specific linguistic phenomena such as negation and vagueness are highly correlated with certain inference classes. Our findings suggest that the success of natural language inference models to date has been overestimated, and that the task remains a hard open problem.
Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding
We present a novel inference scheme, self-speculative decoding, for accelerating Large Language Models (LLMs) without the need for an auxiliary model. This approach is characterized by a two-stage process: drafting and verification. The drafting stage generates draft tokens at a slightly lower quality but more quickly, which is achieved by selectively skipping certain intermediate layers during drafting Subsequently, the verification stage employs the original LLM to validate those draft output tokens in one forward pass. This process ensures the final output remains identical to that produced by the unaltered LLM, thereby maintaining output quality. The proposed method requires no additional neural network training and no extra memory footprint, making it a plug-and-play and cost-effective solution for inference acceleration. Benchmarks with LLaMA-2 and its fine-tuned models demonstrated a speedup up to 1.73times.
Decomposition Enhances Reasoning via Self-Evaluation Guided Decoding
We endow Large Language Models (LLMs) with fine-grained self-evaluation to refine multi-step reasoning inference. We propose an effective prompting approach that integrates self-evaluation guidance through stochastic beam search. Our approach explores the reasoning search space using a well-calibrated automatic criterion. This enables an efficient search to produce higher-quality final predictions. With the self-evaluation guided stochastic beam search, we also balance the quality-diversity trade-off in the generation of reasoning chains. This allows our approach to adapt well with majority voting and surpass the corresponding Codex-backboned baselines by 6.34%, 9.56%, and 5.46% on the GSM8K, AQuA, and StrategyQA benchmarks, respectively, in few-shot accuracy. Analysis of our decompositional reasoning finds it pinpoints logic failures and leads to higher consistency and robustness. Our code is publicly available at https://github.com/YuxiXie/SelfEval-Guided-Decoding.
TFG: Unified Training-Free Guidance for Diffusion Models
Given an unconditional diffusion model and a predictor for a target property of interest (e.g., a classifier), the goal of training-free guidance is to generate samples with desirable target properties without additional training. Existing methods, though effective in various individual applications, often lack theoretical grounding and rigorous testing on extensive benchmarks. As a result, they could even fail on simple tasks, and applying them to a new problem becomes unavoidably difficult. This paper introduces a novel algorithmic framework encompassing existing methods as special cases, unifying the study of training-free guidance into the analysis of an algorithm-agnostic design space. Via theoretical and empirical investigation, we propose an efficient and effective hyper-parameter searching strategy that can be readily applied to any downstream task. We systematically benchmark across 7 diffusion models on 16 tasks with 40 targets, and improve performance by 8.5% on average. Our framework and benchmark offer a solid foundation for conditional generation in a training-free manner.
Enhanced LSTM for Natural Language Inference
Reasoning and inference are central to human and artificial intelligence. Modeling inference in human language is very challenging. With the availability of large annotated data (Bowman et al., 2015), it has recently become feasible to train neural network based inference models, which have shown to be very effective. In this paper, we present a new state-of-the-art result, achieving the accuracy of 88.6% on the Stanford Natural Language Inference Dataset. Unlike the previous top models that use very complicated network architectures, we first demonstrate that carefully designing sequential inference models based on chain LSTMs can outperform all previous models. Based on this, we further show that by explicitly considering recursive architectures in both local inference modeling and inference composition, we achieve additional improvement. Particularly, incorporating syntactic parsing information contributes to our best result---it further improves the performance even when added to the already very strong model.
A large annotated corpus for learning natural language inference
Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.
Supervised Learning of Universal Sentence Representations from Natural Language Inference Data
Many modern NLP systems rely on word embeddings, previously trained in an unsupervised manner on large corpora, as base features. Efforts to obtain embeddings for larger chunks of text, such as sentences, have however not been so successful. Several attempts at learning unsupervised representations of sentences have not reached satisfactory enough performance to be widely adopted. In this paper, we show how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks. Much like how computer vision uses ImageNet to obtain features, which can then be transferred to other tasks, our work tends to indicate the suitability of natural language inference for transfer learning to other NLP tasks. Our encoder is publicly available.
Step-level Verifier-guided Hybrid Test-Time Scaling for Large Language Models
Test-Time Scaling (TTS) is a promising approach to progressively elicit the model's intelligence during inference. Recently, training-based TTS methods, such as continued reinforcement learning (RL), have further surged in popularity, while training-free TTS methods are gradually fading from prominence. However, the additional computation overhead of training amplifies the burden on test-time scaling. In this paper, we focus on training-free TTS methods for reasoning. We first design Conditional Step-level Self-refinement, a fine-grained sequential scaling method guided by process verification. On top of its effectiveness, we further combine it with other classical parallel scaling methods at the step level, to introduce a novel inference paradigm called Hybrid Test-Time Scaling. Extensive experiments on five instruction-tuned LLMs across different scales (3B-14B) and families demonstrate that hybrid strategy incorporating various training-free TTS methods at a fine granularity has considerable potential for expanding the reasoning performance boundaries of LLMs.
Leveraging Passage Embeddings for Efficient Listwise Reranking with Large Language Models
Recent studies have demonstrated the effectiveness of using large language language models (LLMs) in passage ranking. The listwise approaches, such as RankGPT, have become new state-of-the-art in this task. However, the efficiency of RankGPT models is limited by the maximum context length and relatively high latency of LLM inference. To address these issues, in this paper, we propose PE-Rank, leveraging the single passage embedding as a good context compression for efficient listwise passage reranking. By treating each passage as a special token, we can directly input passage embeddings into LLMs, thereby reducing input length. Additionally, we introduce an inference method that dynamically constrains the decoding space to these special tokens, accelerating the decoding process. For adapting the model to reranking, we employ listwise learning to rank loss for training. Evaluation results on multiple benchmarks demonstrate that PE-Rank significantly improves efficiency in both prefilling and decoding, while maintaining competitive ranking effectiveness. {The Code is available at https://github.com/liuqi6777/pe_rank.}
Copyright Traps for Large Language Models
Questions of fair use of copyright-protected content to train Large Language Models (LLMs) are being very actively debated. Document-level inference has been proposed as a new task: inferring from black-box access to the trained model whether a piece of content has been seen during training. SOTA methods however rely on naturally occurring memorization of (part of) the content. While very effective against models that memorize a lot, we hypothesize--and later confirm--that they will not work against models that do not naturally memorize, e.g. medium-size 1B models. We here propose to use copyright traps, the inclusion of fictitious entries in original content, to detect the use of copyrighted materials in LLMs with a focus on models where memorization does not naturally occur. We carefully design an experimental setup, randomly inserting traps into original content (books) and train a 1.3B LLM. We first validate that the use of content in our target model would be undetectable using existing methods. We then show, contrary to intuition, that even medium-length trap sentences repeated a significant number of times (100) are not detectable using existing methods. However, we show that longer sequences repeated a large number of times can be reliably detected (AUC=0.75) and used as copyright traps. We further improve these results by studying how the number of times a sequence is seen improves detectability, how sequences with higher perplexity tend to be memorized more, and how taking context into account further improves detectability.
Can a Gorilla Ride a Camel? Learning Semantic Plausibility from Text
Modeling semantic plausibility requires commonsense knowledge about the world and has been used as a testbed for exploring various knowledge representations. Previous work has focused specifically on modeling physical plausibility and shown that distributional methods fail when tested in a supervised setting. At the same time, distributional models, namely large pretrained language models, have led to improved results for many natural language understanding tasks. In this work, we show that these pretrained language models are in fact effective at modeling physical plausibility in the supervised setting. We therefore present the more difficult problem of learning to model physical plausibility directly from text. We create a training set by extracting attested events from a large corpus, and we provide a baseline for training on these attested events in a self-supervised manner and testing on a physical plausibility task. We believe results could be further improved by injecting explicit commonsense knowledge into a distributional model.
Training-free Truthfulness Detection via Value Vectors in LLMs
Large language models often generate factually incorrect outputs, motivating efforts to detect the truthfulness of their content. Most existing approaches rely on training probes over internal activations, but these methods suffer from scalability and generalization issues. A recent training-free method, NoVo, addresses this challenge by exploiting statistical patterns from the model itself. However, it focuses exclusively on attention mechanisms, potentially overlooking the MLP module-a core component of Transformer models known to support factual recall. In this paper, we show that certain value vectors within MLP modules exhibit truthfulness-related statistical patterns. Building on this insight, we propose TruthV, a simple and interpretable training-free method that detects content truthfulness by leveraging these value vectors. On the NoVo benchmark, TruthV significantly outperforms both NoVo and log-likelihood baselines, demonstrating that MLP modules-despite being neglected in prior training-free efforts-encode rich and useful signals for truthfulness detection. These findings offer new insights into how truthfulness is internally represented in LLMs and motivate further research on scalable and interpretable truthfulness detection.
Learning High-Quality and General-Purpose Phrase Representations
Phrase representations play an important role in data science and natural language processing, benefiting various tasks like Entity Alignment, Record Linkage, Fuzzy Joins, and Paraphrase Classification. The current state-of-the-art method involves fine-tuning pre-trained language models for phrasal embeddings using contrastive learning. However, we have identified areas for improvement. First, these pre-trained models tend to be unnecessarily complex and require to be pre-trained on a corpus with context sentences. Second, leveraging the phrase type and morphology gives phrase representations that are both more precise and more flexible. We propose an improved framework to learn phrase representations in a context-free fashion. The framework employs phrase type classification as an auxiliary task and incorporates character-level information more effectively into the phrase representation. Furthermore, we design three granularities of data augmentation to increase the diversity of training samples. Our experiments across a wide range of tasks show that our approach generates superior phrase embeddings compared to previous methods while requiring a smaller model size. The code is available at \faGithub~ https://github.com/tigerchen52/PEARL abstract
Building Efficient Universal Classifiers with Natural Language Inference
Generative Large Language Models (LLMs) have become the mainstream choice for fewshot and zeroshot learning thanks to the universality of text generation. Many users, however, do not need the broad capabilities of generative LLMs when they only want to automate a classification task. Smaller BERT-like models can also learn universal tasks, which allow them to do any text classification task without requiring fine-tuning (zeroshot classification) or to learn new tasks with only a few examples (fewshot), while being significantly more efficient than generative LLMs. This paper (1) explains how Natural Language Inference (NLI) can be used as a universal classification task that follows similar principles as instruction fine-tuning of generative LLMs, (2) provides a step-by-step guide with reusable Jupyter notebooks for building a universal classifier, and (3) shares the resulting universal classifier that is trained on 33 datasets with 389 diverse classes. Parts of the code we share has been used to train our older zeroshot classifiers that have been downloaded more than 55 million times via the Hugging Face Hub as of December 2023. Our new classifier improves zeroshot performance by 9.4%.
Inference Optimization of Foundation Models on AI Accelerators
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI across various industries. Industry and research community have witnessed a large number of new applications, based on those foundation models. Such applications include question and answer, customer services, image and video generation, and code completions, among others. However, as the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios. As a result, the demand for cost-effective and fast inference using AI accelerators is ever more higher. To this end, our tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators. Beginning with an overview of basic Transformer architectures and deep learning system frameworks, we deep dive into system optimization techniques for fast and memory-efficient attention computations and discuss how they can be implemented efficiently on AI accelerators. Next, we describe architectural elements that are key for fast transformer inference. Finally, we examine various model compression and fast decoding strategies in the same context.
Gradient-Free Structured Pruning with Unlabeled Data
Large Language Models (LLMs) have achieved great success in solving difficult tasks across many domains, but such success comes with a high computation cost, and inference latency. As developers and third parties customize these models, the need to provide efficient inference has increased. Many efforts have attempted to reduce inference cost through model compression techniques such as pruning and distillation. However, these techniques either require labeled data, or are time-consuming as they require the compressed model to be retrained to regain accuracy. In this paper, we propose a gradient-free structured pruning framework that uses only unlabeled data. An evaluation on the GLUE and SQuAD benchmarks using BERT_{BASE} and DistilBERT illustrates the effectiveness of the proposed approach. By only using the weights of the pre-trained model and unlabeled data, in a matter of a few minutes on a single GPU, up to 40% of the original FLOP count can be reduced with less than a 4% accuracy loss across all tasks considered.
InferES : A Natural Language Inference Corpus for Spanish Featuring Negation-Based Contrastive and Adversarial Examples
In this paper, we present InferES - an original corpus for Natural Language Inference (NLI) in European Spanish. We propose, implement, and analyze a variety of corpus-creating strategies utilizing expert linguists and crowd workers. The objectives behind InferES are to provide high-quality data, and, at the same time to facilitate the systematic evaluation of automated systems. Specifically, we focus on measuring and improving the performance of machine learning systems on negation-based adversarial examples and their ability to generalize across out-of-distribution topics. We train two transformer models on InferES (8,055 gold examples) in a variety of scenarios. Our best model obtains 72.8% accuracy, leaving a lot of room for improvement. The "hypothesis-only" baseline performs only 2%-5% higher than majority, indicating much fewer annotation artifacts than prior work. We find that models trained on InferES generalize very well across topics (both in- and out-of-distribution) and perform moderately well on negation-based adversarial examples.
Internet-augmented language models through few-shot prompting for open-domain question answering
In this work, we aim to capitalize on the unique few-shot capabilities of large-scale language models (LSLMs) to overcome some of their challenges with respect to grounding to factual and up-to-date information. Motivated by semi-parametric language models (LMs), which ground their decisions in external retrieved evidence, we use few-shot prompting to learn to condition LMs on information returned from the web using Google Search, a broad and constantly updated knowledge source. Our approach does not involve fine-tuning or learning additional parameters, thus making it applicable to any LM, offering therefore a strong baseline. Indeed, we find that LMs conditioned on the web surpass performance of closed-book models of similar, or even larger, model sizes in open-domain question answering. Finally, we find that increasing the inference-time compute of models, achieved via using multiple retrieved evidences to generate multiple answers followed by a reranking stage that uses scores generated by the same LMs, leads to better performance and alleviates lower performance of smaller few-shot LMs. All in all, our findings suggest that it might be beneficial to slow down the race towards the biggest model and instead shift attention towards finding more effective ways to use models, including but not limited to, better prompting or increasing inference-time compute.
From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models
One of the most striking findings in modern research on large language models (LLMs) is that scaling up compute during training leads to better results. However, less attention has been given to the benefits of scaling compute during inference. This survey focuses on these inference-time approaches. We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation. Token-level generation algorithms, often called decoding algorithms, operate by sampling a single token at a time or constructing a token-level search space and then selecting an output. These methods typically assume access to a language model's logits, next-token distributions, or probability scores. Meta-generation algorithms work on partial or full sequences, incorporating domain knowledge, enabling backtracking, and integrating external information. Efficient generation methods aim to reduce token costs and improve the speed of generation. Our survey unifies perspectives from three research communities: traditional natural language processing, modern LLMs, and machine learning systems.
Canary in a Coalmine: Better Membership Inference with Ensembled Adversarial Queries
As industrial applications are increasingly automated by machine learning models, enforcing personal data ownership and intellectual property rights requires tracing training data back to their rightful owners. Membership inference algorithms approach this problem by using statistical techniques to discern whether a target sample was included in a model's training set. However, existing methods only utilize the unaltered target sample or simple augmentations of the target to compute statistics. Such a sparse sampling of the model's behavior carries little information, leading to poor inference capabilities. In this work, we use adversarial tools to directly optimize for queries that are discriminative and diverse. Our improvements achieve significantly more accurate membership inference than existing methods, especially in offline scenarios and in the low false-positive regime which is critical in legal settings. Code is available at https://github.com/YuxinWenRick/canary-in-a-coalmine.
Qwen2.5-1M Technical Report
We introduce Qwen2.5-1M, a series of models that extend the context length to 1 million tokens. Compared to the previous 128K version, the Qwen2.5-1M series have significantly enhanced long-context capabilities through long-context pre-training and post-training. Key techniques such as long data synthesis, progressive pre-training, and multi-stage supervised fine-tuning are employed to effectively enhance long-context performance while reducing training costs. To promote the use of long-context models among a broader user base, we present and open-source our inference framework. This framework includes a length extrapolation method that can expand the model context lengths by at least four times, or even more, without additional training. To reduce inference costs, we implement a sparse attention method along with chunked prefill optimization for deployment scenarios and a sparsity refinement method to improve precision. Additionally, we detail our optimizations in the inference engine, including kernel optimization, pipeline parallelism, and scheduling optimization, which significantly enhance overall inference performance. By leveraging our inference framework, the Qwen2.5-1M models achieve a remarkable 3x to 7x prefill speedup in scenarios with 1 million tokens of context. This framework provides an efficient and powerful solution for developing applications that require long-context processing using open-source models. The Qwen2.5-1M series currently includes the open-source models Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, as well as the API-accessed model Qwen2.5-Turbo. Evaluations show that Qwen2.5-1M models have been greatly improved in long-context tasks without compromising performance in short-context scenarios. Specifically, the Qwen2.5-14B-Instruct-1M model significantly outperforms GPT-4o-mini in long-context tasks and supports contexts eight times longer.
DiffAdapt: Difficulty-Adaptive Reasoning for Token-Efficient LLM Inference
Recent reasoning Large Language Models (LLMs) demonstrate remarkable problem-solving abilities but often generate long thinking traces whose utility is unclear. Our work aims to improve their efficiency, enabling them to reach high performance without overthinking. First, we analyze the entropy of token probabilities in reasoning traces. Across three models, we observe a consistent U-shaped entropy pattern: high entropy on easy problems despite high accuracy, low entropy on problems with medium difficulty, and high entropy on hard problems reflecting uncertainty. Specifically, we notice 22--25\% entropy reduction from easy to medium difficulty regions, suggesting an {overthinking} phenomenon on easy instances. Building on these insights, we introduce DiffAdapt, a lightweight framework that selects Easy/Normal/Hard inference strategies per question based on their difficulty and reasoning trace entropy. Each inference strategy consists of a fixed prompt, temperature and maximum token length. In contrast to existing efficiency optimization methods, our approach does not fine-tune base LLM but a small probe that classifies LLM's final hidden state, allowing inexpensive adaptation. We comprehensively evaluate our method on five models and eight benchmarks. Our method achieves comparable or improved accuracy while reducing token usage by up to 22.4\%, establishing a practical path toward compute-efficient reasoning.
(Dynamic) Prompting might be all you need to repair Compressed LLMs
Large language models (LLMs), while transformative for NLP, come with significant computational demands, underlining the need for efficient, training-free compression. Notably, the reliability of perplexity as a benchmark for compressed model efficacy is in question, as our tests using LLaMA-7B and OPT-6.7b reveal a significant performance drop in several realistic downstream tasks, underscoring the disparity between perplexity as a performance indicator and real-world performance. Investigation into the trade-off between resource-intensive post-compression re-training highlights the prospect of prompt-driven recovery as a lightweight adaption tool. However, existing studies, confined mainly to perplexity evaluations and simple tasks, fail to offer unequivocal confidence in the scalability and generalizability of prompting. We tackle this uncertainty in two key ways. First, we uncover the vulnerability of naive prompts in LLM compression as an over-reliance on a singular prompt per input. In response, we propose inference-time dynamic prompting (IDP), a mechanism that autonomously chooses from a set of curated prompts based on the context of each individual input. Second, we delve into a scientific understanding of why ``prompting might be all you need post-LLM compression". Our findings suggest that compression doesn't irretrievably erase LLM model knowledge but displace it, necessitating a new inference path. IDP effectively redirects this path, enabling the model to tap into its inherent yet displaced knowledge and thereby recover performance. Empirical tests affirm the value of IDP, demonstrating an average performance improvement of 1.24% across nine varied tasks spanning multiple knowledge domains.
Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM Inference Pipeline
Large language models (LLMs) have revolutionized the field of AI, demonstrating unprecedented capacity across various tasks. However, the inference process for LLMs comes with significant computational costs. In this paper, we propose an efficient LLM inference pipeline that harnesses the power of LLMs. Our approach begins by tapping into the potential of LLMs to accurately perceive and predict the response length with minimal overhead. By leveraging this information, we introduce an efficient sequence scheduling technique that groups queries with similar response lengths into micro-batches. We evaluate our approach on real-world instruction datasets using the LLaMA-based model, and our results demonstrate an impressive 86% improvement in inference throughput without compromising effectiveness. Notably, our method is orthogonal to other inference acceleration techniques, making it a valuable addition to many existing toolkits (e.g., FlashAttention, Quantization) for LLM inference.
AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts
The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fill-in-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AutoPrompt, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AutoPrompt, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.
Robust Active Distillation
Distilling knowledge from a large teacher model to a lightweight one is a widely successful approach for generating compact, powerful models in the semi-supervised learning setting where a limited amount of labeled data is available. In large-scale applications, however, the teacher tends to provide a large number of incorrect soft-labels that impairs student performance. The sheer size of the teacher additionally constrains the number of soft-labels that can be queried due to prohibitive computational and/or financial costs. The difficulty in achieving simultaneous efficiency (i.e., minimizing soft-label queries) and robustness (i.e., avoiding student inaccuracies due to incorrect labels) hurts the widespread application of knowledge distillation to many modern tasks. In this paper, we present a parameter-free approach with provable guarantees to query the soft-labels of points that are simultaneously informative and correctly labeled by the teacher. At the core of our work lies a game-theoretic formulation that explicitly considers the inherent trade-off between the informativeness and correctness of input instances. We establish bounds on the expected performance of our approach that hold even in worst-case distillation instances. We present empirical evaluations on popular benchmarks that demonstrate the improved distillation performance enabled by our work relative to that of state-of-the-art active learning and active distillation methods.
SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.
GLEN: Generative Retrieval via Lexical Index Learning
Generative retrieval shed light on a new paradigm of document retrieval, aiming to directly generate the identifier of a relevant document for a query. While it takes advantage of bypassing the construction of auxiliary index structures, existing studies face two significant challenges: (i) the discrepancy between the knowledge of pre-trained language models and identifiers and (ii) the gap between training and inference that poses difficulty in learning to rank. To overcome these challenges, we propose a novel generative retrieval method, namely Generative retrieval via LExical iNdex learning (GLEN). For training, GLEN effectively exploits a dynamic lexical identifier using a two-phase index learning strategy, enabling it to learn meaningful lexical identifiers and relevance signals between queries and documents. For inference, GLEN utilizes collision-free inference, using identifier weights to rank documents without additional overhead. Experimental results prove that GLEN achieves state-of-the-art or competitive performance against existing generative retrieval methods on various benchmark datasets, e.g., NQ320k, MS MARCO, and BEIR. The code is available at https://github.com/skleee/GLEN.
Query-Level Uncertainty in Large Language Models
It is important for Large Language Models to be aware of the boundary of their knowledge, the mechanism of identifying known and unknown queries. This type of awareness can help models perform adaptive inference, such as invoking RAG, engaging in slow and deep thinking, or adopting the abstention mechanism, which is beneficial to the development of efficient and trustworthy AI. In this work, we propose a method to detect knowledge boundaries via Query-Level Uncertainty, which aims to determine if the model is able to address a given query without generating any tokens. To this end, we introduce a novel and training-free method called Internal Confidence, which leverages self-evaluations across layers and tokens. Empirical results on both factual QA and mathematical reasoning tasks demonstrate that our internal confidence can outperform several baselines. Furthermore, we showcase that our proposed method can be used for efficient RAG and model cascading, which is able to reduce inference costs while maintaining performance.
ZeroGen: Efficient Zero-shot Learning via Dataset Generation
There is a growing interest in dataset generation recently due to the superior generative capacity of large pre-trained language models (PLMs). In this paper, we study a flexible and efficient zero-short learning method, ZeroGen. Given a zero-shot task, we first generate a dataset from scratch using PLMs in an unsupervised manner. Then, we train a tiny task model (e.g., LSTM) under the supervision of the synthesized dataset. This approach allows highly efficient inference as the final task model only has orders of magnitude fewer parameters comparing to PLMs (e.g., GPT2-XL). Apart from being annotation-free and efficient, we argue that ZeroGen can also provide useful insights from the perspective of data-free model-agnostic knowledge distillation, and unreferenced text generation evaluation. Experiments and analysis on different NLP tasks, namely, text classification, question answering, and natural language inference, show the effectiveness of ZeroGen.
FrugalGPT: How to Use Large Language Models While Reducing Cost and Improving Performance
There is a rapidly growing number of large language models (LLMs) that users can query for a fee. We review the cost associated with querying popular LLM APIs, e.g. GPT-4, ChatGPT, J1-Jumbo, and find that these models have heterogeneous pricing structures, with fees that can differ by two orders of magnitude. In particular, using LLMs on large collections of queries and text can be expensive. Motivated by this, we outline and discuss three types of strategies that users can exploit to reduce the inference cost associated with using LLMs: 1) prompt adaptation, 2) LLM approximation, and 3) LLM cascade. As an example, we propose FrugalGPT, a simple yet flexible instantiation of LLM cascade which learns which combinations of LLMs to use for different queries in order to reduce cost and improve accuracy. Our experiments show that FrugalGPT can match the performance of the best individual LLM (e.g. GPT-4) with up to 98% cost reduction or improve the accuracy over GPT-4 by 4% with the same cost. The ideas and findings presented here lay a foundation for using LLMs sustainably and efficiently.
Distillation and Refinement of Reasoning in Small Language Models for Document Re-ranking
We present a novel approach for training small language models for reasoning-intensive document ranking that combines knowledge distillation with reinforcement learning optimization. While existing methods often rely on expensive human annotations or large black-box language models, our methodology leverages web data and a teacher LLM to automatically generate high-quality training examples with relevance explanations. By framing document ranking as a reinforcement learning problem and incentivizing explicit reasoning capabilities, we train a compact 3B parameter language model that achieves state-of-the-art performance on the BRIGHT benchmark. Our model ranks third on the leaderboard while using substantially fewer parameters than other approaches, outperforming models that are over 20 times larger. Through extensive experiments, we demonstrate that generating explanations during inference, rather than directly predicting relevance scores, enables more effective reasoning with smaller language models. The self-supervised nature of our method offers a scalable and interpretable solution for modern information retrieval systems.
Conformal Language Modeling
We propose a novel approach to conformal prediction for generative language models (LMs). Standard conformal prediction produces prediction sets -- in place of single predictions -- that have rigorous, statistical performance guarantees. LM responses are typically sampled from the model's predicted distribution over the large, combinatorial output space of natural language. Translating this process to conformal prediction, we calibrate a stopping rule for sampling different outputs from the LM that get added to a growing set of candidates until we are confident that the output set is sufficient. Since some samples may be low-quality, we also simultaneously calibrate and apply a rejection rule for removing candidates from the output set to reduce noise. Similar to conformal prediction, we prove that the sampled set returned by our procedure contains at least one acceptable answer with high probability, while still being empirically precise (i.e., small) on average. Furthermore, within this set of candidate responses, we show that we can also accurately identify subsets of individual components -- such as phrases or sentences -- that are each independently correct (e.g., that are not "hallucinations"), again with statistical guarantees. We demonstrate the promise of our approach on multiple tasks in open-domain question answering, text summarization, and radiology report generation using different LM variants.
Accelerating Large Language Model Inference with Self-Supervised Early Exits
This paper presents a novel technique for accelerating inference in large, pre-trained language models (LLMs) by introducing early exits during inference. The computational demands of these models, used across a wide range of applications, can be substantial. By capitalizing on the inherent variability in token complexity, our approach enables selective acceleration of the inference process. Specifically, we propose the integration of early exit ''heads'' atop existing transformer layers, which facilitate conditional terminations based on a confidence metric. These heads are trained in a self-supervised manner using the model's own predictions as training data, thereby eliminating the need for additional annotated data. The confidence metric, established using a calibration set, ensures a desired level of accuracy while enabling early termination when confidence exceeds a predetermined threshold. Notably, our method preserves the original accuracy and reduces computational time on certain tasks, leveraging the existing knowledge of pre-trained LLMs without requiring extensive retraining. This lightweight, modular modification has the potential to greatly enhance the practical usability of LLMs, particularly in applications like real-time language processing in resource-constrained environments.
Joint Learning of Sentence Embeddings for Relevance and Entailment
We consider the problem of Recognizing Textual Entailment within an Information Retrieval context, where we must simultaneously determine the relevancy as well as degree of entailment for individual pieces of evidence to determine a yes/no answer to a binary natural language question. We compare several variants of neural networks for sentence embeddings in a setting of decision-making based on evidence of varying relevance. We propose a basic model to integrate evidence for entailment, show that joint training of the sentence embeddings to model relevance and entailment is feasible even with no explicit per-evidence supervision, and show the importance of evaluating strong baselines. We also demonstrate the benefit of carrying over text comprehension model trained on an unrelated task for our small datasets. Our research is motivated primarily by a new open dataset we introduce, consisting of binary questions and news-based evidence snippets. We also apply the proposed relevance-entailment model on a similar task of ranking multiple-choice test answers, evaluating it on a preliminary dataset of school test questions as well as the standard MCTest dataset, where we improve the neural model state-of-art.
Self-Training Elicits Concise Reasoning in Large Language Models
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens to solve complex tasks. However, we posit that typical reasoning traces contain many redundant tokens, incurring extraneous inference costs. Upon examination of the output distribution of current LLMs, we find evidence on their latent ability to reason more concisely, relative to their default behavior. To elicit this capability, we propose simple fine-tuning methods which leverage self-generated concise reasoning paths obtained by best-of-N sampling and few-shot conditioning, in task-specific settings. Our combined method achieves a 30% reduction in output tokens on average, across five model families on GSM8K and MATH, while maintaining average accuracy. By exploiting the fundamental stochasticity and in-context learning capabilities of LLMs, our self-training approach robustly elicits concise reasoning on a wide range of models, including those with extensive post-training. Code is available at https://github.com/TergelMunkhbat/concise-reasoning
A Survey on Efficient Inference for Large Language Models
Large Language Models (LLMs) have attracted extensive attention due to their remarkable performance across various tasks. However, the substantial computational and memory requirements of LLM inference pose challenges for deployment in resource-constrained scenarios. Efforts within the field have been directed towards developing techniques aimed at enhancing the efficiency of LLM inference. This paper presents a comprehensive survey of the existing literature on efficient LLM inference. We start by analyzing the primary causes of the inefficient LLM inference, i.e., the large model size, the quadratic-complexity attention operation, and the auto-regressive decoding approach. Then, we introduce a comprehensive taxonomy that organizes the current literature into data-level, model-level, and system-level optimization. Moreover, the paper includes comparative experiments on representative methods within critical sub-fields to provide quantitative insights. Last but not least, we provide some knowledge summary and discuss future research directions.
Latent Retrieval for Weakly Supervised Open Domain Question Answering
Recent work on open domain question answering (QA) assumes strong supervision of the supporting evidence and/or assumes a blackbox information retrieval (IR) system to retrieve evidence candidates. We argue that both are suboptimal, since gold evidence is not always available, and QA is fundamentally different from IR. We show for the first time that it is possible to jointly learn the retriever and reader from question-answer string pairs and without any IR system. In this setting, evidence retrieval from all of Wikipedia is treated as a latent variable. Since this is impractical to learn from scratch, we pre-train the retriever with an Inverse Cloze Task. We evaluate on open versions of five QA datasets. On datasets where the questioner already knows the answer, a traditional IR system such as BM25 is sufficient. On datasets where a user is genuinely seeking an answer, we show that learned retrieval is crucial, outperforming BM25 by up to 19 points in exact match.
FreeRet: MLLMs as Training-Free Retrievers
Multimodal large language models (MLLMs) are emerging as versatile foundations for mixed-modality retrieval. Yet, they often require heavy post-hoc training to convert them into contrastive encoders for retrieval. This work asks: Can off-the-shelf MLLMs serve as powerful retrievers without additional training? We present FreeRet, a plug-and-play framework that turns any MLLM into a two-stage retriever. FreeRet first derives semantically grounded embeddings directly from the model for fast candidate search, and then exploits its reasoning ability for precise reranking. The framework contributes three advances: bypassing lexical alignment layers to obtain semantically faithful embeddings, conditioning representation generation with explicit priors, and mitigating framing effect in reranking via neutral choice framing. On the MMEB and MMEB-V2 benchmarks spanning 46 datasets, FreeRet substantially outperforms models trained on millions of pairs. Beyond benchmarks, FreeRet is model-agnostic and scales seamlessly across MLLM families and sizes, preserves their generative abilities, supports arbitrary modality combinations, and unifies retrieval, reranking, and generation into end-to-end RAG within a single model. Our findings demonstrate that pretrained MLLMs, when carefully harnessed, can serve as strong retrieval engines without training, closing a critical gap in their role as generalists.
TwT: Thinking without Tokens by Habitual Reasoning Distillation with Multi-Teachers' Guidance
Large Language Models (LLMs) have made significant strides in problem-solving by incorporating reasoning processes. However, this enhanced reasoning capability results in an increased number of output tokens during inference, leading to higher computational costs. To address this challenge, we propose TwT (Thinking without Tokens), a method that reduces inference-time costs through habitual reasoning distillation with multi-teachers' guidance, while maintaining high performance. Our approach introduces a Habitual Reasoning Distillation method, which internalizes explicit reasoning into the model's habitual behavior through a Teacher-Guided compression strategy inspired by human cognition. Additionally, we propose Dual-Criteria Rejection Sampling (DCRS), a technique that generates a high-quality and diverse distillation dataset using multiple teacher models, making our method suitable for unsupervised scenarios. Experimental results demonstrate that TwT effectively reduces inference costs while preserving superior performance, achieving up to a 13.6% improvement in accuracy with fewer output tokens compared to other distillation methods, offering a highly practical solution for efficient LLM deployment.
Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective
We propose a new paradigm for zero-shot learners that is format agnostic, i.e., it is compatible with any format and applicable to a list of language tasks, such as text classification, commonsense reasoning, coreference resolution, and sentiment analysis. Zero-shot learning aims to train a model on a given task such that it can address new learning tasks without any additional training. Our approach converts zero-shot learning into multiple-choice tasks, avoiding problems in commonly used large-scale generative models such as FLAN. It not only adds generalization ability to models but also significantly reduces the number of parameters. Our method shares the merits of efficient training and deployment. Our approach shows state-of-the-art performance on several benchmarks and produces satisfactory results on tasks such as natural language inference and text classification. Our model achieves this success with only 235M parameters, which is substantially smaller than state-of-the-art models with billions of parameters. The code and pre-trained models are available at https://github.com/IDEA-CCNL/Fengshenbang-LM .
Meta-training with Demonstration Retrieval for Efficient Few-shot Learning
Large language models show impressive results on few-shot NLP tasks. However, these models are memory and computation-intensive. Meta-training allows one to leverage smaller models for few-shot generalization in a domain-general and task-agnostic manner; however, these methods alone results in models that may not have sufficient parameterization or knowledge to adapt quickly to a large variety of tasks. To overcome this issue, we propose meta-training with demonstration retrieval, where we use a dense passage retriever to retrieve semantically similar labeled demonstrations to each example for more varied supervision. By separating external knowledge from model parameters, we can use meta-training to train parameter-efficient models that generalize well on a larger variety of tasks. We construct a meta-training set from UnifiedQA and CrossFit, and propose a demonstration bank based on UnifiedQA tasks. To our knowledge, our work is the first to combine retrieval with meta-training, to use DPR models to retrieve demonstrations, and to leverage demonstrations from many tasks simultaneously, rather than randomly sampling demonstrations from the training set of the target task. Our approach outperforms a variety of targeted parameter-efficient and retrieval-augmented few-shot methods on QA, NLI, and text classification tasks (including SQuAD, QNLI, and TREC). Our approach can be meta-trained and fine-tuned quickly on a single GPU.
Learning Dense Representations of Phrases at Scale
Open-domain question answering can be reformulated as a phrase retrieval problem, without the need for processing documents on-demand during inference (Seo et al., 2019). However, current phrase retrieval models heavily depend on sparse representations and still underperform retriever-reader approaches. In this work, we show for the first time that we can learn dense representations of phrases alone that achieve much stronger performance in open-domain QA. We present an effective method to learn phrase representations from the supervision of reading comprehension tasks, coupled with novel negative sampling methods. We also propose a query-side fine-tuning strategy, which can support transfer learning and reduce the discrepancy between training and inference. On five popular open-domain QA datasets, our model DensePhrases improves over previous phrase retrieval models by 15%-25% absolute accuracy and matches the performance of state-of-the-art retriever-reader models. Our model is easy to parallelize due to pure dense representations and processes more than 10 questions per second on CPUs. Finally, we directly use our pre-indexed dense phrase representations for two slot filling tasks, showing the promise of utilizing DensePhrases as a dense knowledge base for downstream tasks.
Distributed Representations of Words and Phrases and their Compositionality
The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.
When Thoughts Meet Facts: Reusable Reasoning for Long-Context LMs
Recent Long-Context Language Models (LCLMs) can process hundreds of thousands of tokens in a single prompt, enabling new opportunities for knowledge-intensive multi-hop reasoning by integrating large sets of retrieved documents or, in some cases, directly all necessary information. However, simply feeding more documents into the context window fails to capture how evidence should be connected. We address this gap with thought templates, which recast reasoning as reusable thought caches, derived from prior problem solving traces, structuring how evidence is combined and guiding multi-hop inference with factual documents. To keep these templates effective, we propose an update strategy that iteratively refines templates derived from training data through natural-language feedback. Across diverse benchmarks and LCLM families, our approach delivers consistent gains over strong baselines in both retrieval-based and retrieval-free settings. Furthermore, we show that optimized templates can be distilled into smaller open-source models, demonstrating its broad applicability and transparent reasoning reuse. We refer to our framework as Thought Template Augmented LCLMs (ToTAL).
A*-Decoding: Token-Efficient Inference Scaling
Inference-time scaling has emerged as a powerful alternative to parameter scaling for improving language model performance on complex reasoning tasks. While existing methods have shown strong performance gains under fixed compute budgets, there has been little focus on optimally utilizing that budget during inference. In this work, we introduce A*-decoding, a search-based inference-time strategy that builds on the A* search algorithm to optimally utilize a fixed compute budget by prioritizing high-quality reasoning paths during generation. We frame language model decoding as a structured search in a state space of partial solutions, applying the A* transition model to identify promising continuations guided by an external process supervision signal. In our experiments, A*-decoding reaches the performance levels of strong inference scaling baselines like best-of-N and particle filtering while using up to 3x fewer tokens and 30% fewer PRM passes under equivalent compute budgets. On the MATH500 and AIME 2024 benchmarks, A*-decoding enables Llama-3.2-1B-Instruct to match the performance of the 70x larger Llama-3.1-70B-Instruct, and allows Qwen3-1.7B to reach o1-like reasoning accuracy. These results highlight the power of structured search in decoding, offering an alternative to brute-force sampling or scale-driven gains. Our work demonstrates how thoughtful inference-time strategies can enhance reasoning in SLMs, pointing toward future advances in more efficient and scalable language model deployment.
Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning
Recent prompt-based approaches allow pretrained language models to achieve strong performances on few-shot finetuning by reformulating downstream tasks as a language modeling problem. In this work, we demonstrate that, despite its advantages on low data regimes, finetuned prompt-based models for sentence pair classification tasks still suffer from a common pitfall of adopting inference heuristics based on lexical overlap, e.g., models incorrectly assuming a sentence pair is of the same meaning because they consist of the same set of words. Interestingly, we find that this particular inference heuristic is significantly less present in the zero-shot evaluation of the prompt-based model, indicating how finetuning can be destructive to useful knowledge learned during the pretraining. We then show that adding a regularization that preserves pretraining weights is effective in mitigating this destructive tendency of few-shot finetuning. Our evaluation on three datasets demonstrates promising improvements on the three corresponding challenge datasets used to diagnose the inference heuristics.
In-context learning and Occam's razor
The goal of machine learning is generalization. While the No Free Lunch Theorem states that we cannot obtain theoretical guarantees for generalization without further assumptions, in practice we observe that simple models which explain the training data generalize best: a principle called Occam's razor. Despite the need for simple models, most current approaches in machine learning only minimize the training error, and at best indirectly promote simplicity through regularization or architecture design. Here, we draw a connection between Occam's razor and in-context learning: an emergent ability of certain sequence models like Transformers to learn at inference time from past observations in a sequence. In particular, we show that the next-token prediction loss used to train in-context learners is directly equivalent to a data compression technique called prequential coding, and that minimizing this loss amounts to jointly minimizing both the training error and the complexity of the model that was implicitly learned from context. Our theory and the empirical experiments we use to support it not only provide a normative account of in-context learning, but also elucidate the shortcomings of current in-context learning methods, suggesting ways in which they can be improved. We make our code available at https://github.com/3rdCore/PrequentialCode.
Early Stopping Chain-of-thoughts in Large Language Models
Reasoning large language models (LLMs) have demonstrated superior capacities in solving complicated problems by generating long chain-of-thoughts (CoT), but such a lengthy CoT incurs high inference costs. In this study, we introduce ES-CoT, an inference-time method that shortens CoT generation by detecting answer convergence and stopping early with minimal performance loss. At the end of each reasoning step, we prompt the LLM to output its current final answer, denoted as a step answer. We then track the run length of consecutive identical step answers as a measure of answer convergence. Once the run length exhibits a sharp increase and exceeds a minimum threshold, the generation is terminated. We provide both empirical and theoretical support for this heuristic: step answers steadily converge to the final answer, and large run-length jumps reliably mark this convergence. Experiments on five reasoning datasets across three LLMs show that ES-CoT reduces the number of inference tokens by about 41\% on average while maintaining accuracy comparable to standard CoT. Further, ES-CoT integrates seamlessly with self-consistency prompting and remains robust across hyperparameter choices, highlighting it as a practical and effective approach for efficient reasoning.
An efficient framework for learning sentence representations
In this work we propose a simple and efficient framework for learning sentence representations from unlabelled data. Drawing inspiration from the distributional hypothesis and recent work on learning sentence representations, we reformulate the problem of predicting the context in which a sentence appears as a classification problem. Given a sentence and its context, a classifier distinguishes context sentences from other contrastive sentences based on their vector representations. This allows us to efficiently learn different types of encoding functions, and we show that the model learns high-quality sentence representations. We demonstrate that our sentence representations outperform state-of-the-art unsupervised and supervised representation learning methods on several downstream NLP tasks that involve understanding sentence semantics while achieving an order of magnitude speedup in training time.
Conformal Predictor for Improving Zero-shot Text Classification Efficiency
Pre-trained language models (PLMs) have been shown effective for zero-shot (0shot) text classification. 0shot models based on natural language inference (NLI) and next sentence prediction (NSP) employ cross-encoder architecture and infer by making a forward pass through the model for each label-text pair separately. This increases the computational cost to make inferences linearly in the number of labels. In this work, we improve the efficiency of such cross-encoder-based 0shot models by restricting the number of likely labels using another fast base classifier-based conformal predictor (CP) calibrated on samples labeled by the 0shot model. Since a CP generates prediction sets with coverage guarantees, it reduces the number of target labels without excluding the most probable label based on the 0shot model. We experiment with three intent and two topic classification datasets. With a suitable CP for each dataset, we reduce the average inference time for NLI- and NSP-based models by 25.6% and 22.2% respectively, without dropping performance below the predefined error rate of 1%.
Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach
We study a novel language model architecture that is capable of scaling test-time computation by implicitly reasoning in latent space. Our model works by iterating a recurrent block, thereby unrolling to arbitrary depth at test-time. This stands in contrast to mainstream reasoning models that scale up compute by producing more tokens. Unlike approaches based on chain-of-thought, our approach does not require any specialized training data, can work with small context windows, and can capture types of reasoning that are not easily represented in words. We scale a proof-of-concept model to 3.5 billion parameters and 800 billion tokens. We show that the resulting model can improve its performance on reasoning benchmarks, sometimes dramatically, up to a computation load equivalent to 50 billion parameters.
Bridging the Training-Inference Gap in LLMs by Leveraging Self-Generated Tokens
Language models are often trained to maximize the likelihood of the next token given past tokens in the training dataset. However, during inference time, they are utilized differently, generating text sequentially and auto-regressively by using previously generated tokens as input to predict the next one. Marginal differences in predictions at each step can cascade over successive steps, resulting in different distributions from what the models were trained for and potentially leading to unpredictable behavior. This paper proposes two simple approaches based on model own generation to address this discrepancy between the training and inference time. Our first approach is Batch-Scheduled Sampling, where, during training, we stochastically choose between the ground-truth token from the dataset and the model's own generated token as input to predict the next token. This is done in an offline manner, modifying the context window by interleaving ground-truth tokens with those generated by the model. Our second approach is Reference-Answer-based Correction, where we explicitly incorporate a self-correction capability into the model during training. This enables the model to effectively self-correct the gaps between the generated sequences and the ground truth data without relying on an external oracle model. By incorporating our proposed strategies during training, we have observed an overall improvement in performance compared to baseline methods, as demonstrated by our extensive experiments using summarization, general question-answering, and math question-answering tasks.
Synthetic bootstrapped pretraining
We introduce Synthetic Bootstrapped Pretraining (SBP), a language model (LM) pretraining procedure that first learns a model of relations between documents from the pretraining dataset and then leverages it to synthesize a vast new corpus for joint training. While the standard pretraining teaches LMs to learn causal correlations among tokens within a single document, it is not designed to efficiently model the rich, learnable inter-document correlations that can potentially lead to better performance. We validate SBP by designing a compute-matched pretraining setup and pretrain a 3B-parameter model on up to 1T tokens from scratch. We find SBP consistently improves upon a strong repetition baseline and delivers a significant fraction of performance improvement attainable by an oracle upper bound with access to 20x more unique data. Qualitative analysis reveals that the synthesized documents go beyond mere paraphrases -- SBP first abstracts a core concept from the seed material and then crafts a new narration on top of it. Besides strong empirical performance, SBP admits a natural Bayesian interpretation: the synthesizer implicitly learns to abstract the latent concepts shared between related documents.
Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning
Large language models (LLMs) have been shown to be capable of impressive few-shot generalisation to new tasks. However, they still tend to perform poorly on multi-step logical reasoning problems. Here we carry out a comprehensive evaluation of LLMs on 50 tasks that probe different aspects of logical reasoning. We show that language models tend to perform fairly well at single step inference or entailment tasks, but struggle to chain together multiple reasoning steps to solve more complex problems. In light of this, we propose a Selection-Inference (SI) framework that exploits pre-trained LLMs as general processing modules, and alternates between selection and inference to generate a series of interpretable, casual reasoning steps leading to the final answer. We show that a 7B parameter LLM used within the SI framework in a 5-shot generalisation setting, with no fine-tuning, yields a performance improvement of over 100% compared to an equivalent vanilla baseline on a suite of 10 logical reasoning tasks. The same model in the same setting even outperforms a significantly larger 280B parameter baseline on the same suite of tasks. Moreover, answers produced by the SI framework are accompanied by a causal natural-language-based reasoning trace, which has important implications for the safety and trustworthiness of the system.
Greedy Output Approximation: Towards Efficient Structured Pruning for LLMs Without Retraining
To remove redundant components of large language models (LLMs) without incurring significant computational costs, this work focuses on single-shot pruning without a retraining phase. We simplify the pruning process for Transformer-based LLMs by identifying a depth-2 pruning structure that functions independently. Additionally, we propose two inference-aware pruning criteria derived from the optimization perspective of output approximation, which outperforms traditional training-aware metrics such as gradient and Hessian. We also introduce a two-step reconstruction technique to mitigate pruning errors without model retraining. Experimental results demonstrate that our approach significantly reduces computational costs and hardware requirements while maintaining superior performance across various datasets and models.
Transformers Can Do Bayesian Inference
Currently, it is hard to reap the benefits of deep learning for Bayesian methods, which allow the explicit specification of prior knowledge and accurately capture model uncertainty. We present Prior-Data Fitted Networks (PFNs). PFNs leverage large-scale machine learning techniques to approximate a large set of posteriors. The only requirement for PFNs to work is the ability to sample from a prior distribution over supervised learning tasks (or functions). Our method restates the objective of posterior approximation as a supervised classification problem with a set-valued input: it repeatedly draws a task (or function) from the prior, draws a set of data points and their labels from it, masks one of the labels and learns to make probabilistic predictions for it based on the set-valued input of the rest of the data points. Presented with a set of samples from a new supervised learning task as input, PFNs make probabilistic predictions for arbitrary other data points in a single forward propagation, having learned to approximate Bayesian inference. We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems, with over 200-fold speedups in multiple setups compared to current methods. We obtain strong results in very diverse areas such as Gaussian process regression, Bayesian neural networks, classification for small tabular data sets, and few-shot image classification, demonstrating the generality of PFNs. Code and trained PFNs are released at https://github.com/automl/TransformersCanDoBayesianInference.
SKIP: Skill-Localized Prompt Tuning for Inference Speed Boost-Up
Prompt-tuning methods have shown comparable performance as parameter-efficient fine-tuning (PEFT) methods in various natural language understanding tasks. However, existing prompt tuning methods still utilize the entire model architecture; thus, they fail to accelerate inference speed in the application. In this paper, we propose a novel approach called SKIll-localized Prompt tuning (SKIP), which is extremely efficient in inference time. Our method significantly enhances inference efficiency by investigating and utilizing a skill-localized subnetwork in a language model. Surprisingly, our method improves the inference speed up to 160% while pruning 52% of the parameters. Furthermore, we demonstrate that our method is applicable across various transformer-based architectures, thereby confirming its practicality and scalability.
Context-Aware Meta-Learning
Large Language Models like ChatGPT demonstrate a remarkable capacity to learn new concepts during inference without any fine-tuning. However, visual models trained to detect new objects during inference have been unable to replicate this ability, and instead either perform poorly or require meta-training and/or fine-tuning on similar objects. In this work, we propose a meta-learning algorithm that emulates Large Language Models by learning new visual concepts during inference without fine-tuning. Our approach leverages a frozen pre-trained feature extractor, and analogous to in-context learning, recasts meta-learning as sequence modeling over datapoints with known labels and a test datapoint with an unknown label. On 8 out of 11 meta-learning benchmarks, our approach -- without meta-training or fine-tuning -- exceeds or matches the state-of-the-art algorithm, P>M>F, which is meta-trained on these benchmarks.
Accelerating LLM Inference with Lossless Speculative Decoding Algorithms for Heterogeneous Vocabularies
Accelerating the inference of large language models (LLMs) is a critical challenge in generative AI. Speculative decoding (SD) methods offer substantial efficiency gains by generating multiple tokens using a single target forward pass. However, existing SD approaches require the drafter and target models to share the same vocabulary, thus limiting the pool of possible drafters, often necessitating the training of a drafter from scratch. We present three new SD methods that remove this shared-vocabulary constraint. All three methods preserve the target distribution (i.e., they are lossless) and work with off-the-shelf models without requiring additional training or modifications. Empirically, on summarization, programming, and long-context tasks, our algorithms achieve significant speedups over standard autoregressive decoding. By enabling any off-the-shelf model to serve as drafter and requiring no retraining, this work substantially broadens the applicability of the SD framework in practice.
CoLLEGe: Concept Embedding Generation for Large Language Models
Current language models are unable to quickly learn new concepts on the fly, often requiring a more involved finetuning process to learn robustly. Prompting in-context is not robust to context distractions, and often fails to confer much information about the new concepts. Classic methods for few-shot word learning in NLP, relying on global word vectors, are less applicable to large language models. In this paper, we introduce a novel approach named CoLLEGe (Concept Learning with Language Embedding Generation) to modernize few-shot concept learning. CoLLEGe is a meta-learning framework capable of generating flexible embeddings for new concepts using a small number of example sentences or definitions. Our primary meta-learning objective is simply to facilitate a language model to make next word predictions in forthcoming sentences, making it compatible with language model pretraining. We design a series of tasks to test new concept learning in challenging real-world scenarios, including new word acquisition, definition inference, and verbal reasoning, and demonstrate that our method succeeds in each setting without task-specific training.
Alignment-Augmented Speculative Decoding with Alignment Sampling and Conditional Verification
Recent works have revealed the great potential of speculative decoding in accelerating the autoregressive generation process of large language models. The success of these methods relies on the alignment between draft candidates and the sampled outputs of the target model. Existing methods mainly achieve draft-target alignment with training-based methods, e.g., EAGLE, Medusa, involving considerable training costs. In this paper, we present a training-free alignment-augmented speculative decoding algorithm. We propose alignment sampling, which leverages output distribution obtained in the prefilling phase to provide more aligned draft candidates. To further benefit from high-quality but non-aligned draft candidates, we also introduce a simple yet effective flexible verification strategy. Through an adaptive probability threshold, our approach can improve generation accuracy while further improving inference efficiency. Experiments on 8 datasets (including question answering, summarization and code completion tasks) show that our approach increases the average generation score by 3.3 points for the LLaMA3 model. Our method achieves a mean acceptance length up to 2.39 and speed up generation by 2.23.
Retrieval-Augmented Meta Learning for Low-Resource Text Classification
Meta learning have achieved promising performance in low-resource text classification which aims to identify target classes with knowledge transferred from source classes with sets of small tasks named episodes. However, due to the limited training data in the meta-learning scenario and the inherent properties of parameterized neural networks, poor generalization performance has become a pressing problem that needs to be addressed. To deal with this issue, we propose a meta-learning based method called Retrieval-Augmented Meta Learning(RAML). It not only uses parameterization for inference but also retrieves non-parametric knowledge from an external corpus to make inferences, which greatly alleviates the problem of poor generalization performance caused by the lack of diverse training data in meta-learning. This method differs from previous models that solely rely on parameters, as it explicitly emphasizes the importance of non-parametric knowledge, aiming to strike a balance between parameterized neural networks and non-parametric knowledge. The model is required to determine which knowledge to access and utilize during inference. Additionally, our multi-view passages fusion network module can effectively and efficiently integrate the retrieved information into low-resource classification task. The extensive experiments demonstrate that RAML significantly outperforms current SOTA low-resource text classification models.
Understanding and Mitigating Tokenization Bias in Language Models
State-of-the-art language models are autoregressive and operate on subword units known as tokens. Specifically, one must encode the conditioning string into a list of tokens before passing to the language models for next-token prediction. We show that popular encoding schemes, such as maximum prefix encoding (MPE) and byte-pair-encoding (BPE), induce a sampling bias that cannot be mitigated with more training or data. To counter this universal problem, for each encoding scheme above, we propose a novel algorithm to obtain unbiased estimates from any language model trained on tokenized data. Our methods do not require finetuning the model, and the complexity, defined as the number of model runs, scales linearly with the sequence length in the case of MPE. As a result, we show that one can simulate token-free behavior from a tokenized language model. We empirically verify the correctness of our method through a Markov-chain setup, where it accurately recovers the transition probabilities, as opposed to the conventional method of directly prompting tokens into the language model.
SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator
Large Language Models (LLMs) have exhibited exceptional performance across a spectrum of natural language processing tasks. However, their substantial sizes pose considerable challenges, particularly in computational demands and inference speed, due to their quadratic complexity. In this work, we have identified a key pattern: certain seemingly meaningless special tokens (i.e., separators) contribute disproportionately to attention scores compared to semantically meaningful tokens. This observation suggests that information of the segments between these separator tokens can be effectively condensed into the separator tokens themselves without significant information loss. Guided by this insight, we introduce SepLLM, a plug-and-play framework that accelerates inference by compressing these segments and eliminating redundant tokens. Additionally, we implement efficient kernels for training acceleration. Experimental results across training-free, training-from-scratch, and post-training settings demonstrate SepLLM's effectiveness. Notably, using the Llama-3-8B backbone, SepLLM achieves over 50% reduction in KV cache on the GSM8K-CoT benchmark while maintaining comparable performance. Furthermore, in streaming settings, SepLLM effectively processes sequences of up to 4 million tokens or more while maintaining consistent language modeling capabilities.
Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces
The task of "unlearning" certain concepts in large language models (LLMs) has attracted immense attention recently, due to its importance for mitigating undesirable model behaviours, such as the generation of harmful, private, or incorrect information. Current protocols to evaluate unlearning methods largely rely on behavioral tests, without monitoring the presence of unlearned knowledge within the model's parameters. This residual knowledge can be adversarially exploited to recover the erased information post-unlearning. We argue that unlearning should also be evaluated internally, by considering changes in the parametric knowledge traces of the unlearned concepts. To this end, we propose a general methodology for eliciting directions in the parameter space (termed "concept vectors") that encode concrete concepts, and construct ConceptVectors, a benchmark dataset containing hundreds of common concepts and their parametric knowledge traces within two open-source LLMs. Evaluation on ConceptVectors shows that existing unlearning methods minimally impact concept vectors, while directly ablating these vectors demonstrably removes the associated knowledge from the LLMs and significantly reduces their susceptibility to adversarial manipulation. Our results highlight limitations in behavioral-based unlearning evaluations and call for future work to include parametric-based evaluations. To support this, we release our code and benchmark at https://github.com/yihuaihong/ConceptVectors.
PromptBoosting: Black-Box Text Classification with Ten Forward Passes
We describe PromptBoosting, a query-efficient procedure for building a text classifier from a neural language model (LM) without access to the LM's parameters, gradients, or hidden representations. This form of "black-box" classifier training has become increasingly important as the cost of training and inference in large-scale LMs grows. But existing black-box LM classifier learning approaches are themselves computationally inefficient, typically specializing LMs to the target task by searching in a large space of (discrete or continuous) prompts using zeroth-order optimization methods. Instead of directly optimizing in prompt space, PromptBoosting obtains a small pool of prompts via a gradient-free approach and then constructs a large pool of weak learners by pairing these prompts with different elements of the LM's output distribution. These weak learners are then ensembled using the AdaBoost algorithm. The entire learning process requires only a small number of forward passes and no backward pass. Experiments show that PromptBoosting achieves state-of-the-art performance in multiple black-box few-shot classification tasks, and matches or outperforms full fine-tuning in both few-shot and standard learning paradigms, while training 10x faster than existing black-box methods.
DiffIER: Optimizing Diffusion Models with Iterative Error Reduction
Diffusion models have demonstrated remarkable capabilities in generating high-quality samples and enhancing performance across diverse domains through Classifier-Free Guidance (CFG). However, the quality of generated samples is highly sensitive to the selection of the guidance weight. In this work, we identify a critical ``training-inference gap'' and we argue that it is the presence of this gap that undermines the performance of conditional generation and renders outputs highly sensitive to the guidance weight. We quantify this gap by measuring the accumulated error during the inference stage and establish a correlation between the selection of guidance weight and minimizing this gap. Furthermore, to mitigate this gap, we propose DiffIER, an optimization-based method for high-quality generation. We demonstrate that the accumulated error can be effectively reduced by an iterative error minimization at each step during inference. By introducing this novel plug-and-play optimization framework, we enable the optimization of errors at every single inference step and enhance generation quality. Empirical results demonstrate that our proposed method outperforms baseline approaches in conditional generation tasks. Furthermore, the method achieves consistent success in text-to-image generation, image super-resolution, and text-to-speech generation, underscoring its versatility and potential for broad applications in future research.
Testing the Generalization Power of Neural Network Models Across NLI Benchmarks
Neural network models have been very successful in natural language inference, with the best models reaching 90% accuracy in some benchmarks. However, the success of these models turns out to be largely benchmark specific. We show that models trained on a natural language inference dataset drawn from one benchmark fail to perform well in others, even if the notion of inference assumed in these benchmarks is the same or similar. We train six high performing neural network models on different datasets and show that each one of these has problems of generalizing when we replace the original test set with a test set taken from another corpus designed for the same task. In light of these results, we argue that most of the current neural network models are not able to generalize well in the task of natural language inference. We find that using large pre-trained language models helps with transfer learning when the datasets are similar enough. Our results also highlight that the current NLI datasets do not cover the different nuances of inference extensively enough.
LLM-guided Hierarchical Retrieval
Modern IR systems are increasingly tasked with answering complex, multi-faceted queries that require deep reasoning rather than simple keyword or semantic matching. While LLM-based IR has shown great promise, the prevailing retrieve-then-rerank paradigm inherits the limitations of embedding-based retrieval; parametric generative approaches are difficult to update with new information; and long-context methods that place the entire corpus in context are computationally infeasible for large document collections. To address these challenges, we introduce LATTICE, a hierarchical retrieval framework that enables an LLM to reason over and navigate large corpora with logarithmic search complexity by imposing a semantic tree structure on the corpus. Our approach consists of two stages: (1) an offline phase that organizes the corpus into a semantic hierarchy via either a bottom-up agglomerative strategy or a top-down divisive strategy using multi-level summaries and (2) an online traversal phase where a search LLM navigates this tree. A central challenge in such LLM-guided search is that the model's relevance judgments are noisy, context-dependent, and unaware of the hierarchy, making cross-branch and cross-level comparisons difficult. To overcome this, we propose a traversal algorithm that estimates calibrated latent relevance scores from local LLM outputs and aggregates them into a global path relevance metric. Our training-free framework achieves state-of-the-art zero-shot performance on the reasoning-intensive BRIGHT benchmark, demonstrating up to 9% improvement in Recall@100 and 5% in nDCG@10 over the next best zero-shot baseline. Furthermore, compared to the fine-tuned SOTA method DIVER-v2, LATTICE attains comparable results on BRIGHT subsets that use a static corpus for evaluation.
Text Generation Beyond Discrete Token Sampling
In standard autoregressive generation, an LLM predicts the next-token distribution, samples a discrete token, and then discards the distribution, passing only the sampled token as new input. To preserve this distribution's rich information, we propose Mixture of Inputs (MoI), a training-free method for autoregressive generation. After generating a token following the standard paradigm, we construct a new input that blends the generated discrete token with the previously discarded token distribution. Specifically, we employ a Bayesian estimation method that treats the token distribution as the prior, the sampled token as the observation, and replaces the conventional one-hot vector with the continuous posterior expectation as the new model input. MoI allows the model to maintain a richer internal representation throughout the generation process, resulting in improved text quality and reasoning capabilities. On mathematical reasoning, code generation, and PhD-level QA tasks, MoI consistently improves performance across multiple models including QwQ-32B, Nemotron-Super-49B, Gemma-3-27B, and DAPO-Qwen-32B, with no additional training and negligible computational overhead.
Nearest Neighbor Speculative Decoding for LLM Generation and Attribution
Large language models (LLMs) often hallucinate and lack the ability to provide attribution for their generations. Semi-parametric LMs, such as kNN-LM, approach these limitations by refining the output of an LM for a given prompt using its nearest neighbor matches in a non-parametric data store. However, these models often exhibit slow inference speeds and produce non-fluent texts. In this paper, we introduce Nearest Neighbor Speculative Decoding (NEST), a novel semi-parametric language modeling approach that is capable of incorporating real-world text spans of arbitrary length into the LM generations and providing attribution to their sources. NEST performs token-level retrieval at each inference step to compute a semi-parametric mixture distribution and identify promising span continuations in a corpus. It then uses an approximate speculative decoding procedure that accepts a prefix of the retrieved span or generates a new token. NEST significantly enhances the generation quality and attribution rate of the base LM across a variety of knowledge-intensive tasks, surpassing the conventional kNN-LM method and performing competitively with in-context retrieval augmentation. In addition, NEST substantially improves the generation speed, achieving a 1.8x speedup in inference time when applied to Llama-2-Chat 70B.
Diverse and Faithful Knowledge-Grounded Dialogue Generation via Sequential Posterior Inference
The capability to generate responses with diversity and faithfulness using factual knowledge is paramount for creating a human-like, trustworthy dialogue system. Common strategies either adopt a two-step paradigm, which optimizes knowledge selection and response generation separately, and may overlook the inherent correlation between these two tasks, or leverage conditional variational method to jointly optimize knowledge selection and response generation by employing an inference network. In this paper, we present an end-to-end learning framework, termed Sequential Posterior Inference (SPI), capable of selecting knowledge and generating dialogues by approximately sampling from the posterior distribution. Unlike other methods, SPI does not require the inference network or assume a simple geometry of the posterior distribution. This straightforward and intuitive inference procedure of SPI directly queries the response generation model, allowing for accurate knowledge selection and generation of faithful responses. In addition to modeling contributions, our experimental results on two common dialogue datasets (Wizard of Wikipedia and Holl-E) demonstrate that SPI outperforms previous strong baselines according to both automatic and human evaluation metrics.
Impossible Distillation: from Low-Quality Model to High-Quality Dataset & Model for Summarization and Paraphrasing
It is commonly perceived that the strongest language models (LMs) rely on a combination of massive scale, instruction data, and human feedback to perform specialized tasks -- e.g. summarization and paraphrasing, without supervision. In this paper, we propose that language models can learn to summarize and paraphrase sentences, with none of these 3 factors. We present Impossible Distillation, a framework that distills a task-specific dataset directly from an off-the-shelf LM, even when it is impossible for the LM itself to reliably solve the task. By training a student model on the generated dataset and amplifying its capability through self-distillation, our method yields a high-quality model and dataset from a low-quality teacher model, without the need for scale or supervision. Using Impossible Distillation, we are able to distill an order of magnitude smaller model (with only 770M parameters) that outperforms 175B parameter GPT-3, in both quality and controllability, as confirmed by automatic and human evaluations. Furthermore, as a useful byproduct of our approach, we obtain DIMSUM+, a high-quality dataset with 3.4M sentence summaries and paraphrases. Our analyses show that this dataset, as a purely LM-generated corpus, is more diverse and more effective for generalization to unseen domains than all human-authored datasets -- including Gigaword with 4M samples.
On Synthesizing Data for Context Attribution in Question Answering
Question Answering (QA) accounts for a significant portion of LLM usage "in the wild". However, LLMs sometimes produce false or misleading responses, also known as "hallucinations". Therefore, grounding the generated answers in contextually provided information -- i.e., providing evidence for the generated text -- is paramount for LLMs' trustworthiness. Providing this information is the task of context attribution. In this paper, we systematically study LLM-based approaches for this task, namely we investigate (i) zero-shot inference, (ii) LLM ensembling, and (iii) fine-tuning of small LMs on synthetic data generated by larger LLMs. Our key contribution is SynQA: a novel generative strategy for synthesizing context attribution data. Given selected context sentences, an LLM generates QA pairs that are supported by these sentences. This leverages LLMs' natural strengths in text generation while ensuring clear attribution paths in the synthetic training data. We show that the attribution data synthesized via SynQA is highly effective for fine-tuning small LMs for context attribution in different QA tasks and domains. Finally, with a user study, we validate the usefulness of small LMs (fine-tuned on synthetic data from SynQA) in context attribution for QA.
Learning to Retrieve Iteratively for In-Context Learning
We introduce iterative retrieval, a novel framework that empowers retrievers to make iterative decisions through policy optimization. Finding an optimal portfolio of retrieved items is a combinatorial optimization problem, generally considered NP-hard. This approach provides a learned approximation to such a solution, meeting specific task requirements under a given family of large language models (LLMs). We propose a training procedure based on reinforcement learning, incorporating feedback from LLMs. We instantiate an iterative retriever for composing in-context learning (ICL) exemplars and apply it to various semantic parsing tasks that demand synthesized programs as outputs. By adding only 4M additional parameters for state encoding, we convert an off-the-shelf dense retriever into a stateful iterative retriever, outperforming previous methods in selecting ICL exemplars on semantic parsing datasets such as CalFlow, TreeDST, and MTOP. Additionally, the trained iterative retriever generalizes across different inference LLMs beyond the one used during training.
Less is More: Improving LLM Reasoning with Minimal Test-Time Intervention
Recent progress in large language models (LLMs) has focused on test-time scaling to improve reasoning via increased inference computation, but often at the cost of efficiency. We revisit test-time behavior and uncover a simple yet underexplored phenomenon: reasoning uncertainty is highly localized-only a small subset of high-entropy tokens dominantly affects output correctness. Motivated by this, we propose Minimal Test-Time Intervention (MTI), a training-free framework that enhances reasoning accuracy and stability with minimal overhead. MTI includes: (i) Selective CFG intervention, applying classifier-free guidance only at uncertain positions; and (ii) Lightweight negative-prompt guidance, reusing the main model's KV cache to approximate unconditional decoding efficiently. MTI yields consistent gains across general, coding, and STEM tasks-e.g., +1.35% average improvement on eight benchmarks for Qwen3-8B-Base and +5% on AIME2024 using Qwen3-32B-Reasoning-while remaining highly efficient.
Why think step by step? Reasoning emerges from the locality of experience
Humans have a powerful and mysterious capacity to reason. By working through a series of purely mental steps, we can make inferences we would not be capable of making directly -- despite the fact that we get no additional data from the world. Similarly, when large language models generate a series of intermediate steps (a chain of thought) before answering a question, they often produce better answers than they otherwise would. We investigate why and how chain-of-thought reasoning is useful in language models, testing the hypothesis that reasoning is effective when training data consists of local clusters of variables that influence each other strongly. These training conditions enable the chaining of accurate local inferences in order to estimate relationships between variables that were not seen together in training. We prove that there will exist a "reasoning gap", where reasoning through intermediate variables improves inference, for the simple case of an autoregressive density estimator trained on local samples from a chain-structured probabilistic model. We then test our hypothesis empirically in more complex models, training an autoregressive language model on samples from Bayes nets but only including a subset of variables in each sample. We test language models' ability to match conditional probabilities with and without intermediate reasoning steps, finding that intermediate steps are only helpful when the training data is locally structured with respect to dependencies between variables and that the combination of locally-structured observations and reasoning is much more data-efficient than training on all variables. Our results illustrate how the effectiveness of reasoning step by step is rooted in the local statistical structure of the training data.
Not all Layers of LLMs are Necessary during Inference
The inference phase of Large Language Models (LLMs) is very expensive. An ideal inference stage of LLMs could utilize fewer computational resources while still maintaining its capabilities (e.g., generalization and in-context learning ability). In this paper, we try to answer the question, "During LLM inference, can we use shallow layers for easy instances; and deep layers for hard ones?" To answer this question, we first indicate that Not all Layers are Necessary during Inference by statistically analyzing the activated layers across tasks. Then, we propose a simple algorithm named AdaInfer to determine the inference termination moment based on the input instance adaptively. More importantly, AdaInfer does not alter LLM parameters and maintains generalizability across tasks. Experiments on well-known LLMs (i.e., Llama2 series and OPT) show that AdaInfer saves an average of 14.8% of computational resources, even up to 50% on sentiment tasks, while maintaining comparable performance. Additionally, this method is orthogonal to other model acceleration techniques, potentially boosting inference efficiency further.
Self-consistency for open-ended generations
In this paper, we present a novel approach for improving the quality and consistency of generated outputs from large-scale pre-trained language models (LLMs). Self-consistency has emerged as an effective approach for prompts with fixed answers, selecting the answer with the highest number of votes. In this paper, we introduce a generalized framework for self-consistency that extends its applicability beyond problems that have fixed-answer answers. Through extensive simulations, we demonstrate that our approach consistently recovers the optimal or near-optimal generation from a set of candidates. We also propose lightweight parameter-free similarity functions that show significant and consistent improvements across code generation, autoformalization, and summarization tasks, even without access to token log probabilities. Our method incurs minimal computational overhead, requiring no auxiliary reranker models or modifications to the existing model.
Don't Let It Hallucinate: Premise Verification via Retrieval-Augmented Logical Reasoning
Large language models (LLMs) have shown substantial capacity for generating fluent, contextually appropriate responses. However, they can produce hallucinated outputs, especially when a user query includes one or more false premises-claims that contradict established facts. Such premises can mislead LLMs into offering fabricated or misleading details. Existing approaches include pretraining, fine-tuning, and inference-time techniques that often rely on access to logits or address hallucinations after they occur. These methods tend to be computationally expensive, require extensive training data, or lack proactive mechanisms to prevent hallucination before generation, limiting their efficiency in real-time applications. We propose a retrieval-based framework that identifies and addresses false premises before generation. Our method first transforms a user's query into a logical representation, then applies retrieval-augmented generation (RAG) to assess the validity of each premise using factual sources. Finally, we incorporate the verification results into the LLM's prompt to maintain factual consistency in the final output. Experiments show that this approach effectively reduces hallucinations, improves factual accuracy, and does not require access to model logits or large-scale fine-tuning.
SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval
In this paper, we propose SimLM (Similarity matching with Language Model pre-training), a simple yet effective pre-training method for dense passage retrieval. It employs a simple bottleneck architecture that learns to compress the passage information into a dense vector through self-supervised pre-training. We use a replaced language modeling objective, which is inspired by ELECTRA, to improve the sample efficiency and reduce the mismatch of the input distribution between pre-training and fine-tuning. SimLM only requires access to unlabeled corpus, and is more broadly applicable when there are no labeled data or queries. We conduct experiments on several large-scale passage retrieval datasets, and show substantial improvements over strong baselines under various settings. Remarkably, SimLM even outperforms multi-vector approaches such as ColBERTv2 which incurs significantly more storage cost.
When to Speak, When to Abstain: Contrastive Decoding with Abstention
Large Language Models (LLMs) demonstrate exceptional performance across diverse tasks by leveraging both pre-trained knowledge (i.e., parametric knowledge) and external knowledge (i.e., contextual knowledge). While substantial efforts have been made to leverage both forms of knowledge, scenarios in which the model lacks any relevant knowledge remain underexplored. Such limitations can result in issues like hallucination, causing reduced reliability and potential risks in high-stakes applications. To address such limitations, this paper extends the task scope to encompass cases where the user's request cannot be fulfilled due to the lack of relevant knowledge. To this end, we introduce Contrastive Decoding with Abstention (CDA), a training-free decoding method that empowers LLMs to generate responses when relevant knowledge is available and to abstain otherwise. CDA evaluates the relevance of each knowledge for a given query, adaptively determining which knowledge to prioritize or which to completely ignore. Extensive experiments with four LLMs on three question-answering datasets demonstrate that CDA can effectively perform accurate generation and abstention simultaneously. These findings highlight CDA's potential to broaden the applicability of LLMs, enhancing reliability and preserving user trust.
Model Compression and Efficient Inference for Large Language Models: A Survey
Transformer based large language models have achieved tremendous success. However, the significant memory and computational costs incurred during the inference process make it challenging to deploy large models on resource-constrained devices. In this paper, we investigate compression and efficient inference methods for large language models from an algorithmic perspective. Regarding taxonomy, similar to smaller models, compression and acceleration algorithms for large language models can still be categorized into quantization, pruning, distillation, compact architecture design, dynamic networks. However, Large language models have two prominent characteristics compared to smaller models: (1) Most of compression algorithms require finetuning or even retraining the model after compression. The most notable aspect of large models is the very high cost associated with model finetuning or training. Therefore, many algorithms for large models, such as quantization and pruning, start to explore tuning-free algorithms. (2) Large models emphasize versatility and generalization rather than performance on a single task. Hence, many algorithms, such as knowledge distillation, focus on how to preserving their versatility and generalization after compression. Since these two characteristics were not very pronounced in early large models, we further distinguish large language models into medium models and ``real'' large models. Additionally, we also provide an introduction to some mature frameworks for efficient inference of large models, which can support basic compression or acceleration algorithms, greatly facilitating model deployment for users.
Harnessing the Universal Geometry of Embeddings
We introduce the first method for translating text embeddings from one vector space to another without any paired data, encoders, or predefined sets of matches. Our unsupervised approach translates any embedding to and from a universal latent representation (i.e., a universal semantic structure conjectured by the Platonic Representation Hypothesis). Our translations achieve high cosine similarity across model pairs with different architectures, parameter counts, and training datasets. The ability to translate unknown embeddings into a different space while preserving their geometry has serious implications for the security of vector databases. An adversary with access only to embedding vectors can extract sensitive information about the underlying documents, sufficient for classification and attribute inference.
Can Unconditional Language Models Recover Arbitrary Sentences?
Neural network-based generative language models like ELMo and BERT can work effectively as general purpose sentence encoders in text classification without further fine-tuning. Is it possible to adapt them in a similar way for use as general-purpose decoders? For this to be possible, it would need to be the case that for any target sentence of interest, there is some continuous representation that can be passed to the language model to cause it to reproduce that sentence. We set aside the difficult problem of designing an encoder that can produce such representations and, instead, ask directly whether such representations exist at all. To do this, we introduce a pair of effective, complementary methods for feeding representations into pretrained unconditional language models and a corresponding set of methods to map sentences into and out of this representation space, the reparametrized sentence space. We then investigate the conditions under which a language model can be made to generate a sentence through the identification of a point in such a space and find that it is possible to recover arbitrary sentences nearly perfectly with language models and representations of moderate size without modifying any model parameters.
Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers
Autoregressive Transformers adopted in Large Language Models (LLMs) are hard to scale to long sequences. Despite several works trying to reduce their computational cost, most of LLMs still adopt attention layers between all pairs of tokens in the sequence, thus incurring a quadratic cost. In this study, we present a novel approach that dynamically prunes contextual information while preserving the model's expressiveness, resulting in reduced memory and computational requirements during inference. Our method employs a learnable mechanism that determines which uninformative tokens can be dropped from the context at any point across the generation process. By doing so, our approach not only addresses performance concerns but also enhances interpretability, providing valuable insight into the model's decision-making process. Our technique can be applied to existing pre-trained models through a straightforward fine-tuning process, and the pruning strength can be specified by a sparsity parameter. Notably, our empirical findings demonstrate that we can effectively prune up to 80\% of the context without significant performance degradation on downstream tasks, offering a valuable tool for mitigating inference costs. Our reference implementation achieves up to 2times increase in inference throughput and even greater memory savings.
Inference-time Alignment in Continuous Space
Aligning large language models with human feedback at inference time has received increasing attention due to its flexibility. Existing methods rely on generating multiple responses from the base policy for search using a reward model, which can be considered as searching in a discrete response space. However, these methods struggle to explore informative candidates when the base policy is weak or the candidate set is small, resulting in limited effectiveness. In this paper, to address this problem, we propose Simple Energy Adaptation (SEA), a simple yet effective algorithm for inference-time alignment. In contrast to expensive search over the discrete space, SEA directly adapts original responses from the base policy toward the optimal one via gradient-based sampling in continuous latent space. Specifically, SEA formulates inference as an iterative optimization procedure on an energy function over actions in the continuous space defined by the optimal policy, enabling simple and effective alignment. For instance, despite its simplicity, SEA outperforms the second-best baseline with a relative improvement of up to 77.51% on AdvBench and 16.36% on MATH. Our code is publicly available at https://github.com/yuanyige/sea
TPRF: A Transformer-based Pseudo-Relevance Feedback Model for Efficient and Effective Retrieval
This paper considers Pseudo-Relevance Feedback (PRF) methods for dense retrievers in a resource constrained environment such as that of cheap cloud instances or embedded systems (e.g., smartphones and smartwatches), where memory and CPU are limited and GPUs are not present. For this, we propose a transformer-based PRF method (TPRF), which has a much smaller memory footprint and faster inference time compared to other deep language models that employ PRF mechanisms, with a marginal effectiveness loss. TPRF learns how to effectively combine the relevance feedback signals from dense passage representations. Specifically, TPRF provides a mechanism for modelling relationships and weights between the query and the relevance feedback signals. The method is agnostic to the specific dense representation used and thus can be generally applied to any dense retriever.
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework
Pretrained language models have become the standard approach for many NLP tasks due to strong performance, but they are very expensive to train. We propose a simple and efficient learning framework, TLM, that does not rely on large-scale pretraining. Given some labeled task data and a large general corpus, TLM uses task data as queries to retrieve a tiny subset of the general corpus and jointly optimizes the task objective and the language modeling objective from scratch. On eight classification datasets in four domains, TLM achieves results better than or similar to pretrained language models (e.g., RoBERTa-Large) while reducing the training FLOPs by two orders of magnitude. With high accuracy and efficiency, we hope TLM will contribute to democratizing NLP and expediting its development.
Self-Selected Attention Span for Accelerating Large Language Model Inference
Large language models (LLMs) can solve challenging tasks. However, their inference computation on modern GPUs is highly inefficient due to the increasing number of tokens they must attend to as they generate new ones. To address this inefficiency, we capitalize on LLMs' problem-solving capabilities to optimize their own inference-time efficiency. We demonstrate with two specific tasks: (a) evaluating complex arithmetic expressions and (b) summarizing news articles. For both tasks, we create custom datasets to fine-tune an LLM. The goal of fine-tuning is twofold: first, to make the LLM learn to solve the evaluation or summarization task, and second, to train it to identify the minimal attention spans required for each step of the task. As a result, the fine-tuned model is able to convert these self-identified minimal attention spans into sparse attention masks on-the-fly during inference. We develop a custom CUDA kernel to take advantage of the reduced context to attend to. We demonstrate that using this custom CUDA kernel improves the throughput of LLM inference by 28%. Our work presents an end-to-end demonstration showing that training LLMs to self-select their attention spans speeds up autoregressive inference in solving real-world tasks.
AutoJudge: Judge Decoding Without Manual Annotation
We introduce AutoJudge, a framework that accelerates large language model (LLM) inference with task-specific lossy speculative decoding. Instead of matching the original model output distribution token-by-token, we identify which of the generated tokens affect the downstream quality of the generated response, relaxing the guarantee so that the "unimportant" tokens can be generated faster. Our approach relies on a semi-greedy search algorithm to test which of the mismatches between target and draft model should be corrected to preserve quality, and which ones may be skipped. We then train a lightweight classifier based on existing LLM embeddings to predict, at inference time, which mismatching tokens can be safely accepted without compromising the final answer quality. We test our approach with Llama 3.2 1B (draft) and Llama 3.1 8B (target) models on zero-shot GSM8K reasoning, where it achieves up to 1.5x more accepted tokens per verification cycle with under 1% degradation in answer accuracy compared to standard speculative decoding and over 2x with small loss in accuracy. When applied to the LiveCodeBench benchmark, our approach automatically detects other, programming-specific important tokens and shows similar speedups, demonstrating its ability to generalize across tasks.
Boosting Lossless Speculative Decoding via Feature Sampling and Partial Alignment Distillation
Lossless speculative decoding accelerates target large language model (LLM) inference by employing a lightweight draft model for generating tree-structured candidates, which are subsequently verified in parallel by the target LLM. Currently, effective approaches leverage feature-level rather than token-level autoregression within the draft model to facilitate more straightforward predictions and enhanced knowledge distillation. In this paper, we reassess these approaches and propose FSPAD (Feature Sampling and Partial Alignment Distillation for Lossless Speculative Decoding), which introduces two straightforward and effective components within the existing framework to boost lossless speculative decoding. Firstly, FSPAD utilizes token embeddings to sample features of the target LLM in high-dimensional space before feeding them into the draft model, due to the inherent uncertainty of the features preventing the draft model from obtaining the specific token output by the target LLM. Secondly, FSPAD introduces partial alignment distillation to weaken the draft model's connection between features and logits, aiming to reduce the conflict between feature alignment and logit confidence during training. Our experiments include both greedy and non-greedy decoding on the largest and smallest models from the Vicuna and LLaMA3-Instruct series, as well as tasks in multi-turn conversation, translation, summarization, question answering, mathematical reasoning, and retrieval-augmented generation. The results show that FSPAD outperforms the state-of-the-art method across all the aforementioned tasks and target LLMs.
CodeGen2: Lessons for Training LLMs on Programming and Natural Languages
Large language models (LLMs) have demonstrated remarkable abilities in representation learning for program synthesis and understanding tasks. The quality of the learned representations appears to be dictated by the neural scaling laws as a function of the number of model parameters and observations, while imposing upper bounds on the model performance by the amount of available data and compute, which is costly. In this study, we attempt to render the training of LLMs for program synthesis more efficient by unifying four key components: (1) model architectures, (2) learning methods, (3) infill sampling, and, (4) data distributions. Specifically, for the model architecture, we attempt to unify encoder and decoder-based models into a single prefix-LM. For learning methods, (i) causal language modeling, (ii) span corruption, (iii) infilling are unified into a simple learning algorithm. For infill sampling, we explore the claim of a "free lunch" hypothesis. For data distributions, the effect of a mixture distribution of programming and natural languages on model performance is explored. We conduct a comprehensive series of empirical experiments on 1B LLMs, for which failures and successes of this exploration are distilled into four lessons. We will provide a final recipe for training and release CodeGen2 models in size 1B, 3.7B, 7B, and, 16B parameters, along with the training framework as open-source: https://github.com/salesforce/CodeGen2.
Do Large Language Models Perform Latent Multi-Hop Reasoning without Exploiting Shortcuts?
We evaluate how well Large Language Models (LLMs) latently recall and compose facts to answer multi-hop queries like "In the year Scarlett Johansson was born, the Summer Olympics were hosted in the country of". One major challenge in evaluating this ability is that LLMs may have developed shortcuts by encounters of the head entity "Scarlett Johansson" and the answer entity "United States" in the same training sequences or merely guess the answer based on frequency-based priors. To prevent shortcuts, we exclude test queries where the head and answer entities co-appear in pretraining corpora. Through careful selection of relations and facts and systematic removal of cases where models might guess answers or exploit partial matches, we construct an evaluation dataset SOCRATES (ShOrtCut-fRee lATent rEaSoning). We observe that LLMs demonstrate promising latent multi-hop reasoning abilities without exploiting shortcuts, but only for certain types of queries. For queries requiring latent recall of countries as the intermediate answer, the best models achieve 80% latent composability, but this drops to just 5% for the recall of years. Comparisons with Chain-of-Thought composability highlight a significant gap between the ability of models to reason latently versus explicitly. Analysis reveals that latent representations of the intermediate answer are constructed more often in queries with higher latent composability, and shows the emergence of latent multi-hop reasoning during pretraining.
CoreInfer: Accelerating Large Language Model Inference with Semantics-Inspired Adaptive Sparse Activation
Large language models (LLMs) with billions of parameters have sparked a new wave of exciting AI applications. However, their high computational costs and memory demands during inference pose significant challenges. Adaptive sparse activation inference, which activates only a small number of neurons for each token, offers a novel way to accelerate model inference without degrading performance, showing great potential for resource-constrained hardware devices. Nevertheless, existing methods predict activated neurons based on individual tokens with additional MLP, which involve frequent changes in activation maps and resource calls, limiting the acceleration benefits of sparse activation. In this paper, we introduce CoreInfer, an MLP-free adaptive sparse activation inference method based on sentence-level prediction. Specifically, we propose the concept of sentence-wise core neurons, which refers to the subset of neurons most critical for a given sentence, and empirically demonstrate its effectiveness. To determine the core neurons, we explore the correlation between core neurons and the sentence's semantics. Remarkably, we discovered that core neurons exhibit both stability and similarity in relation to the sentence's semantics -- an insight overlooked by previous studies. Building on this finding, we further design two semantic-based methods for predicting core neurons to fit different input scenarios. In CoreInfer, the core neurons are determined during the pre-filling stage and fixed during the encoding stage, enabling zero-cost sparse inference. We evaluated the model generalization and task generalization of CoreInfer across various models and tasks. Notably, on an NVIDIA TITAN XP GPU, CoreInfer achieved a 10.33 times and 2.72 times speedup compared to the Huggingface implementation and PowerInfer, respectively.
Transforming Question Answering Datasets Into Natural Language Inference Datasets
Existing datasets for natural language inference (NLI) have propelled research on language understanding. We propose a new method for automatically deriving NLI datasets from the growing abundance of large-scale question answering datasets. Our approach hinges on learning a sentence transformation model which converts question-answer pairs into their declarative forms. Despite being primarily trained on a single QA dataset, we show that it can be successfully applied to a variety of other QA resources. Using this system, we automatically derive a new freely available dataset of over 500k NLI examples (QA-NLI), and show that it exhibits a wide range of inference phenomena rarely seen in previous NLI datasets.
Draft-based Approximate Inference for LLMs
Optimizing inference for long-context Large Language Models (LLMs) is increasingly important due to the quadratic compute and linear memory complexity of Transformers. Existing approximation methods, such as key-value (KV) cache dropping, sparse attention, and prompt compression, typically rely on rough predictions of token or KV pair importance. We propose a novel framework for approximate LLM inference that leverages small draft models to more accurately predict the importance of tokens and KV pairs. Specifically, we introduce two instantiations of our proposed framework: (i) SpecKV, which leverages a draft output to accurately assess the importance of each KV pair for more effective KV cache dropping, and (ii) SpecPC, which uses the draft model's attention activations to identify and discard unimportant prompt tokens. To the best of our knowledge, this is the first work to use draft models for approximate LLM inference acceleration, extending their utility beyond traditional lossless speculative decoding. We motivate our methods with theoretical and empirical analyses, and show a strong correlation between the attention patterns of draft and target models. Extensive experiments on long-context benchmarks show that our methods consistently achieve higher accuracy than existing baselines, while preserving the same improvements in memory usage, latency, and throughput. Our code is available at https://github.com/furiosa-ai/draft-based-approx-llm.
Language Models can Self-Improve at State-Value Estimation for Better Search
Collecting ground truth task completion rewards or human demonstrations for multi-step reasoning tasks is often cost-prohibitive and time-consuming, especially in interactive domains like web tasks. To address this bottleneck, we present self-taught lookahead, a self-supervised method that leverages state-transition dynamics to train a value model capable of effectively guiding language model-controlled search. We find that moderately sized (8 billion parameters) open-weight value models improved with self-taught lookahead can match the performance of using a frontier LLM such as gpt-4o as the value model. Furthermore, we find that self-taught lookahead improves performance by 20% while reducing costs 37x compared to previous LLM-based tree search, without relying on ground truth rewards.
When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data
Many methods now exist for conditioning model outputs on task instructions, retrieved documents, and user-provided explanations and feedback. Rather than relying solely on examples of task inputs and outputs, these approaches use valuable additional data for improving model correctness and aligning learned models with human priors. Meanwhile, a growing body of evidence suggests that some language models can (1) store a large amount of knowledge in their parameters, and (2) perform inference over tasks in textual inputs at test time. These results raise the possibility that, for some tasks, humans cannot explain to a model any more about the task than it already knows or could infer on its own. In this paper, we study the circumstances under which explanations of individual data points can (or cannot) improve modeling performance. In order to carefully control important properties of the data and explanations, we introduce a synthetic dataset for experiments, and we also make use of three existing datasets with explanations: e-SNLI, TACRED, and SemEval. We first give a formal framework for the available modeling approaches, in which explanation data can be used as model inputs, as targets, or as a prior. After arguing that the most promising role for explanation data is as model inputs, we propose to use a retrieval-based method and show that it solves our synthetic task with accuracies upwards of 95%, while baselines without explanation data achieve below 65% accuracy. We then identify properties of datasets for which retrieval-based modeling fails. With the three existing datasets, we find no improvements from explanation retrieval. Drawing on findings from our synthetic task, we suggest that at least one of six preconditions for successful modeling fails to hold with these datasets. Our code is publicly available at https://github.com/peterbhase/ExplanationRoles
VTechAGP: An Academic-to-General-Audience Text Paraphrase Dataset and Benchmark Models
Existing text simplification or paraphrase datasets mainly focus on sentence-level text generation in a general domain. These datasets are typically developed without using domain knowledge. In this paper, we release a novel dataset, VTechAGP, which is the first academic-to-general-audience text paraphrase dataset consisting of 4,938 document-level these and dissertation academic and general-audience abstract pairs from 8 colleges authored over 25 years. We also propose a novel dynamic soft prompt generative language model, DSPT5. For training, we leverage a contrastive-generative loss function to learn the keyword vectors in the dynamic prompt. For inference, we adopt a crowd-sampling decoding strategy at both semantic and structural levels to further select the best output candidate. We evaluate DSPT5 and various state-of-the-art large language models (LLMs) from multiple perspectives. Results demonstrate that the SOTA LLMs does not provide satisfactory outcomes, while the lightweight DSPT5 can achieve competitive results. To the best of our knowledge, we are the first to build a benchmark dataset and solutions for academic-to-general-audience text paraphrase dataset.
DeTriever: Decoder-representation-based Retriever for Improving NL2SQL In-Context Learning
While in-context Learning (ICL) has proven to be an effective technique to improve the performance of Large Language Models (LLMs) in a variety of complex tasks, notably in translating natural language questions into Structured Query Language (NL2SQL), the question of how to select the most beneficial demonstration examples remains an open research problem. While prior works often adapted off-the-shelf encoders to retrieve examples dynamically, an inherent discrepancy exists in the representational capacities between the external retrievers and the LLMs. Further, optimizing the selection of examples is a non-trivial task, since there are no straightforward methods to assess the relative benefits of examples without performing pairwise inference. To address these shortcomings, we propose DeTriever, a novel demonstration retrieval framework that learns a weighted combination of LLM hidden states, where rich semantic information is encoded. To train the model, we propose a proxy score that estimates the relative benefits of examples based on the similarities between output queries. Experiments on two popular NL2SQL benchmarks demonstrate that our method significantly outperforms the state-of-the-art baselines on one-shot NL2SQL tasks.
Activation Steering for Chain-of-Thought Compression
Large language models (LLMs) excel at complex reasoning when they include intermediate steps, known as "chains of thought" (CoTs). However, these rationales are often overly verbose, even for simple problems, leading to wasted context, increased latency, and higher energy consumption. We observe that verbose, English-heavy CoTs and concise, math-centric CoTs occupy distinct regions in the model's residual-stream activation space. By extracting and injecting a "steering vector" to transition between these modes, we can reliably shift generation toward more concise reasoning, effectively compressing CoTs without retraining. We formalize this approach as Activation-Steered Compression (ASC), an inference-time technique that shortens reasoning traces by directly modifying hidden representations. In addition, we provide a theoretical analysis of the impact of ASC on the output distribution, derived from a closed-form KL-divergence-bounded constraint to regulate steering strength. Using only 100 paired verbose and concise examples, ASC achieves up to 67.43% reduction in CoT length on MATH500 and GSM8K datasets, while maintaining accuracy across 7B, 8B, and 32B parameter models. As a training-free method, ASC introduces negligible runtime overhead and, on MATH500, delivers an average 2.73x speedup in end-to-end reasoning wall-clock time on an 8B model. This makes ASC a practical and efficient tool for streamlining the deployment of reasoning-capable LLMs in latency- or cost-sensitive settings. The code is available at: https://github.com/ArminAzizi98/ASC
Improving Unsupervised Constituency Parsing via Maximizing Semantic Information
Unsupervised constituency parsers organize phrases within a sentence into a tree-shaped syntactic constituent structure that reflects the organization of sentence semantics. However, the traditional objective of maximizing sentence log-likelihood (LL) does not explicitly account for the close relationship between the constituent structure and the semantics, resulting in a weak correlation between LL values and parsing accuracy. In this paper, we introduce a novel objective for training unsupervised parsers: maximizing the information between constituent structures and sentence semantics (SemInfo). We introduce a bag-of-substrings model to represent the semantics and apply the probability-weighted information metric to estimate the SemInfo. Additionally, we develop a Tree Conditional Random Field (TreeCRF)-based model to apply the SemInfo maximization objective to Probabilistic Context-Free Grammar (PCFG) induction, the state-of-the-art method for unsupervised constituency parsing. Experiments demonstrate that SemInfo correlates more strongly with parsing accuracy than LL. Our algorithm significantly enhances parsing accuracy by an average of 7.85 points across five PCFG variants and in four languages, achieving new state-of-the-art results in three of the four languages.
Specialized Language Models with Cheap Inference from Limited Domain Data
Large language models have emerged as a versatile tool but are challenging to apply to tasks lacking large inference budgets and large in-domain training sets. This work formalizes these constraints and distinguishes four important variables: the pretraining budget (for training before the target domain is known), the specialization budget (for training after the target domain is known), the inference budget, and the in-domain training set size. Across these settings, we compare different approaches from the machine learning literature. Limited by inference cost, we find better alternatives to the standard practice of training very large vanilla transformer models. In particular, we show that hyper-networks and mixture of experts have better perplexity for large pretraining budgets, while small models trained on importance sampled datasets are attractive for large specialization budgets.
Eliciting Better Multilingual Structured Reasoning from LLMs through Code
The development of large language models (LLM) has shown progress on reasoning, though studies have largely considered either English or simple reasoning tasks. To address this, we introduce a multilingual structured reasoning and explanation dataset, termed xSTREET, that covers four tasks across six languages. xSTREET exposes a gap in base LLM performance between English and non-English reasoning tasks. We then propose two methods to remedy this gap, building on the insight that LLMs trained on code are better reasoners. First, at training time, we augment a code dataset with multilingual comments using machine translation while keeping program code as-is. Second, at inference time, we bridge the gap between training and inference by employing a prompt structure that incorporates step-by-step code primitives to derive new facts and find a solution. Our methods show improved multilingual performance on xSTREET, most notably on the scientific commonsense reasoning subtask. Furthermore, the models show no regression on non-reasoning tasks, thus demonstrating our techniques maintain general-purpose abilities.
