added temp sine wave to test base64 encoding
Browse files- __pycache__/handler.cpython-310.pyc +0 -0
- __pycache__/handler.cpython-311.pyc +0 -0
- handler.py +60 -23
- test.js +0 -0
__pycache__/handler.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/handler.cpython-310.pyc and b/__pycache__/handler.cpython-310.pyc differ
|
|
|
__pycache__/handler.cpython-311.pyc
ADDED
|
Binary file (4.42 kB). View file
|
|
|
handler.py
CHANGED
|
@@ -4,6 +4,43 @@ from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
|
| 4 |
import torch
|
| 5 |
import io
|
| 6 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def create_params(params, fr):
|
| 9 |
# default
|
|
@@ -38,7 +75,7 @@ class EndpointHandler:
|
|
| 38 |
self.model = MusicgenForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16)
|
| 39 |
self.model.to('cuda')
|
| 40 |
|
| 41 |
-
def __call__(self, data: Dict[str, Any]) -> str:
|
| 42 |
"""
|
| 43 |
Args:
|
| 44 |
data (:dict:):
|
|
@@ -47,37 +84,37 @@ class EndpointHandler:
|
|
| 47 |
Returns: wav file in bytes
|
| 48 |
"""
|
| 49 |
|
| 50 |
-
inputs = data.pop("inputs", data)
|
| 51 |
-
params = data.pop("parameters", None)
|
| 52 |
|
| 53 |
-
inputs = self.processor(
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
).to('cuda')
|
| 58 |
|
| 59 |
-
params = create_params(params, self.model.config.audio_encoder.frame_rate)
|
| 60 |
|
| 61 |
-
with torch.cuda.amp.autocast():
|
| 62 |
-
|
| 63 |
|
| 64 |
-
pred = outputs[0, 0].cpu().numpy()
|
| 65 |
-
sr = 32000
|
| 66 |
|
| 67 |
-
try:
|
| 68 |
-
|
| 69 |
|
| 70 |
-
except:
|
| 71 |
-
|
| 72 |
|
| 73 |
-
wav_buffer = io.BytesIO()
|
| 74 |
-
wavfile.write(wav_buffer, rate=sr, data=pred)
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
base64_encoded_wav = base64.b64encode(wav_data).decode('utf-8')
|
| 78 |
|
| 79 |
-
|
| 80 |
-
return base64_encoded_wav
|
| 81 |
|
| 82 |
|
| 83 |
if __name__ == "__main__":
|
|
|
|
| 4 |
import torch
|
| 5 |
import io
|
| 6 |
import base64
|
| 7 |
+
import wave
|
| 8 |
+
import array
|
| 9 |
+
import math
|
| 10 |
+
|
| 11 |
+
def generate_sine_wave(freq, duration, sample_rate, amplitude):
|
| 12 |
+
n_samples = int(sample_rate * duration)
|
| 13 |
+
samples = []
|
| 14 |
+
|
| 15 |
+
for x in range(n_samples):
|
| 16 |
+
value = amplitude * math.sin(2 * math.pi * freq * x / sample_rate)
|
| 17 |
+
samples.append(int(value)) # rounding to the nearest integer
|
| 18 |
+
|
| 19 |
+
return array.array("h", samples) # array of short integers
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def sine_to_base64():
|
| 23 |
+
frequency = 440.0 # Frequency in Hz
|
| 24 |
+
duration = 1.0 # seconds
|
| 25 |
+
volume = 0.5 # 0.0 to 1.0
|
| 26 |
+
sample_rate = 44100
|
| 27 |
+
amplitude = int(volume * 32767) # 16-bit audio
|
| 28 |
+
|
| 29 |
+
sine_wave = generate_sine_wave(frequency, duration, sample_rate, amplitude)
|
| 30 |
+
|
| 31 |
+
wav_buffer = io.BytesIO()
|
| 32 |
+
with wave.open(wav_buffer, "w") as wav_file:
|
| 33 |
+
n_channels = 1
|
| 34 |
+
sampwidth = 2
|
| 35 |
+
n_frames = len(sine_wave)
|
| 36 |
+
comptype = "NONE"
|
| 37 |
+
compname = "not compressed"
|
| 38 |
+
wav_file.setparams((n_channels, sampwidth, int(sample_rate), n_frames, comptype, compname))
|
| 39 |
+
wav_file.writeframes(sine_wave.tobytes())
|
| 40 |
+
|
| 41 |
+
base64_string = base64.b64encode(wav_buffer.getvalue()).decode('utf-8')
|
| 42 |
+
return base64_string
|
| 43 |
+
|
| 44 |
|
| 45 |
def create_params(params, fr):
|
| 46 |
# default
|
|
|
|
| 75 |
self.model = MusicgenForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16)
|
| 76 |
self.model.to('cuda')
|
| 77 |
|
| 78 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, str]]:
|
| 79 |
"""
|
| 80 |
Args:
|
| 81 |
data (:dict:):
|
|
|
|
| 84 |
Returns: wav file in bytes
|
| 85 |
"""
|
| 86 |
|
| 87 |
+
# inputs = data.pop("inputs", data)
|
| 88 |
+
# params = data.pop("parameters", None)
|
| 89 |
|
| 90 |
+
# inputs = self.processor(
|
| 91 |
+
# text=[inputs],
|
| 92 |
+
# padding=True,
|
| 93 |
+
# return_tensors="pt"
|
| 94 |
+
# ).to('cuda')
|
| 95 |
|
| 96 |
+
# params = create_params(params, self.model.config.audio_encoder.frame_rate)
|
| 97 |
|
| 98 |
+
# with torch.cuda.amp.autocast():
|
| 99 |
+
# outputs = self.model.generate(**inputs, **params)
|
| 100 |
|
| 101 |
+
# pred = outputs[0, 0].cpu().numpy()
|
| 102 |
+
# sr = 32000
|
| 103 |
|
| 104 |
+
# try:
|
| 105 |
+
# sr = self.model.config.audio_encoder.sampling_rate
|
| 106 |
|
| 107 |
+
# except:
|
| 108 |
+
# sr = 32000
|
| 109 |
|
| 110 |
+
# wav_buffer = io.BytesIO()
|
| 111 |
+
# wavfile.write(wav_buffer, rate=sr, data=pred)
|
| 112 |
+
# wav_data = wav_buffer.getvalue()
|
| 113 |
|
| 114 |
+
# base64_encoded_wav = base64.b64encode(wav_data).decode('utf-8')
|
|
|
|
| 115 |
|
| 116 |
+
base64_encoded_wav = sine_to_base64()
|
| 117 |
+
return [{"audio": base64_encoded_wav}]
|
| 118 |
|
| 119 |
|
| 120 |
if __name__ == "__main__":
|
test.js
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|