--- library_name: transformers tags: [] --- # Baichuan-M1-14B-Instruct-tokenizer Fast transformers tokenizer for [mlx-community/Baichuan-M1-14B-Instruct-8bit](https://hf.co/mlx-community/Baichuan-M1-14B-Instruct-8bit) Thanks a lot [@Xenova](https://huggingface.co/Xenova) for finding the final fix! 🙌 ## Conversion ```py from tokenization_baichuan import BaichuanTokenizer original = BaichuanTokenizer.from_pretrained(".") from transformers.convert_slow_tokenizer import SpmConverter, LlamaConverter, GemmaConverter, _get_prepend_scheme from tokenizers import decoders, normalizers, pre_tokenizers, processors, Tokenizer, AddedToken from tokenizers.models import BPE class BaichuanConverter(SpmConverter): handle_byte_fallback = True def vocab(self, proto): vocab = [ (self.original_tokenizer.convert_ids_to_tokens(0), 0.0), (self.original_tokenizer.convert_ids_to_tokens(1), 0.0), (self.original_tokenizer.convert_ids_to_tokens(2), 0.0), ] vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] return vocab def unk_id(self, proto): unk_id = 0 return unk_id def decoder(self, replacement, add_prefix_space): sequence = [ decoders.Replace("▁", " "), decoders.ByteFallback(), decoders.Fuse(), ] return decoders.Sequence(sequence) def normalizer(self, proto): return normalizers.Replace(pattern=" ", content="▁") def pre_tokenizer(self, replacement, add_prefix_space): return None def post_processor(self): return None def tokenizer(self, proto): vocab_scores = self.vocab(proto) _, merges = self.SpmExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores) bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)} tokenizer = Tokenizer( BPE( bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=self.handle_byte_fallback, dropout=None, ) ) # control tokens are special # user defined symbols are not # both user and control tokens are AddedTokens # Add user defined symbols (type == 4) from sentencepiece (https://github.com/google/sentencepiece/blob/6225e08edb2577757163b3f5dbba4c0b670ef445/src/sentencepiece_model.proto#L299C29-L299C33) spm_added_tokens = [ (id, p.piece, p.type == 3 or p.piece in self.special_tokens) for id, p in enumerate(proto.pieces) if p.type in [3, 4] ] # Reproduce weird behaviour in original tokenizer # only add tokens that did not originally exist bad_added_tokens = set() for _, token, _ in spm_added_tokens: encoded = self.original_tokenizer.encode(token) if len(encoded) != 1: bad_added_tokens.add(token) tokenizer.add_tokens( [ AddedToken(token, normalized=True, special=special) for id, token, special in sorted(spm_added_tokens, key=lambda x: x[0]) if token not in bad_added_tokens ] ) return tokenizer converter = BaichuanConverter(original) converted = converter.converted() from transformers import PreTrainedTokenizerFast t_fast = PreTrainedTokenizerFast( tokenizer_object=converted, model_input_names=original.model_input_names, model_max_length=32768, clean_up_tokenization_spaces=False, ) test_strings = [ " {\n", " {\n", "x {\n", "----------------------------------------------------------------------------\n", "\n \n", "\n \n", '// -----------------------------------------------------------------------\n', '-----------------------------------------------------------------------\n', ] for test_string in test_strings: print("Original:", original.encode(test_string)) print("Fast: ", t_fast.encode(test_string)) # Testing on xnli from datasets import load_dataset from tqdm import tqdm xnli = load_dataset("xnli", "all_languages", split="validation") def verify(lang, text): encoded_original = original.encode(text) encoded_fast = t_fast.encode(text) assert encoded_fast == encoded_original, f"Fast encode error: {lang} - {text}" decoded = original.decode(encoded_original) decoded_fast = t_fast.decode(encoded_fast, skip_special_tokens=True) assert decoded_fast == decoded, f"Fast decode error: {lang} - {text}" for p in tqdm(xnli["premise"]): for lang, text in p.items(): verify(lang, text) # Testing on codeparrot ds = load_dataset("codeparrot/github-code", streaming=True, trust_remote_code=True, split="train") iterator = iter(ds) for _ in tqdm(range(1000)): item = next(iterator) code = item["code"] lang = item["language"] verify(lang, code) t_fast.push_to_hub("Baichuan-M1-14B-Instruct-tokenizer") ```