File size: 8,727 Bytes
7d1d824
 
 
 
 
 
 
 
 
e2eaa11
7d1d824
 
 
 
 
 
 
e2eaa11
7d1d824
e2eaa11
7d1d824
 
 
 
e2eaa11
7d1d824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2eaa11
 
 
 
 
7d1d824
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import Dataset, DataLoader, random_split
import urllib.request
import os
from transformers import AutoTokenizer, logging
import pandas as pd
from tqdm import tqdm
from safetensors.torch import save_file

logging.set_verbosity_error()
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# ----------------- CONFIG -----------------
SAVE_EVERY = 5
MODEL_NAME = "mini_transformer_v3"
N_DATA_WORKERS = 8
PIN_MEMORY = True if N_DATA_WORKERS > 0 and torch.cuda.is_available() else False
BATCH_SIZE = 512
EVAL_EVERY = 5
LEARNING_RATE = 3e-4
NUM_EPOCHS = 50
USE_AMP = True
STRIDE = 64
CHECKPOINT_DIR = f"MODELS/checkpoints/{MODEL_NAME}"
os.makedirs(CHECKPOINT_DIR, exist_ok=True)
DATASET = "DATA/generated_dataset_very_big.csv"

CONTEXT_LENGTH = 128
EMBEDDING_DIMENSION = 512
HEAD_NUMBER = 4
N_LAYER = 4
# ----------------- MODEL -----------------


# TransformerBlock (from your previous code)
class TransformerBlock(nn.Module):
    def __init__(self, emb_dim, num_heads, context_length, dropout=0.1):
        super().__init__()
        self.ln1 = nn.LayerNorm(emb_dim)
        self.ln2 = nn.LayerNorm(emb_dim)
        self.attn = nn.MultiheadAttention(
            emb_dim, num_heads, dropout=dropout, batch_first=True
        )
        self.mlp = nn.Sequential(
            nn.Linear(emb_dim, 4 * emb_dim),
            nn.GELU(),
            nn.Linear(4 * emb_dim, emb_dim),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        attn_out, _ = self.attn(
            self.ln1(x), self.ln1(x), self.ln1(x), need_weights=False
        )
        x = x + attn_out
        x = x + self.mlp(self.ln2(x))
        return x


class MiniTransformer(nn.Module):
    def __init__(
        self,
        vocab_size,
        emb_dim,
        context_length,
        num_heads,
        num_layers,
        dropout=0.1,
    ):
        super().__init__()
        self.emb = nn.Embedding(vocab_size, emb_dim)
        self.pos_emb = nn.Embedding(context_length, emb_dim)
        self.blocks = nn.Sequential(
            *[
                TransformerBlock(emb_dim, num_heads, context_length, dropout)
                for _ in range(num_layers)
            ]
        )
        self.ln_f = nn.LayerNorm(emb_dim)
        self.head = nn.Linear(emb_dim, vocab_size, bias=False)
        self.context_length = context_length

    def forward(self, x):
        B, T = x.shape
        pos = torch.arange(T, device=x.device)
        x = self.emb(x) + self.pos_emb(pos)
        x = self.blocks(x)
        x = self.ln_f(x)
        logits = self.head(x)
        return logits


# ----------------- DATASET -----------------
class SlidingWindowDataset(Dataset):
    def __init__(self, texts, tokenizer, context_length=128, stride=64):
        self.tokenizer = tokenizer
        self.context_length = context_length
        self.stride = stride

        # Flatten all text into a single long stream of token IDs
        self.tokens = []
        for text in texts:
            ids = tokenizer.encode(text, add_special_tokens=False)
            self.tokens.extend(ids)
        self.tokens = torch.tensor(self.tokens, dtype=torch.long)

        self.n_samples = (len(self.tokens) - context_length) // stride

    def __len__(self):
        return self.n_samples

    def __getitem__(self, idx):
        start = idx * self.stride
        end = start + self.context_length + 1
        chunk = self.tokens[start:end]
        x = chunk[:-1]
        y = chunk[1:]
        return x, y


# as long as we flatten the list of strings into one single piece of text
# and then we divide it into pieces of the same length, by definition we don't need padding.
# we need padding in the case when we have multiple separated sentences in a list,
# and we want to create a batch with them --> than we surely need to padd all the sequences
# to the same length --> max length or context length (with duely truncation if needed)

# example
# we have a batch like this:
# ["ciao", "ciao io sono", "ciao io sono pippo"]
# becomes:
# [101, 2003, 102]
# [101, 2003, 2026, 2070, 102]
# [101, 2003, 2026, 2070, 5274, 102]
# we have to pad to max length
# [101, 2003,  102,    0,   0,    0]
# [101, 2003, 2026, 2070, 102,    0]
# [101, 2003, 2026, 2070, 5274, 102]


# ----------------- DEVICE -----------------
device = torch.device("cuda" if torch.cuda.is_available() else "mps")
print(f"Using device: {device}")
if device.type == "cuda":
    print(torch.cuda.get_device_name(0))
    print(torch.cuda.memory_allocated() / 1024**2, "MB allocated")
    print(torch.cuda.memory_reserved() / 1024**2, "MB reserved")


# ----------------- LOAD DATA -----------------
df = pd.read_csv(DATASET)
texts = [
    f"{row['system_prompt']} {row['question']} {row['answer']}"
    for _, row in df.iterrows()
]

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
vocab_size = tokenizer.vocab_size

dataset = SlidingWindowDataset(texts, tokenizer, CONTEXT_LENGTH, STRIDE)
train_size = int(0.9 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = random_split(dataset, [train_size, test_size])
print(f"dataset train lenght: {len(train_dataset)}")
loader_train = DataLoader(
    train_dataset,
    batch_size=BATCH_SIZE,
    shuffle=True,
    num_workers=N_DATA_WORKERS,
    pin_memory=PIN_MEMORY,
)
loader_test = DataLoader(
    test_dataset,
    batch_size=BATCH_SIZE,
    shuffle=False,
    num_workers=N_DATA_WORKERS,
    pin_memory=PIN_MEMORY,
)


# ----------------- TRAINING SETUP -----------------

model = MiniTransformer(
    vocab_size=vocab_size,
    emb_dim=EMBEDDING_DIMENSION,
    context_length=CONTEXT_LENGTH,
    num_heads=HEAD_NUMBER,
    num_layers=N_LAYER,
).to(device)

n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"number of parameters: {n_params}")
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
scaler = torch.amp.GradScaler(enabled=USE_AMP and device.type == "cuda")
criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_token_id)


# ----------------- CHECKPOINT RESUME -----------------
checkpoint_files = sorted([f for f in os.listdir(CHECKPOINT_DIR) if f.endswith(".pt")])
if checkpoint_files:
    latest_ckpt = os.path.join(CHECKPOINT_DIR, checkpoint_files[-1])
    ckpt = torch.load(latest_ckpt, map_location=device)
    model.load_state_dict(ckpt["model_state"])
    optimizer.load_state_dict(ckpt["optimizer_state"])
    start_epoch = ckpt["epoch"] + 1
    print(f"Resumed from {latest_ckpt}")
else:
    start_epoch = 0

model = torch.compile(model)

# ----------------- TRAINING LOOP -----------------
for epoch in range(start_epoch, NUM_EPOCHS):
    model.train()
    total_loss = 0

    for x, y in tqdm(loader_train, desc=f"Epoch {epoch+1}/{NUM_EPOCHS}"):
        x, y = x.to(device, non_blocking=True), y.to(device, non_blocking=True)
        optimizer.zero_grad()

        with torch.amp.autocast(
            "cuda", dtype=torch.float16, enabled=USE_AMP and device.type == "cuda"
        ):
            logits = model(x)
            loss = criterion(logits.view(-1, vocab_size), y.view(-1))

        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()

        total_loss += loss.item() * x.size(0)

    avg_train_loss = total_loss / len(train_dataset)
    print(f"Train Loss: {avg_train_loss:.4f}")

    # --- Evaluation ---
    if (epoch + 1) % EVAL_EVERY == 0:
        model.eval()
        total_loss = 0
        with torch.no_grad():
            for x, y in loader_test:
                x, y = x.to(device), y.to(device)
                with torch.amp.autocast(
                    "cuda",
                    dtype=torch.float16,
                    enabled=USE_AMP and device.type == "cuda",
                ):
                    logits = model(x)
                    loss = criterion(logits.view(-1, vocab_size), y.view(-1))
                total_loss += loss.item() * x.size(0)
        avg_test_loss = total_loss / len(test_dataset)
        print(f"Test Loss: {avg_test_loss:.4f}")

    # --- Save checkpoint ---
    if SAVE_EVERY > 0 and (epoch + 1) % SAVE_EVERY == 0:
        torch.save(
            {
                "epoch": epoch,
                "model_state": model.state_dict(),
                "optimizer_state": optimizer.state_dict(),
                "scaler_state": scaler.state_dict(),
            },
            os.path.join(CHECKPOINT_DIR, f"checkpoint_{MODEL_NAME}_epoch_{epoch+1}.pt"),
        )
        save_file(
            model.state_dict(),
            os.path.join(CHECKPOINT_DIR, f"model_{epoch+1}.safetensors"),
        )


# check GPU utilization metrics here:
# nvidia-smi dmon -s u