Commit
·
8e15984
1
Parent(s):
74be049
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,41 +1,120 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: mit
|
| 3 |
tags:
|
|
|
|
|
|
|
| 4 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
metrics:
|
| 6 |
- precision
|
| 7 |
- recall
|
| 8 |
- f1
|
| 9 |
- accuracy
|
| 10 |
model-index:
|
| 11 |
-
- name: lilt-xlm-roberta-base-finetuned-DocLayNet-
|
| 12 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
---
|
| 14 |
|
| 15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 16 |
should probably proofread and complete it, then remove this comment. -->
|
| 17 |
|
| 18 |
-
#
|
| 19 |
|
| 20 |
-
This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base)
|
| 21 |
It achieves the following results on the evaluation set:
|
|
|
|
| 22 |
- Loss: 0.4104
|
| 23 |
- Precision: 0.8634
|
| 24 |
- Recall: 0.8634
|
| 25 |
- F1: 0.8634
|
| 26 |
- Accuracy: 0.8634
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
## Model description
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
##
|
| 33 |
|
| 34 |
-
|
| 35 |
|
| 36 |
## Training and evaluation data
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
## Training procedure
|
| 41 |
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- multilingual
|
| 4 |
+
- en
|
| 5 |
+
- de
|
| 6 |
+
- fr
|
| 7 |
+
- ja
|
| 8 |
license: mit
|
| 9 |
tags:
|
| 10 |
+
- object-detection
|
| 11 |
+
- vision
|
| 12 |
- generated_from_trainer
|
| 13 |
+
- DocLayNet
|
| 14 |
+
- COCO
|
| 15 |
+
- PDF
|
| 16 |
+
- IBM
|
| 17 |
+
- Financial-Reports
|
| 18 |
+
- Finance
|
| 19 |
+
- Manuals
|
| 20 |
+
- Scientific-Articles
|
| 21 |
+
- Science
|
| 22 |
+
- Laws
|
| 23 |
+
- Law
|
| 24 |
+
- Regulations
|
| 25 |
+
- Patents
|
| 26 |
+
- Government-Tenders
|
| 27 |
+
- object-detection
|
| 28 |
+
- image-segmentation
|
| 29 |
+
- token-classification
|
| 30 |
+
datasets:
|
| 31 |
+
- pierreguillou/DocLayNet-base
|
| 32 |
metrics:
|
| 33 |
- precision
|
| 34 |
- recall
|
| 35 |
- f1
|
| 36 |
- accuracy
|
| 37 |
model-index:
|
| 38 |
+
- name: lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512
|
| 39 |
+
results:
|
| 40 |
+
- task:
|
| 41 |
+
name: Token Classification
|
| 42 |
+
type: token-classification
|
| 43 |
+
metrics:
|
| 44 |
+
- name: f1
|
| 45 |
+
type: f1
|
| 46 |
+
value: 0.8634
|
| 47 |
---
|
| 48 |
|
| 49 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 50 |
should probably proofread and complete it, then remove this comment. -->
|
| 51 |
|
| 52 |
+
# Document Understanding model (at paragraph level)
|
| 53 |
|
| 54 |
+
This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base) with the [DocLayNet base](https://huggingface.co/datasets/pierreguillou/DocLayNet-base) dataset.
|
| 55 |
It achieves the following results on the evaluation set:
|
| 56 |
+
|
| 57 |
- Loss: 0.4104
|
| 58 |
- Precision: 0.8634
|
| 59 |
- Recall: 0.8634
|
| 60 |
- F1: 0.8634
|
| 61 |
- Accuracy: 0.8634
|
| 62 |
|
| 63 |
+
## References
|
| 64 |
+
|
| 65 |
+
### Blog posts
|
| 66 |
+
|
| 67 |
+
- (02/16/2023) [Document AI | Inference APP and fine-tuning notebook for Document Understanding at paragraph level](https://medium.com/@pierre_guillou/document-ai-inference-app-and-fine-tuning-notebook-for-document-understanding-at-paragraph-level-c18d16e53cf8)
|
| 68 |
+
- (02/14/2023) [Document AI | Inference APP for Document Understanding at line level](https://medium.com/@pierre_guillou/document-ai-inference-app-for-document-understanding-at-line-level-a35bbfa98893)
|
| 69 |
+
- (02/10/2023) [Document AI | Document Understanding model at line level with LiLT, Tesseract and DocLayNet dataset](https://medium.com/@pierre_guillou/document-ai-document-understanding-model-at-line-level-with-lilt-tesseract-and-doclaynet-dataset-347107a643b8)
|
| 70 |
+
- (01/31/2023) [Document AI | DocLayNet image viewer APP](https://medium.com/@pierre_guillou/document-ai-doclaynet-image-viewer-app-3ac54c19956)
|
| 71 |
+
- (01/27/2023) [Document AI | Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)](https://medium.com/@pierre_guillou/document-ai-processing-of-doclaynet-dataset-to-be-used-by-layout-models-of-the-hugging-face-hub-308d8bd81cdb)
|
| 72 |
+
|
| 73 |
+
### Notebooks (paragraph level)
|
| 74 |
+
|
| 75 |
+
- [Document AI | Inference APP at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levelparagraphs_ml512.ipynb)
|
| 76 |
+
- [Document AI | Inference at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levelparagraphs_ml512.ipynb)
|
| 77 |
+
- [Document AI | Fine-tune LiLT on DocLayNet base in any language at paragraph level (chunk of 512 tokens with overlap)](https://github.com/piegu/language-models/blob/master/Fine_tune_LiLT_on_DocLayNet_base_in_any_language_at_paragraphlevel_ml_512.ipynb)
|
| 78 |
+
|
| 79 |
+
### Notebooks (line level)
|
| 80 |
+
|
| 81 |
+
- [Document AI | Inference at line level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
|
| 82 |
+
- [Document AI | Inference APP at line level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
|
| 83 |
+
- [Document AI | Fine-tune LiLT on DocLayNet base in any language at line level (chunk of 384 tokens with overlap)](https://github.com/piegu/language-models/blob/master/Fine_tune_LiLT_on_DocLayNet_base_in_any_language_at_linelevel_ml_384.ipynb)
|
| 84 |
+
- [DocLayNet image viewer APP](https://github.com/piegu/language-models/blob/master/DocLayNet_image_viewer_APP.ipynb)
|
| 85 |
+
- [Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)](processing_DocLayNet_dataset_to_be_used_by_layout_models_of_HF_hub.ipynb)
|
| 86 |
+
|
| 87 |
+
## APP
|
| 88 |
+
|
| 89 |
+
You can test this model with this APP in Hugging Face Spaces: [Inference APP for Document Understanding at paragraph level (v1)](https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-paragraphlevel-v1).
|
| 90 |
+
|
| 91 |
+

|
| 92 |
+
|
| 93 |
+
You can run as well the corresponding notebook: [Document AI | Inference APP at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levelparagraphs_ml512.ipynb)
|
| 94 |
+
|
| 95 |
+
## DocLayNet dataset
|
| 96 |
+
|
| 97 |
+
[DocLayNet dataset](https://github.com/DS4SD/DocLayNet) (IBM) provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories.
|
| 98 |
+
|
| 99 |
+
Until today, the dataset can be downloaded through direct links or as a dataset from Hugging Face datasets:
|
| 100 |
+
- direct links: [doclaynet_core.zip](https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_core.zip) (28 GiB), [doclaynet_extra.zip](https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_extra.zip) (7.5 GiB)
|
| 101 |
+
- Hugging Face dataset library: [dataset DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet)
|
| 102 |
+
|
| 103 |
+
Paper: [DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis](https://arxiv.org/abs/2206.01062) (06/02/2022)
|
| 104 |
+
|
| 105 |
## Model description
|
| 106 |
|
| 107 |
+
The model was finetuned at **paragraph level on chunk of 512 tokens with overlap of 128 tokens**. Thus, the model was trained with all layout and text data of all pages of the dataset.
|
| 108 |
+
|
| 109 |
+
At inference time, a calculation of best probabilities give the label to each paragraph bounding boxes.
|
| 110 |
|
| 111 |
+
## Inference
|
| 112 |
|
| 113 |
+
See notebook: [Document AI | Inference at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levelparagraphs_ml512.ipynb)
|
| 114 |
|
| 115 |
## Training and evaluation data
|
| 116 |
|
| 117 |
+
See notebook: [Document AI | Fine-tune LiLT on DocLayNet base in any language at paragraph level (chunk of 512 tokens with overlap)](https://github.com/piegu/language-models/blob/master/Fine_tune_LiLT_on_DocLayNet_base_in_any_language_at_paragraphlevel_ml_512.ipynb)
|
| 118 |
|
| 119 |
## Training procedure
|
| 120 |
|