---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:124788
- loss:GISTEmbedLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: 其他机械、设备和有形货物租赁服务代表
sentences:
- 其他机械和设备租赁服务工作人员
- 电子和电信设备及零部件物流经理
- 工业主厨
- source_sentence: 公交车司机
sentences:
- 表演灯光设计师
- 乙烯基地板安装工
- 国际巴士司机
- source_sentence: online communication manager
sentences:
- trades union official
- social media manager
- budget manager
- source_sentence: Projektmanagerin
sentences:
- Projektmanager/Projektmanagerin
- Category-Manager
- Infanterist
- source_sentence: Volksvertreter
sentences:
- Parlamentarier
- Oberbürgermeister
- Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full en
type: full_en
metrics:
- type: cosine_accuracy@1
value: 0.6571428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9904761904761905
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9904761904761905
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9904761904761905
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9904761904761905
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9904761904761905
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6571428571428571
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5057142857142858
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.3085714285714286
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.18685714285714286
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.13263492063492063
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.10261904761904762
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.0680237860830842
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.539814746481506
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7281788406466259
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8369695734692713
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8797734908498225
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9040821090543185
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6571428571428571
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6871892352981543
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7057435134474674
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7611594394123498
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7798336860589586
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7894131768304745
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6571428571428571
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8095238095238095
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8095238095238095
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8095238095238095
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8095238095238095
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8095238095238095
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6571428571428571
name: Cosine Map@1
- type: cosine_map@20
value: 0.5458017299619246
name: Cosine Map@20
- type: cosine_map@50
value: 0.5350568967293148
name: Cosine Map@50
- type: cosine_map@100
value: 0.5681338314009312
name: Cosine Map@100
- type: cosine_map@150
value: 0.5758337072896192
name: Cosine Map@150
- type: cosine_map@200
value: 0.5788774324789392
name: Cosine Map@200
- type: cosine_map@500
value: 0.5832951333498196
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full es
type: full_es
metrics:
- type: cosine_accuracy@1
value: 0.12432432432432433
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1.0
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1.0
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1.0
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1.0
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1.0
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.12432432432432433
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.49054054054054047
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.3163243243243243
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.19794594594594597
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.1476036036036036
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.11764864864864866
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.003111544931768446
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.3226281360780687
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.460233186838451
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.541868009988165
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.5852603494024129
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.6129186722388266
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.12432432432432433
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.539216162208845
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.4996835226060237
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5137905428062277
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5360687473286022
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5499397431446335
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.12432432432432433
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.54987987987988
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.54987987987988
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.54987987987988
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.54987987987988
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.54987987987988
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.12432432432432433
name: Cosine Map@1
- type: cosine_map@20
value: 0.4038320848933988
name: Cosine Map@20
- type: cosine_map@50
value: 0.34180322548979025
name: Cosine Map@50
- type: cosine_map@100
value: 0.33919520921684143
name: Cosine Map@100
- type: cosine_map@150
value: 0.34836248453935964
name: Cosine Map@150
- type: cosine_map@200
value: 0.3534621616433109
name: Cosine Map@200
- type: cosine_map@500
value: 0.36317607366795296
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full de
type: full_de
metrics:
- type: cosine_accuracy@1
value: 0.2955665024630542
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9211822660098522
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9655172413793104
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9753694581280788
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9852216748768473
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9852216748768473
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.2955665024630542
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.4273399014778325
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.2806896551724138
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.17970443349753695
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.13536945812807882
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.11017241379310345
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.01108543831680986
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.2624274710898933
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.3816838951440551
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.466648189283344
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.5156350937800631
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.5501200676805387
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.2955665024630542
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.4612630794197783
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.4218308857158181
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.43630012299200127
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.4611671590034933
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.47859447889613466
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.2955665024630542
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.4902263308667246
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.49157690165668283
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.491727421634789
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.49180457899033725
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.49180457899033725
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.2955665024630542
name: Cosine Map@1
- type: cosine_map@20
value: 0.32403320158333687
name: Cosine Map@20
- type: cosine_map@50
value: 0.263929499089501
name: Cosine Map@50
- type: cosine_map@100
value: 0.2571656148623807
name: Cosine Map@100
- type: cosine_map@150
value: 0.2662223711722934
name: Cosine Map@150
- type: cosine_map@200
value: 0.2716128199441605
name: Cosine Map@200
- type: cosine_map@500
value: 0.2826472699200774
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full zh
type: full_zh
metrics:
- type: cosine_accuracy@1
value: 0.30097087378640774
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.6990291262135923
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.8446601941747572
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.883495145631068
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.941747572815534
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.941747572815534
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.30097087378640774
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.16504854368932043
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.0932038834951456
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.05825242718446601
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.04601941747572816
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.038834951456310676
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.02386287516726942
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.1765726567124355
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.23652817418030478
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.2843496525793469
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.3277225727000478
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.3596812771438104
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.30097087378640774
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.23858136398044388
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.23394297561992747
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.25614039865630267
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.2739893276218014
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.2869614126642384
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.30097087378640774
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.4190465134339312
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.4240176433261117
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.4245497320288698
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.4250484654944024
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.4250484654944024
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.30097087378640774
name: Cosine Map@1
- type: cosine_map@20
value: 0.1429307444790631
name: Cosine Map@20
- type: cosine_map@50
value: 0.12440485302105762
name: Cosine Map@50
- type: cosine_map@100
value: 0.12975707309312245
name: Cosine Map@100
- type: cosine_map@150
value: 0.1324151603536725
name: Cosine Map@150
- type: cosine_map@200
value: 0.13400586423473068
name: Cosine Map@200
- type: cosine_map@500
value: 0.13792557615284717
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix es
type: mix_es
metrics:
- type: cosine_accuracy@1
value: 0.40561622464898595
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.7555902236089443
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.8465938637545501
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9053562142485699
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9391575663026521
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9521580863234529
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.40561622464898595
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.08801352054082164
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.0414560582423297
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.02274050962038482
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.01580863234529381
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.012181487259490382
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.15422578807914222
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.6504234455092489
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7645209617908526
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8407386771661344
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8772614714112373
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9011477601961221
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.40561622464898595
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5052527283785204
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5363668402911114
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5529351239282845
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5600105253735999
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5643581500059056
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.40561622464898595
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.49193080862589195
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.49497073018920573
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.4958131715411002
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.4960911044064609
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.49616673564150066
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.40561622464898595
name: Cosine Map@1
- type: cosine_map@20
value: 0.42113760176243775
name: Cosine Map@20
- type: cosine_map@50
value: 0.4288029559186059
name: Cosine Map@50
- type: cosine_map@100
value: 0.4309354633228117
name: Cosine Map@100
- type: cosine_map@150
value: 0.43151233276792966
name: Cosine Map@150
- type: cosine_map@200
value: 0.4318026647046382
name: Cosine Map@200
- type: cosine_map@500
value: 0.4322791851958394
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix de
type: mix_de
metrics:
- type: cosine_accuracy@1
value: 0.28965158606344255
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.6453458138325533
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.7514300572022881
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.8424336973478939
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.8840353614144566
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9131565262610505
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.28965158606344255
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.07230889235569424
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.035559022360894435
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.02045241809672387
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.014543248396602529
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.011443057722308895
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.10873634945397814
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5285491419656786
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.6476772404229503
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.7456058242329694
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.7947564569249437
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.8333680013867221
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.28965158606344255
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.3869439859976832
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.419340853881164
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.4408718349726106
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.4505012036387736
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.4575667024678089
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.28965158606344255
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.37323361269727506
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.37671986743715985
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.37799876590389947
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.3783355727887503
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.37850251063580587
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.28965158606344255
name: Cosine Map@1
- type: cosine_map@20
value: 0.3048226727334811
name: Cosine Map@20
- type: cosine_map@50
value: 0.3123006074016708
name: Cosine Map@50
- type: cosine_map@100
value: 0.3150058759399239
name: Cosine Map@100
- type: cosine_map@150
value: 0.31578258870027714
name: Cosine Map@150
- type: cosine_map@200
value: 0.31623339353875296
name: Cosine Map@200
- type: cosine_map@500
value: 0.3169966358324732
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix zh
type: mix_zh
metrics:
- type: cosine_accuracy@1
value: 0.09551148225469729
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.34812108559498955
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.4932150313152401
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.5970772442588727
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.6623173277661796
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.7035490605427975
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.09551148225469729
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.030480167014613778
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.018402922755741128
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.01144572025052192
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.00861864996520529
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.0070720250521920675
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.03220250521920668
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.20316259071478276
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.3040399145044239
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.37823300858269543
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.4274327302250057
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.467568429598701
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.09551148225469729
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.13449413074843178
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.16281375869650408
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.1798079117342116
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.18976873702750593
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.19737879358914515
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.09551148225469729
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.148796848074501
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.15342712486814447
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.15489924735195337
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.15543781318663716
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.15567492413016254
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.09551148225469729
name: Cosine Map@1
- type: cosine_map@20
value: 0.08472355170504958
name: Cosine Map@20
- type: cosine_map@50
value: 0.09038650929811239
name: Cosine Map@50
- type: cosine_map@100
value: 0.0922515804329945
name: Cosine Map@100
- type: cosine_map@150
value: 0.09296251507722719
name: Cosine Map@150
- type: cosine_map@200
value: 0.09340391507908284
name: Cosine Map@200
- type: cosine_map@500
value: 0.09434895514443004
name: Cosine Map@500
---
# SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- full_en
- full_de
- full_es
- full_zh
- mix
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
* Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|:---------------------|:-----------|:-----------|:-----------|:----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.699 | 0.7556 | 0.6453 | 0.3481 |
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8447 | 0.8466 | 0.7514 | 0.4932 |
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8835 | 0.9054 | 0.8424 | 0.5971 |
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9392 | 0.884 | 0.6623 |
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9522 | 0.9132 | 0.7035 |
| cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
| cosine_precision@20 | 0.5057 | 0.4905 | 0.4273 | 0.165 | 0.088 | 0.0723 | 0.0305 |
| cosine_precision@50 | 0.3086 | 0.3163 | 0.2807 | 0.0932 | 0.0415 | 0.0356 | 0.0184 |
| cosine_precision@100 | 0.1869 | 0.1979 | 0.1797 | 0.0583 | 0.0227 | 0.0205 | 0.0114 |
| cosine_precision@150 | 0.1326 | 0.1476 | 0.1354 | 0.046 | 0.0158 | 0.0145 | 0.0086 |
| cosine_precision@200 | 0.1026 | 0.1176 | 0.1102 | 0.0388 | 0.0122 | 0.0114 | 0.0071 |
| cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0239 | 0.1542 | 0.1087 | 0.0322 |
| cosine_recall@20 | 0.5398 | 0.3226 | 0.2624 | 0.1766 | 0.6504 | 0.5285 | 0.2032 |
| cosine_recall@50 | 0.7282 | 0.4602 | 0.3817 | 0.2365 | 0.7645 | 0.6477 | 0.304 |
| cosine_recall@100 | 0.837 | 0.5419 | 0.4666 | 0.2843 | 0.8407 | 0.7456 | 0.3782 |
| cosine_recall@150 | 0.8798 | 0.5853 | 0.5156 | 0.3277 | 0.8773 | 0.7948 | 0.4274 |
| cosine_recall@200 | 0.9041 | 0.6129 | 0.5501 | 0.3597 | 0.9011 | 0.8334 | 0.4676 |
| cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
| cosine_ndcg@20 | 0.6872 | 0.5392 | 0.4613 | 0.2386 | 0.5053 | 0.3869 | 0.1345 |
| cosine_ndcg@50 | 0.7057 | 0.4997 | 0.4218 | 0.2339 | 0.5364 | 0.4193 | 0.1628 |
| cosine_ndcg@100 | 0.7612 | 0.5138 | 0.4363 | 0.2561 | 0.5529 | 0.4409 | 0.1798 |
| cosine_ndcg@150 | 0.7798 | 0.5361 | 0.4612 | 0.274 | 0.56 | 0.4505 | 0.1898 |
| **cosine_ndcg@200** | **0.7894** | **0.5499** | **0.4786** | **0.287** | **0.5644** | **0.4576** | **0.1974** |
| cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
| cosine_mrr@20 | 0.8095 | 0.5499 | 0.4902 | 0.419 | 0.4919 | 0.3732 | 0.1488 |
| cosine_mrr@50 | 0.8095 | 0.5499 | 0.4916 | 0.424 | 0.495 | 0.3767 | 0.1534 |
| cosine_mrr@100 | 0.8095 | 0.5499 | 0.4917 | 0.4245 | 0.4958 | 0.378 | 0.1549 |
| cosine_mrr@150 | 0.8095 | 0.5499 | 0.4918 | 0.425 | 0.4961 | 0.3783 | 0.1554 |
| cosine_mrr@200 | 0.8095 | 0.5499 | 0.4918 | 0.425 | 0.4962 | 0.3785 | 0.1557 |
| cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4056 | 0.2897 | 0.0955 |
| cosine_map@20 | 0.5458 | 0.4038 | 0.324 | 0.1429 | 0.4211 | 0.3048 | 0.0847 |
| cosine_map@50 | 0.5351 | 0.3418 | 0.2639 | 0.1244 | 0.4288 | 0.3123 | 0.0904 |
| cosine_map@100 | 0.5681 | 0.3392 | 0.2572 | 0.1298 | 0.4309 | 0.315 | 0.0923 |
| cosine_map@150 | 0.5758 | 0.3484 | 0.2662 | 0.1324 | 0.4315 | 0.3158 | 0.093 |
| cosine_map@200 | 0.5789 | 0.3535 | 0.2716 | 0.134 | 0.4318 | 0.3162 | 0.0934 |
| cosine_map@500 | 0.5833 | 0.3632 | 0.2826 | 0.1379 | 0.4323 | 0.317 | 0.0943 |
## Training Details
### Training Datasets
full_en
#### full_en
* Dataset: full_en
* Size: 28,880 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 5.0 tokens
- max: 10 tokens
| - min: 3 tokens
- mean: 5.01 tokens
- max: 13 tokens
|
* Samples:
| anchor | positive |
|:-----------------------------------------|:-----------------------------------------|
| air commodore | flight lieutenant |
| command and control officer | flight officer |
| air commodore | command and control officer |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_de
#### full_de
* Dataset: full_de
* Size: 23,023 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 11.05 tokens
- max: 45 tokens
| - min: 3 tokens
- mean: 11.43 tokens
- max: 45 tokens
|
* Samples:
| anchor | positive |
|:----------------------------------|:-----------------------------------------------------|
| Staffelkommandantin | Kommodore |
| Luftwaffenoffizierin | Luftwaffenoffizier/Luftwaffenoffizierin |
| Staffelkommandantin | Luftwaffenoffizierin |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_es
#### full_es
* Dataset: full_es
* Size: 20,724 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 12.95 tokens
- max: 50 tokens
| - min: 3 tokens
- mean: 12.57 tokens
- max: 50 tokens
|
* Samples:
| anchor | positive |
|:------------------------------------|:-------------------------------------------|
| jefe de escuadrón | instructor |
| comandante de aeronave | instructor de simulador |
| instructor | oficial del Ejército del Aire |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_zh
#### full_zh
* Dataset: full_zh
* Size: 30,401 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 4 tokens
- mean: 8.36 tokens
- max: 20 tokens
| - min: 4 tokens
- mean: 8.95 tokens
- max: 27 tokens
|
* Samples:
| anchor | positive |
|:------------------|:---------------------|
| 技术总监 | 技术和运营总监 |
| 技术总监 | 技术主管 |
| 技术总监 | 技术艺术总监 |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
mix
#### mix
* Dataset: mix
* Size: 21,760 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 2 tokens
- mean: 5.65 tokens
- max: 14 tokens
| - min: 2 tokens
- mean: 10.08 tokens
- max: 30 tokens
|
* Samples:
| anchor | positive |
|:------------------------------------------|:----------------------------------------------------------------|
| technical manager | Technischer Direktor für Bühne, Film und Fernsehen |
| head of technical | directora técnica |
| head of technical department | 技术艺术总监 |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 5
- `warmup_ratio`: 0.05
- `log_on_each_node`: False
- `fp16`: True
- `dataloader_num_workers`: 4
- `ddp_find_unused_parameters`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: False
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: True
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
### Training Logs
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
| -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
| 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
| 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
| 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
| 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
| 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
| 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
| 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
| 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
| 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
| 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
| 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
| 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
| 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
| 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
| 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
| 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
| 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
| 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
| 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
| 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - |
| 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```