---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:124788
- loss:GISTEmbedLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: 其他机械、设备和有形货物租赁服务代表
sentences:
- 其他机械和设备租赁服务工作人员
- 电子和电信设备及零部件物流经理
- 工业主厨
- source_sentence: 公交车司机
sentences:
- 表演灯光设计师
- 乙烯基地板安装工
- 国际巴士司机
- source_sentence: online communication manager
sentences:
- trades union official
- social media manager
- budget manager
- source_sentence: Projektmanagerin
sentences:
- Projektmanager/Projektmanagerin
- Category-Manager
- Infanterist
- source_sentence: Volksvertreter
sentences:
- Parlamentarier
- Oberbürgermeister
- Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full en
type: full_en
metrics:
- type: cosine_accuracy@1
value: 0.6571428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9904761904761905
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9904761904761905
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9904761904761905
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9904761904761905
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9904761904761905
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6571428571428571
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5047619047619047
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.30857142857142855
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.18666666666666668
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.13269841269841268
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.1029047619047619
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.0680237860830842
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.539060339827615
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7269844521994231
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8337131628681403
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.879935375805825
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9050529457831012
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6571428571428571
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.686462471196106
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7052824081502371
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7601614355798527
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7798476891938094
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7898871141566125
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6571428571428571
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8095238095238095
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8095238095238095
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8095238095238095
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8095238095238095
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8095238095238095
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6571428571428571
name: Cosine Map@1
- type: cosine_map@20
value: 0.5451065538458748
name: Cosine Map@20
- type: cosine_map@50
value: 0.5347802076206865
name: Cosine Map@50
- type: cosine_map@100
value: 0.567702602098158
name: Cosine Map@100
- type: cosine_map@150
value: 0.5756725358487015
name: Cosine Map@150
- type: cosine_map@200
value: 0.5789669196636947
name: Cosine Map@200
- type: cosine_map@500
value: 0.5832808543489026
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full es
type: full_es
metrics:
- type: cosine_accuracy@1
value: 0.11351351351351352
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1.0
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1.0
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1.0
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1.0
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1.0
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.11351351351351352
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.4913513513513514
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.316972972972973
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.19843243243243244
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.146990990990991
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.11778378378378378
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.002992884071419607
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.32341666838263944
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.4630260221149236
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.5419804526017848
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.5826718468403144
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.6149262657286421
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.11351351351351352
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5389058089458943
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5002442028172164
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5138591255215345
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5346372349516221
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5502474315848075
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.11351351351351352
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5444744744744745
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5444744744744745
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5444744744744745
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5444744744744745
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5444744744744745
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.11351351351351352
name: Cosine Map@1
- type: cosine_map@20
value: 0.40352984921129137
name: Cosine Map@20
- type: cosine_map@50
value: 0.3418539578142162
name: Cosine Map@50
- type: cosine_map@100
value: 0.339373689987275
name: Cosine Map@100
- type: cosine_map@150
value: 0.3478760829213016
name: Cosine Map@150
- type: cosine_map@200
value: 0.3533435915341769
name: Cosine Map@200
- type: cosine_map@500
value: 0.363222785830563
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full de
type: full_de
metrics:
- type: cosine_accuracy@1
value: 0.2955665024630542
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9211822660098522
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9655172413793104
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9753694581280788
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9852216748768473
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9852216748768473
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.2955665024630542
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.424384236453202
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.28167487684729065
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.17995073891625615
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.13589490968801315
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.1108128078817734
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.01108543831680986
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.2600945586038909
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.3844030994839744
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.4672649807153451
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.5171228717670064
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.5533299912627624
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.2955665024630542
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.4593107411252075
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.42313178566078624
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.4367043857530601
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.4621847371016286
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.48019099347834654
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.2955665024630542
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.4892678749821603
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.49065090899064223
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.49080251743966435
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.4908799208299932
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.4908799208299932
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.2955665024630542
name: Cosine Map@1
- type: cosine_map@20
value: 0.3228620941051522
name: Cosine Map@20
- type: cosine_map@50
value: 0.2644260812747752
name: Cosine Map@50
- type: cosine_map@100
value: 0.2576011230547815
name: Cosine Map@100
- type: cosine_map@150
value: 0.2666548881846307
name: Cosine Map@150
- type: cosine_map@200
value: 0.27224102651692533
name: Cosine Map@200
- type: cosine_map@500
value: 0.28312561300678324
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full zh
type: full_zh
metrics:
- type: cosine_accuracy@1
value: 0.3300970873786408
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.7184466019417476
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.8155339805825242
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.8932038834951457
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9223300970873787
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9320388349514563
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.3300970873786408
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.16796116504854372
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.09262135922330093
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.05815533980582525
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.04563106796116505
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.03771844660194174
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.02573649124630195
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.17402459309945448
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.23816219248808224
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.28291725637657983
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.32619122038725784
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.3543394793587958
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.3300970873786408
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.23956118764265208
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.2341910409667355
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.2559822552765659
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.27344655996496936
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.28432223965649855
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.3300970873786408
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.43064643766798927
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.43374387043765733
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.4348781442268605
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.4351279925655956
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.4351822313246128
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.3300970873786408
name: Cosine Map@1
- type: cosine_map@20
value: 0.14301006319225865
name: Cosine Map@20
- type: cosine_map@50
value: 0.12425793473074002
name: Cosine Map@50
- type: cosine_map@100
value: 0.12962575663735706
name: Cosine Map@100
- type: cosine_map@150
value: 0.13242860022521366
name: Cosine Map@150
- type: cosine_map@200
value: 0.13374255185989983
name: Cosine Map@200
- type: cosine_map@500
value: 0.13779434547799502
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix es
type: mix_es
metrics:
- type: cosine_accuracy@1
value: 0.40977639105564223
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.7618304732189287
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.8512740509620385
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9105564222568903
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9381175247009881
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9542381695267811
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.40977639105564223
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.0890015600624025
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.04168486739469579
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.022854914196567863
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.01585370081469925
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.012220488819552783
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.15567317930812472
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.6574783943738703
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7691404799049105
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8454015303469281
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8795148948815096
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9035051878265606
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.40977639105564223
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5094055696124096
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5398029704628499
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5563939454831869
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5630335952477792
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5674217099859529
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.40977639105564223
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.4963374711503733
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.49930745416180927
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5001571935146001
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5003842041203103
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5004783417497985
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.40977639105564223
name: Cosine Map@1
- type: cosine_map@20
value: 0.4236549905504724
name: Cosine Map@20
- type: cosine_map@50
value: 0.4311498037279026
name: Cosine Map@50
- type: cosine_map@100
value: 0.43327838927965695
name: Cosine Map@100
- type: cosine_map@150
value: 0.4338451382952763
name: Cosine Map@150
- type: cosine_map@200
value: 0.4341307997461715
name: Cosine Map@200
- type: cosine_map@500
value: 0.4345995592976099
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix de
type: mix_de
metrics:
- type: cosine_accuracy@1
value: 0.2912116484659386
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.6526261050442018
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.7550702028081123
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.8460738429537181
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.8876755070202809
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9173166926677067
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.2912116484659386
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.07308892355694228
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.03583983359334374
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.02058242329693188
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.014609117698041255
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.011515860634425378
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.10977639105564223
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5342520367481365
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.6529207834980065
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.7505633558675681
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.7989166233315999
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.8393482405962905
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.2912116484659386
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.39027078330836906
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.4224011615840446
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.4438393956774872
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.45327900259303716
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.4606831999024183
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.2912116484659386
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.37544207546115405
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.37870409367323543
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.37999194359776256
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.3803335431113417
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.3805079454038972
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.2912116484659386
name: Cosine Map@1
- type: cosine_map@20
value: 0.3075927383942124
name: Cosine Map@20
- type: cosine_map@50
value: 0.31502827814698436
name: Cosine Map@50
- type: cosine_map@100
value: 0.31767149302992986
name: Cosine Map@100
- type: cosine_map@150
value: 0.31842095656425334
name: Cosine Map@150
- type: cosine_map@200
value: 0.3189017921904424
name: Cosine Map@200
- type: cosine_map@500
value: 0.31963709557315734
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix zh
type: mix_zh
metrics:
- type: cosine_accuracy@1
value: 0.09498956158663883
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.35281837160751567
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.48851774530271397
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.5960334029227558
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.657098121085595
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.7025052192066806
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.09498956158663883
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.03102818371607516
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.018528183716075158
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.011550104384133612
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.008601252609603338
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.007074634655532359
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.03218510786360473
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.20682473406899293
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.30616239188786165
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.38175970109686186
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.4266063558339132
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.4677598005103224
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.09498956158663883
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.13726194438538974
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.16515347653846224
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.18245718935168395
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.1915123607890909
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.1993072789458329
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.09498956158663883
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.15082760305134044
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.1552139914541245
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.1567682757261486
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.1572599746321091
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.15752063728764779
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.09498956158663883
name: Cosine Map@1
- type: cosine_map@20
value: 0.08696228866764828
name: Cosine Map@20
- type: cosine_map@50
value: 0.0925585898977933
name: Cosine Map@50
- type: cosine_map@100
value: 0.09443690504503688
name: Cosine Map@100
- type: cosine_map@150
value: 0.09508196706389692
name: Cosine Map@150
- type: cosine_map@200
value: 0.09552658777692054
name: Cosine Map@200
- type: cosine_map@500
value: 0.09647934265199021
name: Cosine Map@500
---
# SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- full_en
- full_de
- full_es
- full_zh
- mix
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
* Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7184 | 0.7618 | 0.6526 | 0.3528 |
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8155 | 0.8513 | 0.7551 | 0.4885 |
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8932 | 0.9106 | 0.8461 | 0.596 |
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9223 | 0.9381 | 0.8877 | 0.6571 |
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.932 | 0.9542 | 0.9173 | 0.7025 |
| cosine_precision@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
| cosine_precision@20 | 0.5048 | 0.4914 | 0.4244 | 0.168 | 0.089 | 0.0731 | 0.031 |
| cosine_precision@50 | 0.3086 | 0.317 | 0.2817 | 0.0926 | 0.0417 | 0.0358 | 0.0185 |
| cosine_precision@100 | 0.1867 | 0.1984 | 0.18 | 0.0582 | 0.0229 | 0.0206 | 0.0116 |
| cosine_precision@150 | 0.1327 | 0.147 | 0.1359 | 0.0456 | 0.0159 | 0.0146 | 0.0086 |
| cosine_precision@200 | 0.1029 | 0.1178 | 0.1108 | 0.0377 | 0.0122 | 0.0115 | 0.0071 |
| cosine_recall@1 | 0.068 | 0.003 | 0.0111 | 0.0257 | 0.1557 | 0.1098 | 0.0322 |
| cosine_recall@20 | 0.5391 | 0.3234 | 0.2601 | 0.174 | 0.6575 | 0.5343 | 0.2068 |
| cosine_recall@50 | 0.727 | 0.463 | 0.3844 | 0.2382 | 0.7691 | 0.6529 | 0.3062 |
| cosine_recall@100 | 0.8337 | 0.542 | 0.4673 | 0.2829 | 0.8454 | 0.7506 | 0.3818 |
| cosine_recall@150 | 0.8799 | 0.5827 | 0.5171 | 0.3262 | 0.8795 | 0.7989 | 0.4266 |
| cosine_recall@200 | 0.9051 | 0.6149 | 0.5533 | 0.3543 | 0.9035 | 0.8393 | 0.4678 |
| cosine_ndcg@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
| cosine_ndcg@20 | 0.6865 | 0.5389 | 0.4593 | 0.2396 | 0.5094 | 0.3903 | 0.1373 |
| cosine_ndcg@50 | 0.7053 | 0.5002 | 0.4231 | 0.2342 | 0.5398 | 0.4224 | 0.1652 |
| cosine_ndcg@100 | 0.7602 | 0.5139 | 0.4367 | 0.256 | 0.5564 | 0.4438 | 0.1825 |
| cosine_ndcg@150 | 0.7798 | 0.5346 | 0.4622 | 0.2734 | 0.563 | 0.4533 | 0.1915 |
| **cosine_ndcg@200** | **0.7899** | **0.5502** | **0.4802** | **0.2843** | **0.5674** | **0.4607** | **0.1993** |
| cosine_mrr@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
| cosine_mrr@20 | 0.8095 | 0.5445 | 0.4893 | 0.4306 | 0.4963 | 0.3754 | 0.1508 |
| cosine_mrr@50 | 0.8095 | 0.5445 | 0.4907 | 0.4337 | 0.4993 | 0.3787 | 0.1552 |
| cosine_mrr@100 | 0.8095 | 0.5445 | 0.4908 | 0.4349 | 0.5002 | 0.38 | 0.1568 |
| cosine_mrr@150 | 0.8095 | 0.5445 | 0.4909 | 0.4351 | 0.5004 | 0.3803 | 0.1573 |
| cosine_mrr@200 | 0.8095 | 0.5445 | 0.4909 | 0.4352 | 0.5005 | 0.3805 | 0.1575 |
| cosine_map@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
| cosine_map@20 | 0.5451 | 0.4035 | 0.3229 | 0.143 | 0.4237 | 0.3076 | 0.087 |
| cosine_map@50 | 0.5348 | 0.3419 | 0.2644 | 0.1243 | 0.4311 | 0.315 | 0.0926 |
| cosine_map@100 | 0.5677 | 0.3394 | 0.2576 | 0.1296 | 0.4333 | 0.3177 | 0.0944 |
| cosine_map@150 | 0.5757 | 0.3479 | 0.2667 | 0.1324 | 0.4338 | 0.3184 | 0.0951 |
| cosine_map@200 | 0.579 | 0.3533 | 0.2722 | 0.1337 | 0.4341 | 0.3189 | 0.0955 |
| cosine_map@500 | 0.5833 | 0.3632 | 0.2831 | 0.1378 | 0.4346 | 0.3196 | 0.0965 |
## Training Details
### Training Datasets
full_en
#### full_en
* Dataset: full_en
* Size: 28,880 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 5.0 tokens
- max: 10 tokens
| - min: 3 tokens
- mean: 5.01 tokens
- max: 13 tokens
|
* Samples:
| anchor | positive |
|:-----------------------------------------|:-----------------------------------------|
| air commodore | flight lieutenant |
| command and control officer | flight officer |
| air commodore | command and control officer |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_de
#### full_de
* Dataset: full_de
* Size: 23,023 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 11.05 tokens
- max: 45 tokens
| - min: 3 tokens
- mean: 11.43 tokens
- max: 45 tokens
|
* Samples:
| anchor | positive |
|:----------------------------------|:-----------------------------------------------------|
| Staffelkommandantin | Kommodore |
| Luftwaffenoffizierin | Luftwaffenoffizier/Luftwaffenoffizierin |
| Staffelkommandantin | Luftwaffenoffizierin |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_es
#### full_es
* Dataset: full_es
* Size: 20,724 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 12.95 tokens
- max: 50 tokens
| - min: 3 tokens
- mean: 12.57 tokens
- max: 50 tokens
|
* Samples:
| anchor | positive |
|:------------------------------------|:-------------------------------------------|
| jefe de escuadrón | instructor |
| comandante de aeronave | instructor de simulador |
| instructor | oficial del Ejército del Aire |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_zh
#### full_zh
* Dataset: full_zh
* Size: 30,401 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 4 tokens
- mean: 8.36 tokens
- max: 20 tokens
| - min: 4 tokens
- mean: 8.95 tokens
- max: 27 tokens
|
* Samples:
| anchor | positive |
|:------------------|:---------------------|
| 技术总监 | 技术和运营总监 |
| 技术总监 | 技术主管 |
| 技术总监 | 技术艺术总监 |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
mix
#### mix
* Dataset: mix
* Size: 21,760 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 2 tokens
- mean: 5.65 tokens
- max: 14 tokens
| - min: 2 tokens
- mean: 10.08 tokens
- max: 30 tokens
|
* Samples:
| anchor | positive |
|:------------------------------------------|:----------------------------------------------------------------|
| technical manager | Technischer Direktor für Bühne, Film und Fernsehen |
| head of technical | directora técnica |
| head of technical department | 技术艺术总监 |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 5
- `warmup_ratio`: 0.05
- `log_on_each_node`: False
- `fp16`: True
- `dataloader_num_workers`: 4
- `ddp_find_unused_parameters`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: False
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: True
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
### Training Logs
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
| -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
| 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
| 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
| 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
| 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
| 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
| 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
| 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
| 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
| 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
| 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
| 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
| 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
| 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
| 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
| 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
| 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
| 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
| 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
| 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
| 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - |
| 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 |
| 4.3292 | 2100 | 2.5674 | - | - | - | - | - | - | - |
| 4.5350 | 2200 | 2.6237 | 0.7899 | 0.5502 | 0.4802 | 0.2843 | 0.5674 | 0.4607 | 0.1993 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```