--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:GISTEmbedLoss base_model: BAAI/bge-small-en-v1.5 widget: - source_sentence: 其他机械、设备和有形货物租赁服务代表 sentences: - 其他机械和设备租赁服务工作人员 - 电子和电信设备及零部件物流经理 - 工业主厨 - source_sentence: 公交车司机 sentences: - 表演灯光设计师 - 乙烯基地板安装工 - 国际巴士司机 - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbürgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer based on BAAI/bge-small-en-v1.5 results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6571428571428571 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9904761904761905 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6571428571428571 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5023809523809524 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.30800000000000005 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.18628571428571428 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1321904761904762 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.10295238095238096 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0680237860830842 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5384852963395483 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7260449077992874 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8328530702930984 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8745262490032277 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9056960100263424 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6571428571428571 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6845256340390302 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7040452093638513 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.758935932285001 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7774414598948007 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7892946240668293 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6571428571428571 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8103174603174604 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8103174603174604 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8103174603174604 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8103174603174604 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8103174603174604 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6571428571428571 name: Cosine Map@1 - type: cosine_map@20 value: 0.5418235787800474 name: Cosine Map@20 - type: cosine_map@50 value: 0.5327215779103721 name: Cosine Map@50 - type: cosine_map@100 value: 0.565706253334091 name: Cosine Map@100 - type: cosine_map@150 value: 0.5733951147399983 name: Cosine Map@150 - type: cosine_map@200 value: 0.5771587776237981 name: Cosine Map@200 - type: cosine_map@500 value: 0.5813892452974444 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.12432432432432433 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.12432432432432433 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.4897297297297297 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.31794594594594594 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.19864864864864865 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.14688288288288287 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.11789189189189188 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.003111544931768446 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.32208664960961075 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.46383117404893587 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.5437537828683688 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.5824968655076911 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.6146962508233631 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.12432432432432433 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5384577730264963 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5012455261232941 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5147486871284331 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5348194013794069 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5505397598095297 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.12432432432432433 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5515015015015016 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5515015015015016 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5515015015015016 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5515015015015016 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5515015015015016 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.12432432432432433 name: Cosine Map@1 - type: cosine_map@20 value: 0.40280623036556984 name: Cosine Map@20 - type: cosine_map@50 value: 0.3421710529569103 name: Cosine Map@50 - type: cosine_map@100 value: 0.33947884152876345 name: Cosine Map@100 - type: cosine_map@150 value: 0.34777364049184706 name: Cosine Map@150 - type: cosine_map@200 value: 0.35339765423089375 name: Cosine Map@200 - type: cosine_map@500 value: 0.3631043007370563 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9211822660098522 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9655172413793104 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9753694581280788 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9852216748768473 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9852216748768473 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.4246305418719211 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.2813793103448276 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.1800985221674877 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1362233169129721 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.11054187192118226 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.26139377973111655 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.3835171819041212 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.4676892706124872 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.5183014504752351 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.551717511250073 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.4600580109269636 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.4229190542750304 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.4370543021366767 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.46289045418097646 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.4796711024513544 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.48958320005117995 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.49093477998292195 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.4910841931964832 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.4911623560854821 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.4911623560854821 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.32364842421740225 name: Cosine Map@20 - type: cosine_map@50 value: 0.2643813390551392 name: Cosine Map@50 - type: cosine_map@100 value: 0.2576413544507463 name: Cosine Map@100 - type: cosine_map@150 value: 0.2669126239698539 name: Cosine Map@150 - type: cosine_map@200 value: 0.27215799504041416 name: Cosine Map@200 - type: cosine_map@500 value: 0.28329484592874316 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.34951456310679613 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.7378640776699029 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.8252427184466019 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.8543689320388349 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9029126213592233 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.941747572815534 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.34951456310679613 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.17330097087378643 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.09436893203883494 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.05893203883495146 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.0458252427184466 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.03854368932038834 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.02726635297033844 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.17661061398990294 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.2392861843604663 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.2862639658547104 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.3286954340443375 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.3630829587412431 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.34951456310679613 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.24683538489164747 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.23936442282824424 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.2618891246293786 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.27867525817923894 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.29190260238165355 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.34951456310679613 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.44845699819699636 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.4514515915598798 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.451864194979824 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.4522894025156287 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.45250948321580986 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.34951456310679613 name: Cosine Map@1 - type: cosine_map@20 value: 0.1470309927546457 name: Cosine Map@20 - type: cosine_map@50 value: 0.12671489844037503 name: Cosine Map@50 - type: cosine_map@100 value: 0.13257859039926595 name: Cosine Map@100 - type: cosine_map@150 value: 0.13523273342027425 name: Cosine Map@150 - type: cosine_map@200 value: 0.13679857663871084 name: Cosine Map@200 - type: cosine_map@500 value: 0.14069476480399515 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.41133645345813835 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.7613104524180967 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.8523140925637025 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9121164846593863 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9417576703068122 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9547581903276131 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.41133645345813835 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.08920956838273532 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.04175767030681228 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.02291731669266771 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.015905702894782457 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.012243889755590227 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.15653988064284477 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.6593678032835598 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7704838669737266 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.847169601069757 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8825483495530297 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9050999182824455 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.41133645345813835 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5116672519515115 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.542000920569141 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.558759964344595 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5655977162199296 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5697289878952349 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.41133645345813835 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.4978677179556957 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5009543893008301 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5018183607581652 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5020589846475842 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5021321446410069 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.41133645345813835 name: Cosine Map@1 - type: cosine_map@20 value: 0.4263681424556441 name: Cosine Map@20 - type: cosine_map@50 value: 0.4338209025376249 name: Cosine Map@50 - type: cosine_map@100 value: 0.4359939776007631 name: Cosine Map@100 - type: cosine_map@150 value: 0.43656970643226983 name: Cosine Map@150 - type: cosine_map@200 value: 0.4368426702726571 name: Cosine Map@200 - type: cosine_map@500 value: 0.43729529920887905 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.29433177327093085 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.6500260010400416 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.7607904316172647 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.8507540301612064 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.889755590223609 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9204368174726989 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.29433177327093085 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.07308892355694228 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.036141445657826315 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.020634425377015084 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.014681920610157736 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.011552262090483621 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.1109031027907783 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.534356040908303 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6584676720402148 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.752470098803952 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8025567689374241 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8417663373201595 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.29433177327093085 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.3919428679123834 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.425599899100406 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.4462421162922913 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.45606402272845137 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.4632312746623382 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.29433177327093085 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.37785395494554963 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.38148321196953044 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.38274724688611994 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.3830666241433367 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.3832429794087988 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.29433177327093085 name: Cosine Map@1 - type: cosine_map@20 value: 0.3096720133634083 name: Cosine Map@20 - type: cosine_map@50 value: 0.31740714963039135 name: Cosine Map@50 - type: cosine_map@100 value: 0.31992557448195186 name: Cosine Map@100 - type: cosine_map@150 value: 0.3207379270967634 name: Cosine Map@150 - type: cosine_map@200 value: 0.3211962807999124 name: Cosine Map@200 - type: cosine_map@500 value: 0.3219246841517722 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.09707724425887265 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.3585594989561587 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.4900835073068894 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.6002087682672234 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.6612734864300627 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.7061586638830898 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.09707724425887265 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.03144572025052192 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.018486430062630482 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.011612734864300627 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.008688239387613084 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.007132045929018789 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.032868575405109846 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.20912118500845014 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.305353414852371 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.3834696126188819 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.43087740663419155 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.4714567385757365 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.09707724425887265 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.13847583254619214 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.16556220177827802 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.1834871578549362 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.1930615498205831 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.20074882110420836 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.09707724425887265 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.15220960831749397 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.15642354470896513 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.1580041495008456 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.15850022553236756 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.1587557913720219 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.09707724425887265 name: Cosine Map@1 - type: cosine_map@20 value: 0.08751052569766739 name: Cosine Map@20 - type: cosine_map@50 value: 0.09304075210745723 name: Cosine Map@50 - type: cosine_map@100 value: 0.09500635866296525 name: Cosine Map@100 - type: cosine_map@150 value: 0.09570276054684158 name: Cosine Map@150 - type: cosine_map@200 value: 0.09614394028730197 name: Cosine Map@200 - type: cosine_map@500 value: 0.09706713378133278 name: Cosine Map@500 --- # Job - Job matching BAAI/bge-small-en-v1.5 Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbürgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 | | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7379 | 0.7613 | 0.65 | 0.3586 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8252 | 0.8523 | 0.7608 | 0.4901 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8544 | 0.9121 | 0.8508 | 0.6002 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9029 | 0.9418 | 0.8898 | 0.6613 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9548 | 0.9204 | 0.7062 | | cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 | | cosine_precision@20 | 0.5024 | 0.4897 | 0.4246 | 0.1733 | 0.0892 | 0.0731 | 0.0314 | | cosine_precision@50 | 0.308 | 0.3179 | 0.2814 | 0.0944 | 0.0418 | 0.0361 | 0.0185 | | cosine_precision@100 | 0.1863 | 0.1986 | 0.1801 | 0.0589 | 0.0229 | 0.0206 | 0.0116 | | cosine_precision@150 | 0.1322 | 0.1469 | 0.1362 | 0.0458 | 0.0159 | 0.0147 | 0.0087 | | cosine_precision@200 | 0.103 | 0.1179 | 0.1105 | 0.0385 | 0.0122 | 0.0116 | 0.0071 | | cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0273 | 0.1565 | 0.1109 | 0.0329 | | cosine_recall@20 | 0.5385 | 0.3221 | 0.2614 | 0.1766 | 0.6594 | 0.5344 | 0.2091 | | cosine_recall@50 | 0.726 | 0.4638 | 0.3835 | 0.2393 | 0.7705 | 0.6585 | 0.3054 | | cosine_recall@100 | 0.8329 | 0.5438 | 0.4677 | 0.2863 | 0.8472 | 0.7525 | 0.3835 | | cosine_recall@150 | 0.8745 | 0.5825 | 0.5183 | 0.3287 | 0.8825 | 0.8026 | 0.4309 | | cosine_recall@200 | 0.9057 | 0.6147 | 0.5517 | 0.3631 | 0.9051 | 0.8418 | 0.4715 | | cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 | | cosine_ndcg@20 | 0.6845 | 0.5385 | 0.4601 | 0.2468 | 0.5117 | 0.3919 | 0.1385 | | cosine_ndcg@50 | 0.704 | 0.5012 | 0.4229 | 0.2394 | 0.542 | 0.4256 | 0.1656 | | cosine_ndcg@100 | 0.7589 | 0.5147 | 0.4371 | 0.2619 | 0.5588 | 0.4462 | 0.1835 | | cosine_ndcg@150 | 0.7774 | 0.5348 | 0.4629 | 0.2787 | 0.5656 | 0.4561 | 0.1931 | | **cosine_ndcg@200** | **0.7893** | **0.5505** | **0.4797** | **0.2919** | **0.5697** | **0.4632** | **0.2007** | | cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 | | cosine_mrr@20 | 0.8103 | 0.5515 | 0.4896 | 0.4485 | 0.4979 | 0.3779 | 0.1522 | | cosine_mrr@50 | 0.8103 | 0.5515 | 0.4909 | 0.4515 | 0.501 | 0.3815 | 0.1564 | | cosine_mrr@100 | 0.8103 | 0.5515 | 0.4911 | 0.4519 | 0.5018 | 0.3827 | 0.158 | | cosine_mrr@150 | 0.8103 | 0.5515 | 0.4912 | 0.4523 | 0.5021 | 0.3831 | 0.1585 | | cosine_mrr@200 | 0.8103 | 0.5515 | 0.4912 | 0.4525 | 0.5021 | 0.3832 | 0.1588 | | cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 | | cosine_map@20 | 0.5418 | 0.4028 | 0.3236 | 0.147 | 0.4264 | 0.3097 | 0.0875 | | cosine_map@50 | 0.5327 | 0.3422 | 0.2644 | 0.1267 | 0.4338 | 0.3174 | 0.093 | | cosine_map@100 | 0.5657 | 0.3395 | 0.2576 | 0.1326 | 0.436 | 0.3199 | 0.095 | | cosine_map@150 | 0.5734 | 0.3478 | 0.2669 | 0.1352 | 0.4366 | 0.3207 | 0.0957 | | cosine_map@200 | 0.5772 | 0.3534 | 0.2722 | 0.1368 | 0.4368 | 0.3212 | 0.0961 | | cosine_map@500 | 0.5814 | 0.3631 | 0.2833 | 0.1407 | 0.4373 | 0.3219 | 0.0971 | ## Training Details ### Training Datasets
full_en #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | air commodore | flight lieutenant | | command and control officer | flight officer | | air commodore | command and control officer | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_de #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | Staffelkommandantin | Kommodore | | Luftwaffenoffizierin | Luftwaffenoffizier/Luftwaffenoffizierin | | Staffelkommandantin | Luftwaffenoffizierin | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_es #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | jefe de escuadrón | instructor | | comandante de aeronave | instructor de simulador | | instructor | oficial del Ejército del Aire | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_zh #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------|:---------------------| | 技术总监 | 技术和运营总监 | | 技术总监 | 技术主管 | | 技术总监 | 技术艺术总监 | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
mix #### mix * Dataset: mix * Size: 21,760 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | technical manager | Technischer Direktor für Bühne, Film und Fernsehen | | head of technical | directora técnica | | head of technical department | 技术艺术总监 | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 | | 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - | | 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - | | 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 | | 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - | | 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 | | 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - | | 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 | | 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - | | 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 | | 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - | | 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 | | 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - | | 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 | | 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - | | 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 | | 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - | | 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 | | 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - | | 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 | | 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - | | 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 | | 4.3292 | 2100 | 2.5674 | - | - | - | - | - | - | - | | 4.5350 | 2200 | 2.6237 | 0.7899 | 0.5502 | 0.4802 | 0.2843 | 0.5674 | 0.4607 | 0.1993 | | 4.7407 | 2300 | 2.3776 | - | - | - | - | - | - | - | | 4.9465 | 2400 | 2.1116 | 0.7893 | 0.5505 | 0.4797 | 0.2919 | 0.5697 | 0.4632 | 0.2007 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### GISTEmbedLoss ```bibtex @misc{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, year={2024}, eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```