File size: 45,288 Bytes
0a9f3fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:86648
- loss:MSELoss
widget:
- source_sentence: Familienberaterin
  sentences:
  - electric power station operator
  - venue booker & promoter
  - betrieblicher Aus- und Weiterbildner/betriebliche Aus- und Weiterbildnerin
- source_sentence: high school RS teacher
  sentences:
  - infantryman
  - Schnellbedienungsrestaurantteamleiter
  - drill setup operator
- source_sentence: lighting designer
  sentences:
  - software support manager
  - 直升机维护协调员
  - bus maintenance supervisor
- source_sentence: 机场消防员
  sentences:
  - Flake操作员
  - técnico en gestión de residuos peligrosos/técnica en gestión de residuos peligrosos
  - 专门学校老师
- source_sentence: Entwicklerin für mobile Anwendungen
  sentences:
  - fashion design expert
  - Mergers-and-Acquisitions-Analyst/Mergers-and-Acquisitions-Analystin
  - commercial bid manager
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: full en
      type: full_en
    metrics:
    - type: cosine_accuracy@1
      value: 0.6476190476190476
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.9714285714285714
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.9904761904761905
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.9904761904761905
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.9904761904761905
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.9904761904761905
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.6476190476190476
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.47952380952380946
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.28838095238095235
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.17304761904761906
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.12444444444444444
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.09857142857142859
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.06609801577496094
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.5122224752770898
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.6835205863376973
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.7899550177449521
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.8399901051245952
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.875868212220809
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.6476190476190476
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.6467537144833913
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.6579566361404572
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.7095129047395976
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.7310060454392588
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.746053293561821
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.6476190476190476
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.7901817137111254
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.7909547501984476
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.7909547501984476
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.7909547501984476
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.7909547501984476
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.6476190476190476
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.5025649155749793
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.48398477448194993
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.5117703759309522
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.520199435224254
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.5249113393002316
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.5304170344184883
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: full es
      type: full_es
    metrics:
    - type: cosine_accuracy@1
      value: 0.11891891891891893
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 1.0
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 1.0
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 1.0
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 1.0
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 1.0
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.11891891891891893
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.5267567567567567
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.3437837837837838
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.21897297297297297
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.1658018018018018
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.1332972972972973
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.0035840147528632613
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.35407760203362965
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.5097999383006715
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.6076073817878247
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.6705429838138021
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.7125464731776301
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.11891891891891893
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.5708144272431339
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.535516963498245
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.558980163264909
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.5900024611410689
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.609478782549869
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.11891891891891893
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.5531531531531532
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.5531531531531532
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.5531531531531532
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.5531531531531532
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.5531531531531532
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.11891891891891893
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.4379349002801489
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.3739269627118989
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.37629843599877466
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.3891828650842837
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.39584338663408436
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.4062909401616274
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: full de
      type: full_de
    metrics:
    - type: cosine_accuracy@1
      value: 0.2955665024630542
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.9704433497536946
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.9753694581280788
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.9901477832512315
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.9901477832512315
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.9901477832512315
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.2955665024630542
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.42906403940886706
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.29802955665024633
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.19433497536945815
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.14824302134646963
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.1197783251231527
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.01108543831680986
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.26675038089672504
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.40921566733257536
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.5097664540706716
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.5728593162394238
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.6120176690658915
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.2955665024630542
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.46962753993631184
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.444898497416845
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.466960324034805
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.49816218513136795
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.5165485300965951
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.2955665024630542
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.5046767633988724
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.50477528556636
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.5049589761635289
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.5049589761635289
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.5049589761635289
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.2955665024630542
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.33658821160388247
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.2853400586620685
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.2817732307206079
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.2931317333364438
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.2988160532231927
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.31093362375086947
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: full zh
      type: full_zh
    metrics:
    - type: cosine_accuracy@1
      value: 0.6601941747572816
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.970873786407767
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.9902912621359223
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.9902912621359223
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.9902912621359223
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.9902912621359223
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.6601941747572816
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.44805825242718444
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.27126213592233006
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.16650485436893206
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.1211003236245955
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.09529126213592234
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.06611246215014785
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.48409390608352504
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.6568473638827299
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.7685416895166794
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.8277686060133904
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.8616979590623105
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.6601941747572816
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.6231250904534316
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.6383496204608501
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.6917257705456975
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.7167434657424917
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.7303448958665071
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.6601941747572816
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.8015776699029126
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.8020876238109248
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.8020876238109248
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.8020876238109248
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.8020876238109248
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.6601941747572816
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.4750205237443607
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.45785161483741715
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.4848085275553208
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.4937216396074153
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.49777622471594557
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.5039795405740248
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: mix es
      type: mix_es
    metrics:
    - type: cosine_accuracy@1
      value: 0.6297451898075923
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.9105564222568903
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.9495579823192928
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.9729589183567343
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.983359334373375
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.9901196047841914
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.6297451898075923
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.11167446697867915
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.04850754030161208
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.02535101404056163
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.0172300225342347
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.0130811232449298
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.24340068840848872
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.8288215338137336
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.8986566129311838
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.9398509273704282
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.9576876408389668
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.9695267810712429
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.6297451898075923
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.7010427232190379
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.7200844211181043
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.7290848607488584
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.7325985285606116
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.7347463892077523
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.6297451898075923
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.7036709577939534
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.7049808414398148
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.7053260954286938
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.7054145837924506
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.7054541569954363
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.6297451898075923
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.6194189058349782
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.6244340507841626
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.6256943736433496
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.6260195205413376
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.6261650797332174
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.6263452093477304
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: mix de
      type: mix_de
    metrics:
    - type: cosine_accuracy@1
      value: 0.5564222568902756
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.8866354654186167
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.9381175247009881
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.9594383775351014
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.9708788351534061
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.9776391055642226
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.5564222568902756
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.109464378575143
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.048060322412896525
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.025273010920436823
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.017313225862367825
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.013143525741029644
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.20931703934824059
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.7988992893049055
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.8741029641185647
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.9173426937077482
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.9424076963078523
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.953631478592477
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.5564222568902756
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.6541310877479573
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.674790854916742
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.6844997445798996
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.6894214573457343
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.6914881284159038
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.5564222568902756
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.6476945170199107
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.6493649946597936
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.6496801333421218
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.6497778366579644
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.6498156890114056
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.5564222568902756
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.5648326970643027
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.57003456255067
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.5714370828517599
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.5719002990233493
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.5720497397197026
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.5723109788233504
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: mix zh
      type: mix_zh
    metrics:
    - type: cosine_accuracy@1
      value: 0.6085594989561587
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.9592901878914405
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.9791231732776617
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.9874739039665971
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.9911273486430062
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.9937369519832986
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.6085594989561587
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.12656576200417535
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.05518789144050106
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.028747390396659713
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.019425887265135697
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.014705114822546978
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.2043804056069192
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.8346468336812805
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.9095772442588727
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.9475643702157271
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.9609168406402228
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.9697807933194154
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.6085594989561587
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.6853247290079303
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.7066940880968873
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.715400790265437
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.7180808450243259
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.7197629642909036
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.6085594989561587
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.7236528792595264
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.7243308740364213
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.7244524590415827
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.7244814620971008
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.7244960285685315
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.6085594989561587
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.5652211952239553
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.5716374350069462
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.5730756815932735
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.5733543252173214
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.5734860037813889
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.5736416699680624
      name: Cosine Map@500
---

# Job - Job matching Alibaba-NLP/gte-multilingual-base pruned

Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A.  Use it for multilingual job title matching

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-pruned")
# Run inference
sentences = [
    'Entwicklerin für mobile Anwendungen',
    'Mergers-and-Acquisitions-Analyst/Mergers-and-Acquisitions-Analystin',
    'fashion design expert',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric               | full_en    | full_es    | full_de    | full_zh    | mix_es     | mix_de     | mix_zh     |
|:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1    | 0.6476     | 0.1189     | 0.2956     | 0.6602     | 0.6297     | 0.5564     | 0.6086     |
| cosine_accuracy@20   | 0.9714     | 1.0        | 0.9704     | 0.9709     | 0.9106     | 0.8866     | 0.9593     |
| cosine_accuracy@50   | 0.9905     | 1.0        | 0.9754     | 0.9903     | 0.9496     | 0.9381     | 0.9791     |
| cosine_accuracy@100  | 0.9905     | 1.0        | 0.9901     | 0.9903     | 0.973      | 0.9594     | 0.9875     |
| cosine_accuracy@150  | 0.9905     | 1.0        | 0.9901     | 0.9903     | 0.9834     | 0.9709     | 0.9911     |
| cosine_accuracy@200  | 0.9905     | 1.0        | 0.9901     | 0.9903     | 0.9901     | 0.9776     | 0.9937     |
| cosine_precision@1   | 0.6476     | 0.1189     | 0.2956     | 0.6602     | 0.6297     | 0.5564     | 0.6086     |
| cosine_precision@20  | 0.4795     | 0.5268     | 0.4291     | 0.4481     | 0.1117     | 0.1095     | 0.1266     |
| cosine_precision@50  | 0.2884     | 0.3438     | 0.298      | 0.2713     | 0.0485     | 0.0481     | 0.0552     |
| cosine_precision@100 | 0.173      | 0.219      | 0.1943     | 0.1665     | 0.0254     | 0.0253     | 0.0287     |
| cosine_precision@150 | 0.1244     | 0.1658     | 0.1482     | 0.1211     | 0.0172     | 0.0173     | 0.0194     |
| cosine_precision@200 | 0.0986     | 0.1333     | 0.1198     | 0.0953     | 0.0131     | 0.0131     | 0.0147     |
| cosine_recall@1      | 0.0661     | 0.0036     | 0.0111     | 0.0661     | 0.2434     | 0.2093     | 0.2044     |
| cosine_recall@20     | 0.5122     | 0.3541     | 0.2668     | 0.4841     | 0.8288     | 0.7989     | 0.8346     |
| cosine_recall@50     | 0.6835     | 0.5098     | 0.4092     | 0.6568     | 0.8987     | 0.8741     | 0.9096     |
| cosine_recall@100    | 0.79       | 0.6076     | 0.5098     | 0.7685     | 0.9399     | 0.9173     | 0.9476     |
| cosine_recall@150    | 0.84       | 0.6705     | 0.5729     | 0.8278     | 0.9577     | 0.9424     | 0.9609     |
| cosine_recall@200    | 0.8759     | 0.7125     | 0.612      | 0.8617     | 0.9695     | 0.9536     | 0.9698     |
| cosine_ndcg@1        | 0.6476     | 0.1189     | 0.2956     | 0.6602     | 0.6297     | 0.5564     | 0.6086     |
| cosine_ndcg@20       | 0.6468     | 0.5708     | 0.4696     | 0.6231     | 0.701      | 0.6541     | 0.6853     |
| cosine_ndcg@50       | 0.658      | 0.5355     | 0.4449     | 0.6383     | 0.7201     | 0.6748     | 0.7067     |
| cosine_ndcg@100      | 0.7095     | 0.559      | 0.467      | 0.6917     | 0.7291     | 0.6845     | 0.7154     |
| cosine_ndcg@150      | 0.731      | 0.59       | 0.4982     | 0.7167     | 0.7326     | 0.6894     | 0.7181     |
| **cosine_ndcg@200**  | **0.7461** | **0.6095** | **0.5165** | **0.7303** | **0.7347** | **0.6915** | **0.7198** |
| cosine_mrr@1         | 0.6476     | 0.1189     | 0.2956     | 0.6602     | 0.6297     | 0.5564     | 0.6086     |
| cosine_mrr@20        | 0.7902     | 0.5532     | 0.5047     | 0.8016     | 0.7037     | 0.6477     | 0.7237     |
| cosine_mrr@50        | 0.791      | 0.5532     | 0.5048     | 0.8021     | 0.705      | 0.6494     | 0.7243     |
| cosine_mrr@100       | 0.791      | 0.5532     | 0.505      | 0.8021     | 0.7053     | 0.6497     | 0.7245     |
| cosine_mrr@150       | 0.791      | 0.5532     | 0.505      | 0.8021     | 0.7054     | 0.6498     | 0.7245     |
| cosine_mrr@200       | 0.791      | 0.5532     | 0.505      | 0.8021     | 0.7055     | 0.6498     | 0.7245     |
| cosine_map@1         | 0.6476     | 0.1189     | 0.2956     | 0.6602     | 0.6297     | 0.5564     | 0.6086     |
| cosine_map@20        | 0.5026     | 0.4379     | 0.3366     | 0.475      | 0.6194     | 0.5648     | 0.5652     |
| cosine_map@50        | 0.484      | 0.3739     | 0.2853     | 0.4579     | 0.6244     | 0.57       | 0.5716     |
| cosine_map@100       | 0.5118     | 0.3763     | 0.2818     | 0.4848     | 0.6257     | 0.5714     | 0.5731     |
| cosine_map@150       | 0.5202     | 0.3892     | 0.2931     | 0.4937     | 0.626      | 0.5719     | 0.5734     |
| cosine_map@200       | 0.5249     | 0.3958     | 0.2988     | 0.4978     | 0.6262     | 0.572      | 0.5735     |
| cosine_map@500       | 0.5304     | 0.4063     | 0.3109     | 0.504      | 0.6263     | 0.5723     | 0.5736     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 86,648 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence                                                                         | label                                |
  |:--------|:---------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                           | list                                 |
  | details | <ul><li>min: 2 tokens</li><li>mean: 8.25 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
  | sentence                                 | label                                                                                                                            |
  |:-----------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
  | <code></code>                            | <code>[-0.07171934843063354, 0.03595816716551781, -0.029780959710478783, 0.006593302357941866, 0.040611181408166885, ...]</code> |
  | <code>airport environment officer</code> | <code>[-0.022075481712818146, 0.02999737113714218, -0.02189866080880165, 0.016531817615032196, 0.012234307825565338, ...]</code> |
  | <code>Flake操作员</code>                    | <code>[-0.04815564677119255, 0.023524893447756767, -0.01583661139011383, 0.042527906596660614, 0.03815540298819542, ...]</code>  |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 2
- `learning_rate`: 0.0001
- `num_train_epochs`: 5
- `warmup_ratio`: 0.05
- `log_on_each_node`: False
- `fp16`: True
- `dataloader_num_workers`: 4
- `ddp_find_unused_parameters`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: False
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: True
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
| -1     | -1   | -             | 0.5348                  | 0.4311                  | 0.3678                  | 0.5333                  | 0.2580                 | 0.1924                 | 0.2871                 |
| 0.0030 | 1    | 0.0017        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 0.2959 | 100  | 0.001         | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 0.5917 | 200  | 0.0005        | 0.6702                  | 0.5287                  | 0.4566                  | 0.6809                  | 0.5864                 | 0.5302                 | 0.4739                 |
| 0.8876 | 300  | 0.0004        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 1.1834 | 400  | 0.0004        | 0.7057                  | 0.5643                  | 0.4790                  | 0.7033                  | 0.6604                 | 0.6055                 | 0.6003                 |
| 1.4793 | 500  | 0.0004        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 1.7751 | 600  | 0.0003        | 0.7184                  | 0.5783                  | 0.4910                  | 0.7127                  | 0.6927                 | 0.6416                 | 0.6485                 |
| 2.0710 | 700  | 0.0003        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 2.3669 | 800  | 0.0003        | 0.7307                  | 0.5938                  | 0.5023                  | 0.7233                  | 0.7125                 | 0.6639                 | 0.6847                 |
| 2.6627 | 900  | 0.0003        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 2.9586 | 1000 | 0.0003        | 0.7371                  | 0.6002                  | 0.5085                  | 0.7228                  | 0.7222                 | 0.6761                 | 0.6998                 |
| 3.2544 | 1100 | 0.0003        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 3.5503 | 1200 | 0.0003        | 0.7402                  | 0.6059                  | 0.5109                  | 0.7279                  | 0.7285                 | 0.6841                 | 0.7120                 |
| 3.8462 | 1300 | 0.0003        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 4.1420 | 1400 | 0.0003        | 0.7449                  | 0.6083                  | 0.5154                  | 0.7294                  | 0.7333                 | 0.6894                 | 0.7176                 |
| 4.4379 | 1500 | 0.0003        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 4.7337 | 1600 | 0.0003        | 0.7461                  | 0.6095                  | 0.5165                  | 0.7303                  | 0.7347                 | 0.6915                 | 0.7198                 |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->