metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:86648
- loss:MSELoss
widget:
- source_sentence: Familienberaterin
sentences:
- electric power station operator
- venue booker & promoter
- >-
betrieblicher Aus- und Weiterbildner/betriebliche Aus- und
Weiterbildnerin
- source_sentence: high school RS teacher
sentences:
- infantryman
- Schnellbedienungsrestaurantteamleiter
- drill setup operator
- source_sentence: lighting designer
sentences:
- software support manager
- 直升机维护协调员
- bus maintenance supervisor
- source_sentence: 机场消防员
sentences:
- Flake操作员
- >-
técnico en gestión de residuos peligrosos/técnica en gestión de residuos
peligrosos
- 专门学校老师
- source_sentence: Entwicklerin für mobile Anwendungen
sentences:
- fashion design expert
- Mergers-and-Acquisitions-Analyst/Mergers-and-Acquisitions-Analystin
- commercial bid manager
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full en
type: full_en
metrics:
- type: cosine_accuracy@1
value: 0.6285714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9714285714285714
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9904761904761905
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9904761904761905
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9904761904761905
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9904761904761905
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6285714285714286
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.4723809523809524
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.2838095238095238
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.1706666666666667
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.12285714285714286
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.09700000000000002
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06568451704213447
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5041312032991911
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.6762963371727007
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.7798036464336738
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8311908383371492
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.8655400214018215
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6285714285714286
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6385286667884668
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.6505087993598385
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7009585791000247
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7228549618650749
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7370730818153396
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6285714285714286
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7790726817042607
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.7797979143260452
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.7797979143260452
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7797979143260452
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7797979143260452
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6285714285714286
name: Cosine Map@1
- type: cosine_map@20
value: 0.4949002324392317
name: Cosine Map@20
- type: cosine_map@50
value: 0.47542864021103454
name: Cosine Map@50
- type: cosine_map@100
value: 0.5027685735699932
name: Cosine Map@100
- type: cosine_map@150
value: 0.5108956115342047
name: Cosine Map@150
- type: cosine_map@200
value: 0.5152152246235047
name: Cosine Map@200
- type: cosine_map@500
value: 0.5211733943510876
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full es
type: full_es
metrics:
- type: cosine_accuracy@1
value: 0.11351351351351352
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.11351351351351352
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5213513513513512
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.33891891891891895
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.2141081081081081
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.16104504504504505
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.13094594594594594
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.0035045234969014166
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.34830621955762764
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.5043797869988105
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.5962566893615484
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.6539916045900668
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.7027707655811134
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.11351351351351352
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5638160555705326
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5286289587475489
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5494533442820461
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5778904564772578
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.6002374248801999
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.11351351351351352
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.55
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.55
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.55
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.55
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.55
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.11351351351351352
name: Cosine Map@1
- type: cosine_map@20
value: 0.4321212731877681
name: Cosine Map@20
- type: cosine_map@50
value: 0.3662438776904182
name: Cosine Map@50
- type: cosine_map@100
value: 0.3676467044477579
name: Cosine Map@100
- type: cosine_map@150
value: 0.37914071893635704
name: Cosine Map@150
- type: cosine_map@200
value: 0.3864291047810966
name: Cosine Map@200
- type: cosine_map@500
value: 0.3967448814407886
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full de
type: full_de
metrics:
- type: cosine_accuracy@1
value: 0.2955665024630542
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9605911330049262
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9802955665024631
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9852216748768473
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9852216748768473
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9901477832512315
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.2955665024630542
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.424384236453202
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.29064039408866993
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.19019704433497536
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.14476190476190476
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.1177832512315271
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.01108543831680986
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.2623989771425487
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.399936827395569
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.5011599542158983
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.5599024076006294
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.6019565140878311
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.2955665024630542
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.46461290935992494
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.43636700085765784
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.4594232150790335
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.4887319216460325
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5085159310260775
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.2955665024630542
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.503435229891329
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5041035247761447
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5041884576791513
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5041884576791513
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5042166068698621
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.2955665024630542
name: Cosine Map@1
- type: cosine_map@20
value: 0.3326012942578798
name: Cosine Map@20
- type: cosine_map@50
value: 0.2779781159809199
name: Cosine Map@50
- type: cosine_map@100
value: 0.27530357902528746
name: Cosine Map@100
- type: cosine_map@150
value: 0.2859029789549631
name: Cosine Map@150
- type: cosine_map@200
value: 0.29192358526577794
name: Cosine Map@200
- type: cosine_map@500
value: 0.3037728006457777
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full zh
type: full_zh
metrics:
- type: cosine_accuracy@1
value: 0.6504854368932039
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.970873786407767
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9805825242718447
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9902912621359223
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9902912621359223
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9902912621359223
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6504854368932039
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.4461165048543689
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.26932038834951455
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.16601941747572818
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.12000000000000002
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.09475728155339808
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06125809321810901
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.4798173076061309
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.6511259115267456
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.7667280032499174
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8234348132226993
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.8570886860782638
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6504854368932039
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6163434250133266
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.6306194061713684
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.6852740031621496
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7087858531025408
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7227726687256436
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6504854368932039
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7938511326860843
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.7941135310067349
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.7943002375041209
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7943002375041209
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7943002375041209
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6504854368932039
name: Cosine Map@1
- type: cosine_map@20
value: 0.4673451367444491
name: Cosine Map@20
- type: cosine_map@50
value: 0.4491601687897158
name: Cosine Map@50
- type: cosine_map@100
value: 0.4759775327060125
name: Cosine Map@100
- type: cosine_map@150
value: 0.484283864447002
name: Cosine Map@150
- type: cosine_map@200
value: 0.4885403171787604
name: Cosine Map@200
- type: cosine_map@500
value: 0.4948931148880558
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix es
type: mix_es
metrics:
- type: cosine_accuracy@1
value: 0.6172646905876235
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9032761310452418
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9443577743109725
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9703588143525741
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9812792511700468
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9859594383775351
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6172646905876235
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.10972438897555903
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.04786271450858035
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.025169006760270413
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.017157219622118216
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.013018720748829957
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.2379838050664884
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.8149369784315182
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.8866788004853527
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9331773270930838
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9536141445657828
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9651759403709481
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6172646905876235
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6863945449619185
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7059805315894592
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7161349937562115
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7201494083175249
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.722225937142632
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6172646905876235
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.6921361840847764
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.6935275501084183
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.6938924919697613
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.6939819360030616
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.6940082129440573
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6172646905876235
name: Cosine Map@1
- type: cosine_map@20
value: 0.6028333286973904
name: Cosine Map@20
- type: cosine_map@50
value: 0.6079882517976847
name: Cosine Map@50
- type: cosine_map@100
value: 0.6094136625128228
name: Cosine Map@100
- type: cosine_map@150
value: 0.6097807307495342
name: Cosine Map@150
- type: cosine_map@200
value: 0.6099278426294548
name: Cosine Map@200
- type: cosine_map@500
value: 0.6101218939355526
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix de
type: mix_de
metrics:
- type: cosine_accuracy@1
value: 0.5429017160686428
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.8725949037961519
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9297971918876755
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9552782111284451
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.968278731149246
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9729589183567343
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.5429017160686428
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.10709828393135724
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.04726989079563183
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.025002600104004166
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.01712601837406829
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.013044721788871557
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.20383948691280984
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.7817386028774485
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.8605044201768071
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9077223088923557
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9319032761310452
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9461778471138845
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.5429017160686428
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6364696194038222
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.6580204683537704
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.6686859699628315
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.6734670399055159
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.6761041848609185
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.5429017160686428
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.6331176720726237
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.6350347522721764
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.6354157777188323
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.6355194502419383
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.635546462249249
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.5429017160686428
name: Cosine Map@1
- type: cosine_map@20
value: 0.546038259426052
name: Cosine Map@20
- type: cosine_map@50
value: 0.5513401593649401
name: Cosine Map@50
- type: cosine_map@100
value: 0.5528890114435938
name: Cosine Map@100
- type: cosine_map@150
value: 0.5533285819634786
name: Cosine Map@150
- type: cosine_map@200
value: 0.5535297820757661
name: Cosine Map@200
- type: cosine_map@500
value: 0.5538215020153545
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix zh
type: mix_zh
metrics:
- type: cosine_accuracy@1
value: 0.5751565762004175
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9514613778705637
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.975991649269311
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9848643006263048
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9895615866388309
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9916492693110647
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.5751565762004175
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.123982254697286
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.05465553235908143
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.02851252609603341
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.019324982602644397
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.014634655532359089
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.19298513768764292
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.8174060542797494
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.901000347947112
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9399095337508698
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9558716075156575
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.965196590118302
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.5751565762004175
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6621196118161056
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.6858570871515306
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.6947962879201968
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.6980250427797421
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.6997922044919449
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.5751565762004175
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.6974988781113621
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.6983413027160801
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.6984820179753005
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.6985228351798531
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.6985351624205532
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.5751565762004175
name: Cosine Map@1
- type: cosine_map@20
value: 0.5395939445358217
name: Cosine Map@20
- type: cosine_map@50
value: 0.5465541726714618
name: Cosine Map@50
- type: cosine_map@100
value: 0.5480058234906587
name: Cosine Map@100
- type: cosine_map@150
value: 0.5483452539266979
name: Cosine Map@150
- type: cosine_map@200
value: 0.548487754480418
name: Cosine Map@200
- type: cosine_map@500
value: 0.5486704400924459
name: Cosine Map@500
SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Entwicklerin für mobile Anwendungen',
'Mergers-and-Acquisitions-Analyst/Mergers-and-Acquisitions-Analystin',
'fashion design expert',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
full_en,full_es,full_de,full_zh,mix_es,mix_deandmix_zh - Evaluated with
InformationRetrievalEvaluator
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|---|---|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.6286 | 0.1135 | 0.2956 | 0.6505 | 0.6173 | 0.5429 | 0.5752 |
| cosine_accuracy@20 | 0.9714 | 1.0 | 0.9606 | 0.9709 | 0.9033 | 0.8726 | 0.9515 |
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9803 | 0.9806 | 0.9444 | 0.9298 | 0.976 |
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9704 | 0.9553 | 0.9849 |
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9813 | 0.9683 | 0.9896 |
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.986 | 0.973 | 0.9916 |
| cosine_precision@1 | 0.6286 | 0.1135 | 0.2956 | 0.6505 | 0.6173 | 0.5429 | 0.5752 |
| cosine_precision@20 | 0.4724 | 0.5214 | 0.4244 | 0.4461 | 0.1097 | 0.1071 | 0.124 |
| cosine_precision@50 | 0.2838 | 0.3389 | 0.2906 | 0.2693 | 0.0479 | 0.0473 | 0.0547 |
| cosine_precision@100 | 0.1707 | 0.2141 | 0.1902 | 0.166 | 0.0252 | 0.025 | 0.0285 |
| cosine_precision@150 | 0.1229 | 0.161 | 0.1448 | 0.12 | 0.0172 | 0.0171 | 0.0193 |
| cosine_precision@200 | 0.097 | 0.1309 | 0.1178 | 0.0948 | 0.013 | 0.013 | 0.0146 |
| cosine_recall@1 | 0.0657 | 0.0035 | 0.0111 | 0.0613 | 0.238 | 0.2038 | 0.193 |
| cosine_recall@20 | 0.5041 | 0.3483 | 0.2624 | 0.4798 | 0.8149 | 0.7817 | 0.8174 |
| cosine_recall@50 | 0.6763 | 0.5044 | 0.3999 | 0.6511 | 0.8867 | 0.8605 | 0.901 |
| cosine_recall@100 | 0.7798 | 0.5963 | 0.5012 | 0.7667 | 0.9332 | 0.9077 | 0.9399 |
| cosine_recall@150 | 0.8312 | 0.654 | 0.5599 | 0.8234 | 0.9536 | 0.9319 | 0.9559 |
| cosine_recall@200 | 0.8655 | 0.7028 | 0.602 | 0.8571 | 0.9652 | 0.9462 | 0.9652 |
| cosine_ndcg@1 | 0.6286 | 0.1135 | 0.2956 | 0.6505 | 0.6173 | 0.5429 | 0.5752 |
| cosine_ndcg@20 | 0.6385 | 0.5638 | 0.4646 | 0.6163 | 0.6864 | 0.6365 | 0.6621 |
| cosine_ndcg@50 | 0.6505 | 0.5286 | 0.4364 | 0.6306 | 0.706 | 0.658 | 0.6859 |
| cosine_ndcg@100 | 0.701 | 0.5495 | 0.4594 | 0.6853 | 0.7161 | 0.6687 | 0.6948 |
| cosine_ndcg@150 | 0.7229 | 0.5779 | 0.4887 | 0.7088 | 0.7201 | 0.6735 | 0.698 |
| cosine_ndcg@200 | 0.7371 | 0.6002 | 0.5085 | 0.7228 | 0.7222 | 0.6761 | 0.6998 |
| cosine_mrr@1 | 0.6286 | 0.1135 | 0.2956 | 0.6505 | 0.6173 | 0.5429 | 0.5752 |
| cosine_mrr@20 | 0.7791 | 0.55 | 0.5034 | 0.7939 | 0.6921 | 0.6331 | 0.6975 |
| cosine_mrr@50 | 0.7798 | 0.55 | 0.5041 | 0.7941 | 0.6935 | 0.635 | 0.6983 |
| cosine_mrr@100 | 0.7798 | 0.55 | 0.5042 | 0.7943 | 0.6939 | 0.6354 | 0.6985 |
| cosine_mrr@150 | 0.7798 | 0.55 | 0.5042 | 0.7943 | 0.694 | 0.6355 | 0.6985 |
| cosine_mrr@200 | 0.7798 | 0.55 | 0.5042 | 0.7943 | 0.694 | 0.6355 | 0.6985 |
| cosine_map@1 | 0.6286 | 0.1135 | 0.2956 | 0.6505 | 0.6173 | 0.5429 | 0.5752 |
| cosine_map@20 | 0.4949 | 0.4321 | 0.3326 | 0.4673 | 0.6028 | 0.546 | 0.5396 |
| cosine_map@50 | 0.4754 | 0.3662 | 0.278 | 0.4492 | 0.608 | 0.5513 | 0.5466 |
| cosine_map@100 | 0.5028 | 0.3676 | 0.2753 | 0.476 | 0.6094 | 0.5529 | 0.548 |
| cosine_map@150 | 0.5109 | 0.3791 | 0.2859 | 0.4843 | 0.6098 | 0.5533 | 0.5483 |
| cosine_map@200 | 0.5152 | 0.3864 | 0.2919 | 0.4885 | 0.6099 | 0.5535 | 0.5485 |
| cosine_map@500 | 0.5212 | 0.3967 | 0.3038 | 0.4949 | 0.6101 | 0.5538 | 0.5487 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 86,648 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 2 tokens
- mean: 8.25 tokens
- max: 54 tokens
- size: 768 elements
- Samples:
sentence label [-0.07171934843063354, 0.03595816716551781, -0.029780959710478783, 0.006593302357941866, 0.040611181408166885, ...]airport environment officer[-0.022075481712818146, 0.02999737113714218, -0.02189866080880165, 0.016531817615032196, 0.012234307825565338, ...]Flake操作员[-0.04815564677119255, 0.023524893447756767, -0.01583661139011383, 0.042527906596660614, 0.03815540298819542, ...] - Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128gradient_accumulation_steps: 2learning_rate: 0.0001num_train_epochs: 5warmup_ratio: 0.05log_on_each_node: Falsefp16: Truedataloader_num_workers: 4ddp_find_unused_parameters: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.0001weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Falselogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Trueddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|---|---|---|---|---|---|---|---|---|---|
| -1 | -1 | - | 0.5348 | 0.4311 | 0.3678 | 0.5333 | 0.2580 | 0.1924 | 0.2871 |
| 0.0030 | 1 | 0.0017 | - | - | - | - | - | - | - |
| 0.2959 | 100 | 0.001 | - | - | - | - | - | - | - |
| 0.5917 | 200 | 0.0005 | 0.6702 | 0.5287 | 0.4566 | 0.6809 | 0.5864 | 0.5302 | 0.4739 |
| 0.8876 | 300 | 0.0004 | - | - | - | - | - | - | - |
| 1.1834 | 400 | 0.0004 | 0.7057 | 0.5643 | 0.4790 | 0.7033 | 0.6604 | 0.6055 | 0.6003 |
| 1.4793 | 500 | 0.0004 | - | - | - | - | - | - | - |
| 1.7751 | 600 | 0.0003 | 0.7184 | 0.5783 | 0.4910 | 0.7127 | 0.6927 | 0.6416 | 0.6485 |
| 2.0710 | 700 | 0.0003 | - | - | - | - | - | - | - |
| 2.3669 | 800 | 0.0003 | 0.7307 | 0.5938 | 0.5023 | 0.7233 | 0.7125 | 0.6639 | 0.6847 |
| 2.6627 | 900 | 0.0003 | - | - | - | - | - | - | - |
| 2.9586 | 1000 | 0.0003 | 0.7371 | 0.6002 | 0.5085 | 0.7228 | 0.7222 | 0.6761 | 0.6998 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}