Update README.md (#1)
Browse files- Update README.md (2d12cf2c673224331a1eb24b5af26400730d6a36)
README.md
CHANGED
|
@@ -2,8 +2,24 @@
|
|
| 2 |
license: apache-2.0
|
| 3 |
datasets:
|
| 4 |
- flwrlabs/pacs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
```py
|
| 8 |
Classification Report:
|
| 9 |
precision recall f1-score support
|
|
@@ -38,4 +54,87 @@ id2label = {str(i): label for i, label in enumerate(labels)}
|
|
| 38 |
|
| 39 |
# Print the mapping
|
| 40 |
print(id2label)
|
| 41 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
datasets:
|
| 4 |
- flwrlabs/pacs
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- google/siglip2-base-patch16-224
|
| 9 |
+
pipeline_tag: image-classification
|
| 10 |
+
library_name: transformers
|
| 11 |
+
tags:
|
| 12 |
+
- PACS-DG
|
| 13 |
+
- domain generalization
|
| 14 |
+
- SigLIP2
|
| 15 |
---
|
| 16 |
|
| 17 |
+

|
| 18 |
+
|
| 19 |
+
# **PACS-DG-SigLIP2**
|
| 20 |
+
|
| 21 |
+
> **PACS-DG-SigLIP2** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for **multi-class domain generalization** classification. It is trained to distinguish visual domains such as **art paintings**, **cartoons**, **photos**, and **sketches** using the **SiglipForImageClassification** architecture.
|
| 22 |
+
|
| 23 |
```py
|
| 24 |
Classification Report:
|
| 25 |
precision recall f1-score support
|
|
|
|
| 54 |
|
| 55 |
# Print the mapping
|
| 56 |
print(id2label)
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
---
|
| 60 |
+
|
| 61 |
+
## **Label Space: 4 Domain Categories**
|
| 62 |
+
|
| 63 |
+
The model predicts the most probable visual domain from the following:
|
| 64 |
+
|
| 65 |
+
```
|
| 66 |
+
Class 0: "art_painting"
|
| 67 |
+
Class 1: "cartoon"
|
| 68 |
+
Class 2: "photo"
|
| 69 |
+
Class 3: "sketch"
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
---
|
| 73 |
+
|
| 74 |
+
## **Install dependencies**
|
| 75 |
+
|
| 76 |
+
```bash
|
| 77 |
+
pip install -q transformers torch pillow gradio
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
---
|
| 81 |
+
|
| 82 |
+
## **Inference Code**
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
import gradio as gr
|
| 86 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 87 |
+
from PIL import Image
|
| 88 |
+
import torch
|
| 89 |
+
|
| 90 |
+
# Load model and processor
|
| 91 |
+
model_name = "prithivMLmods/PACS-DG-SigLIP2" # Update to your actual model path on Hugging Face
|
| 92 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 93 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 94 |
+
|
| 95 |
+
# Label map
|
| 96 |
+
id2label = {
|
| 97 |
+
"0": "art_painting",
|
| 98 |
+
"1": "cartoon",
|
| 99 |
+
"2": "photo",
|
| 100 |
+
"3": "sketch"
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
def classify_pacs_image(image):
|
| 104 |
+
image = Image.fromarray(image).convert("RGB")
|
| 105 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 106 |
+
|
| 107 |
+
with torch.no_grad():
|
| 108 |
+
outputs = model(**inputs)
|
| 109 |
+
logits = outputs.logits
|
| 110 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 111 |
+
|
| 112 |
+
prediction = {
|
| 113 |
+
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
return prediction
|
| 117 |
+
|
| 118 |
+
# Gradio Interface
|
| 119 |
+
iface = gr.Interface(
|
| 120 |
+
fn=classify_pacs_image,
|
| 121 |
+
inputs=gr.Image(type="numpy"),
|
| 122 |
+
outputs=gr.Label(num_top_classes=4, label="Predicted Domain Probabilities"),
|
| 123 |
+
title="PACS-DG-SigLIP2",
|
| 124 |
+
description="Upload an image to classify its visual domain: Art Painting, Cartoon, Photo, or Sketch."
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
if __name__ == "__main__":
|
| 128 |
+
iface.launch()
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
---
|
| 132 |
+
|
| 133 |
+
## **Intended Use**
|
| 134 |
+
|
| 135 |
+
The **PACS-DG-SigLIP2** model is designed to support tasks in **domain generalization**, particularly:
|
| 136 |
+
|
| 137 |
+
- **Cross-domain Visual Recognition** – Identify the domain style of an image.
|
| 138 |
+
- **Robust Representation Learning** – Aid in training or evaluating models on domain-shifted inputs.
|
| 139 |
+
- **Dataset Characterization** – Use as a tool to explore domain imbalance or drift.
|
| 140 |
+
- **Educational Tools** – Help understand how models distinguish between stylistic image variations.
|