prithivMLmods commited on
Commit
dac72a0
·
verified ·
1 Parent(s): 283d570

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -1
README.md CHANGED
@@ -2,4 +2,55 @@
2
  license: apache-2.0
3
  datasets:
4
  - Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  datasets:
4
  - Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B
5
+ language:
6
+ - en
7
+ base_model:
8
+ - prithivMLmods/Regulus-Qwen3-R1-Llama-Distill-1.7B
9
+ pipeline_tag: text-generation
10
+ library_name: transformers
11
+ tags:
12
+ - text-generation-inference
13
+ - trl
14
+ - reasoning
15
+ - code
16
+ - math
17
+ ---
18
+
19
+ # **Regulus-Qwen3-R1-Llama-Distill-GGUF**
20
+
21
+ > Regulus-Qwen3-R1-Llama-Distill-1.7B is a distilled reasoning model fine-tuned on Qwen/Qwen3-1.7B using Magpie-Align/Magpie-Reasoning-V2-250K-CoT-DeepSeek-R1-Llama-70B. The training leverages distilled traces from DeepSeek-R1-Llama-70B, transferring advanced reasoning patterns into a lightweight 1.7B parameter model. It is specialized for chain-of-thought reasoning across code, math, and science, optimized for efficiency and mid-resource deployment.
22
+
23
+ ## Model Files
24
+
25
+
26
+ | File Name | Quant Type | File Size |
27
+ | - | - | - |
28
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.BF16.gguf | BF16 | 3.45 GB |
29
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.F16.gguf | F16 | 3.45 GB |
30
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.F32.gguf | F32 | 6.89 GB |
31
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q2_K.gguf | Q2_K | 778 MB |
32
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q3_K_L.gguf | Q3_K_L | 1 GB |
33
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q3_K_M.gguf | Q3_K_M | 940 MB |
34
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q3_K_S.gguf | Q3_K_S | 867 MB |
35
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q4_0.gguf | Q4_0 | 1.05 GB |
36
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q4_1.gguf | Q4_1 | 1.14 GB |
37
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q4_K.gguf | Q4_K | 1.11 GB |
38
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q4_K_M.gguf | Q4_K_M | 1.11 GB |
39
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q4_K_S.gguf | Q4_K_S | 1.06 GB |
40
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q5_0.gguf | Q5_0 | 1.23 GB |
41
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q5_1.gguf | Q5_1 | 1.32 GB |
42
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q5_K.gguf | Q5_K | 1.26 GB |
43
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q5_K_M.gguf | Q5_K_M | 1.26 GB |
44
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q5_K_S.gguf | Q5_K_S | 1.23 GB |
45
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q6_K.gguf | Q6_K | 1.42 GB |
46
+ | Regulus-Qwen3-R1-Llama-Distill-1.7B.Q8_0.gguf | Q8_0 | 1.83 GB |
47
+
48
+
49
+ ## Quants Usage
50
+
51
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
52
+
53
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
54
+ types (lower is better):
55
+
56
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)