Update README.md
Browse files
README.md
CHANGED
|
@@ -3,6 +3,9 @@ license: apache-2.0
|
|
| 3 |
datasets:
|
| 4 |
- yunusserhat/TurkishFoods-25
|
| 5 |
---
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
```py
|
| 8 |
Classification Report:
|
|
@@ -37,4 +40,99 @@ hunkar_begendi 0.9583 0.9274 0.9426 248
|
|
| 37 |
accuracy 0.9186 9168
|
| 38 |
macro avg 0.9234 0.9216 0.9220 9168
|
| 39 |
weighted avg 0.9194 0.9186 0.9186 9168
|
| 40 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
datasets:
|
| 4 |
- yunusserhat/TurkishFoods-25
|
| 5 |
---
|
| 6 |
+
# TurkishFoods-25
|
| 7 |
+
|
| 8 |
+
> **TurkishFoods-25** is a computer vision model fine-tuned from `google/siglip2-base-patch16-224` for multi-class food image classification. It is trained to identify 25 traditional Turkish dishes using the `SiglipForImageClassification` architecture.
|
| 9 |
|
| 10 |
```py
|
| 11 |
Classification Report:
|
|
|
|
| 40 |
accuracy 0.9186 9168
|
| 41 |
macro avg 0.9234 0.9216 0.9220 9168
|
| 42 |
weighted avg 0.9194 0.9186 0.9186 9168
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
---
|
| 46 |
+
|
| 47 |
+
## Label Space: 25 Classes
|
| 48 |
+
|
| 49 |
+
The model classifies food images into the following Turkish dishes:
|
| 50 |
+
|
| 51 |
+
```json
|
| 52 |
+
"id2label": {
|
| 53 |
+
"0": "asure",
|
| 54 |
+
"1": "baklava",
|
| 55 |
+
"2": "biber_dolmasi",
|
| 56 |
+
"3": "borek",
|
| 57 |
+
"4": "cig_kofte",
|
| 58 |
+
"5": "enginar",
|
| 59 |
+
"6": "et_sote",
|
| 60 |
+
"7": "gozleme",
|
| 61 |
+
"8": "hamsi",
|
| 62 |
+
"9": "hunkar_begendi",
|
| 63 |
+
"10": "icli_kofte",
|
| 64 |
+
"11": "ispanak",
|
| 65 |
+
"12": "izmir_kofte",
|
| 66 |
+
"13": "karniyarik",
|
| 67 |
+
"14": "kebap",
|
| 68 |
+
"15": "kisir",
|
| 69 |
+
"16": "kuru_fasulye",
|
| 70 |
+
"17": "lahmacun",
|
| 71 |
+
"18": "lokum",
|
| 72 |
+
"19": "manti",
|
| 73 |
+
"20": "mucver",
|
| 74 |
+
"21": "pirinc_pilavi",
|
| 75 |
+
"22": "simit",
|
| 76 |
+
"23": "taze_fasulye",
|
| 77 |
+
"24": "yaprak_sarma"
|
| 78 |
+
}
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
---
|
| 82 |
+
|
| 83 |
+
## Install Requirements
|
| 84 |
+
|
| 85 |
+
```bash
|
| 86 |
+
pip install -q transformers torch pillow gradio
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
---
|
| 90 |
+
|
| 91 |
+
## Inference Script
|
| 92 |
+
|
| 93 |
+
```python
|
| 94 |
+
import gradio as gr
|
| 95 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 96 |
+
from PIL import Image
|
| 97 |
+
import torch
|
| 98 |
+
|
| 99 |
+
model_name = "prithivMLmods/TurkishFoods-25" # Replace with your Hugging Face repo
|
| 100 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 101 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 102 |
+
|
| 103 |
+
id2label = {
|
| 104 |
+
"0": "asure", "1": "baklava", "2": "biber_dolmasi", "3": "borek", "4": "cig_kofte",
|
| 105 |
+
"5": "enginar", "6": "et_sote", "7": "gozleme", "8": "hamsi", "9": "hunkar_begendi",
|
| 106 |
+
"10": "icli_kofte", "11": "ispanak", "12": "izmir_kofte", "13": "karniyarik", "14": "kebap",
|
| 107 |
+
"15": "kisir", "16": "kuru_fasulye", "17": "lahmacun", "18": "lokum", "19": "manti",
|
| 108 |
+
"20": "mucver", "21": "pirinc_pilavi", "22": "simit", "23": "taze_fasulye", "24": "yaprak_sarma"
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
def predict_food(image):
|
| 112 |
+
image = Image.fromarray(image).convert("RGB")
|
| 113 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
logits = model(**inputs).logits
|
| 116 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 117 |
+
return {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
| 118 |
+
|
| 119 |
+
iface = gr.Interface(
|
| 120 |
+
fn=predict_food,
|
| 121 |
+
inputs=gr.Image(type="numpy"),
|
| 122 |
+
outputs=gr.Label(num_top_classes=5, label="Top Turkish Foods"),
|
| 123 |
+
title="TurkishFoods-25 Classifier",
|
| 124 |
+
description="Upload a food image to identify one of 25 Turkish dishes."
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
if __name__ == "__main__":
|
| 128 |
+
iface.launch()
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
---
|
| 132 |
+
|
| 133 |
+
## Applications
|
| 134 |
+
|
| 135 |
+
* Turkish cuisine image datasets
|
| 136 |
+
* Food delivery or smart restaurant apps
|
| 137 |
+
* Culinary learning platforms
|
| 138 |
+
* Nutrition tracking via image-based recognition
|