add additional 2-epoch checkpoint, better regularization
Browse files- config.json +4 -3
- latest +1 -0
- pytorch_model.bin +1 -1
- rng_state_0.pth +3 -0
- tokenizer_config.json +1 -1
- trainer_state.json +179 -1352
- training_args.bin +1 -1
- zero_to_fp32.py +484 -0
config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "pszemraj/led-large-book-summary
|
| 3 |
"_num_labels": 3,
|
| 4 |
"activation_dropout": 0.0,
|
| 5 |
"activation_function": "gelu",
|
|
@@ -52,8 +52,8 @@
|
|
| 52 |
"length_penalty": 0.8,
|
| 53 |
"max_decoder_position_embeddings": 1024,
|
| 54 |
"max_encoder_position_embeddings": 16384,
|
| 55 |
-
"max_length":
|
| 56 |
-
"min_length":
|
| 57 |
"model_type": "led",
|
| 58 |
"no_repeat_ngram_size": 3,
|
| 59 |
"num_beams": 4,
|
|
@@ -61,6 +61,7 @@
|
|
| 61 |
"output_past": false,
|
| 62 |
"pad_token_id": 1,
|
| 63 |
"prefix": " ",
|
|
|
|
| 64 |
"torch_dtype": "float32",
|
| 65 |
"transformers_version": "4.19.2",
|
| 66 |
"use_cache": false,
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "pszemraj/led-large-book-summary",
|
| 3 |
"_num_labels": 3,
|
| 4 |
"activation_dropout": 0.0,
|
| 5 |
"activation_function": "gelu",
|
|
|
|
| 52 |
"length_penalty": 0.8,
|
| 53 |
"max_decoder_position_embeddings": 1024,
|
| 54 |
"max_encoder_position_embeddings": 16384,
|
| 55 |
+
"max_length": 1024,
|
| 56 |
+
"min_length": 8,
|
| 57 |
"model_type": "led",
|
| 58 |
"no_repeat_ngram_size": 3,
|
| 59 |
"num_beams": 4,
|
|
|
|
| 61 |
"output_past": false,
|
| 62 |
"pad_token_id": 1,
|
| 63 |
"prefix": " ",
|
| 64 |
+
"repetition_penalty": 3.5,
|
| 65 |
"torch_dtype": "float32",
|
| 66 |
"transformers_version": "4.19.2",
|
| 67 |
"use_cache": false,
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step296
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1839482407
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0603a70f15308ebccb9b66369464a83efb920ed266f736bdca0279bc066eecf7
|
| 3 |
size 1839482407
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:97f7901e7b6ddfc02769b63a371fd87e014fae5a4c2ef46f9e10298a4e62e643
|
| 3 |
+
size 14439
|
tokenizer_config.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"errors": "replace", "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "trim_offsets": true, "model_max_length": 16384, "special_tokens_map_file": "/root/.cache/huggingface/transformers/2ad921573d53ebf0c0450d63a211e61d8e328324e84830c365abff01f2d115f1.cb2244924ab24d706b02fd7fcedaea4531566537687a539ebb94db511fd122a0", "name_or_path": "pszemraj/led-large-book-summary
|
|
|
|
| 1 |
+
{"errors": "replace", "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "trim_offsets": true, "model_max_length": 16384, "special_tokens_map_file": "/root/.cache/huggingface/transformers/2ad921573d53ebf0c0450d63a211e61d8e328324e84830c365abff01f2d115f1.cb2244924ab24d706b02fd7fcedaea4531566537687a539ebb94db511fd122a0", "name_or_path": "pszemraj/led-large-book-summary", "tokenizer_class": "LEDTokenizer"}
|
trainer_state.json
CHANGED
|
@@ -1,1537 +1,364 @@
|
|
| 1 |
{
|
| 2 |
"best_metric": null,
|
| 3 |
"best_model_checkpoint": null,
|
| 4 |
-
"epoch":
|
| 5 |
-
"global_step":
|
| 6 |
"is_hyper_param_search": false,
|
| 7 |
"is_local_process_zero": true,
|
| 8 |
"is_world_process_zero": true,
|
| 9 |
"log_history": [
|
| 10 |
{
|
| 11 |
-
"epoch": 0.
|
| 12 |
-
"learning_rate":
|
| 13 |
-
"loss":
|
| 14 |
"step": 5
|
| 15 |
},
|
| 16 |
{
|
| 17 |
-
"epoch": 0.
|
| 18 |
-
"learning_rate":
|
| 19 |
-
"loss": 0.
|
| 20 |
"step": 10
|
| 21 |
},
|
| 22 |
{
|
| 23 |
-
"epoch": 0.
|
| 24 |
-
"learning_rate":
|
| 25 |
-
"loss":
|
| 26 |
"step": 15
|
| 27 |
},
|
| 28 |
{
|
| 29 |
-
"epoch": 0.
|
| 30 |
-
"learning_rate":
|
| 31 |
-
"loss": 0.
|
| 32 |
"step": 20
|
| 33 |
},
|
| 34 |
{
|
| 35 |
-
"epoch": 0.
|
| 36 |
-
"learning_rate":
|
| 37 |
-
"loss": 0.
|
| 38 |
"step": 25
|
| 39 |
},
|
| 40 |
{
|
| 41 |
-
"epoch": 0.
|
| 42 |
-
"learning_rate":
|
| 43 |
-
"loss": 0.
|
| 44 |
"step": 30
|
| 45 |
},
|
| 46 |
{
|
| 47 |
-
"epoch": 0.
|
| 48 |
-
"learning_rate":
|
| 49 |
-
"loss":
|
| 50 |
"step": 35
|
| 51 |
},
|
| 52 |
{
|
| 53 |
-
"epoch": 0.
|
| 54 |
-
"learning_rate":
|
| 55 |
-
"loss": 0.
|
| 56 |
"step": 40
|
| 57 |
},
|
| 58 |
{
|
| 59 |
-
"epoch": 0.
|
| 60 |
-
"learning_rate":
|
| 61 |
-
"loss":
|
| 62 |
"step": 45
|
| 63 |
},
|
| 64 |
{
|
| 65 |
-
"epoch": 0.
|
| 66 |
-
"learning_rate":
|
| 67 |
-
"loss": 0.
|
| 68 |
"step": 50
|
| 69 |
},
|
| 70 |
{
|
| 71 |
-
"epoch": 0.
|
| 72 |
-
"learning_rate":
|
| 73 |
-
"loss": 0.
|
| 74 |
"step": 55
|
| 75 |
},
|
| 76 |
{
|
| 77 |
-
"epoch": 0.
|
| 78 |
-
"learning_rate":
|
| 79 |
-
"loss": 0.
|
| 80 |
"step": 60
|
| 81 |
},
|
| 82 |
{
|
| 83 |
-
"epoch": 0.
|
| 84 |
-
"learning_rate":
|
| 85 |
-
"loss":
|
| 86 |
"step": 65
|
| 87 |
},
|
| 88 |
{
|
| 89 |
-
"epoch": 0.
|
| 90 |
-
"learning_rate":
|
| 91 |
-
"loss": 0.
|
| 92 |
"step": 70
|
| 93 |
},
|
| 94 |
{
|
| 95 |
-
"epoch": 0.
|
| 96 |
-
"learning_rate":
|
| 97 |
-
"loss":
|
| 98 |
"step": 75
|
| 99 |
},
|
| 100 |
{
|
| 101 |
-
"epoch": 0.
|
| 102 |
-
"learning_rate":
|
| 103 |
-
"loss": 0.
|
| 104 |
"step": 80
|
| 105 |
},
|
| 106 |
{
|
| 107 |
-
"epoch": 0.
|
| 108 |
-
"learning_rate":
|
| 109 |
-
"loss": 0.
|
| 110 |
"step": 85
|
| 111 |
},
|
| 112 |
{
|
| 113 |
-
"epoch": 0.
|
| 114 |
-
"learning_rate":
|
| 115 |
-
"loss": 0.
|
| 116 |
"step": 90
|
| 117 |
},
|
| 118 |
{
|
| 119 |
-
"epoch": 0.
|
| 120 |
-
"learning_rate":
|
| 121 |
-
"loss": 0.
|
| 122 |
"step": 95
|
| 123 |
},
|
| 124 |
{
|
| 125 |
-
"epoch":
|
| 126 |
-
"learning_rate":
|
| 127 |
-
"loss":
|
| 128 |
"step": 100
|
| 129 |
},
|
| 130 |
{
|
| 131 |
-
"epoch":
|
| 132 |
-
"learning_rate":
|
| 133 |
-
"loss": 0.
|
| 134 |
"step": 105
|
| 135 |
},
|
| 136 |
{
|
| 137 |
-
"epoch":
|
| 138 |
-
"learning_rate":
|
| 139 |
-
"loss": 0.
|
| 140 |
"step": 110
|
| 141 |
},
|
| 142 |
{
|
| 143 |
-
"epoch":
|
| 144 |
-
"learning_rate":
|
| 145 |
-
"loss":
|
| 146 |
"step": 115
|
| 147 |
},
|
| 148 |
{
|
| 149 |
-
"epoch":
|
| 150 |
-
"learning_rate":
|
| 151 |
-
"loss": 0.
|
| 152 |
"step": 120
|
| 153 |
},
|
| 154 |
{
|
| 155 |
-
"epoch":
|
| 156 |
-
"learning_rate":
|
| 157 |
-
"loss": 0.
|
| 158 |
"step": 125
|
| 159 |
},
|
| 160 |
{
|
| 161 |
-
"epoch":
|
| 162 |
-
"learning_rate":
|
| 163 |
-
"loss":
|
| 164 |
"step": 130
|
| 165 |
},
|
| 166 |
{
|
| 167 |
-
"epoch":
|
| 168 |
-
"learning_rate":
|
| 169 |
-
"loss": 0.
|
| 170 |
"step": 135
|
| 171 |
},
|
| 172 |
{
|
| 173 |
-
"epoch":
|
| 174 |
-
"learning_rate":
|
| 175 |
-
"loss": 0.
|
| 176 |
"step": 140
|
| 177 |
},
|
| 178 |
{
|
| 179 |
-
"epoch":
|
| 180 |
-
"learning_rate":
|
| 181 |
-
"loss": 0.
|
| 182 |
"step": 145
|
| 183 |
},
|
| 184 |
{
|
| 185 |
-
"epoch":
|
| 186 |
-
"learning_rate":
|
| 187 |
-
"loss":
|
| 188 |
"step": 150
|
| 189 |
},
|
| 190 |
{
|
| 191 |
-
"epoch":
|
| 192 |
-
"learning_rate":
|
| 193 |
-
"loss":
|
| 194 |
"step": 155
|
| 195 |
},
|
| 196 |
{
|
| 197 |
-
"epoch":
|
| 198 |
-
"learning_rate":
|
| 199 |
-
"loss":
|
| 200 |
"step": 160
|
| 201 |
},
|
| 202 |
{
|
| 203 |
-
"epoch":
|
| 204 |
-
"learning_rate":
|
| 205 |
-
"loss":
|
| 206 |
"step": 165
|
| 207 |
},
|
| 208 |
{
|
| 209 |
-
"epoch":
|
| 210 |
-
"learning_rate": 1.
|
| 211 |
-
"loss":
|
| 212 |
"step": 170
|
| 213 |
},
|
| 214 |
{
|
| 215 |
-
"epoch":
|
| 216 |
-
"learning_rate": 1.
|
| 217 |
-
"loss": 0.
|
| 218 |
"step": 175
|
| 219 |
},
|
| 220 |
{
|
| 221 |
-
"epoch":
|
| 222 |
-
"learning_rate": 1.
|
| 223 |
-
"loss":
|
| 224 |
"step": 180
|
| 225 |
},
|
| 226 |
{
|
| 227 |
-
"epoch":
|
| 228 |
-
"learning_rate": 1.
|
| 229 |
-
"loss":
|
| 230 |
"step": 185
|
| 231 |
},
|
| 232 |
{
|
| 233 |
-
"epoch":
|
| 234 |
-
"learning_rate": 1.
|
| 235 |
-
"loss": 0.
|
| 236 |
"step": 190
|
| 237 |
},
|
| 238 |
{
|
| 239 |
-
"epoch":
|
| 240 |
-
"learning_rate": 1.
|
| 241 |
-
"loss":
|
| 242 |
"step": 195
|
| 243 |
},
|
| 244 |
{
|
| 245 |
-
"epoch":
|
| 246 |
-
"learning_rate": 1.
|
| 247 |
-
"loss":
|
| 248 |
"step": 200
|
| 249 |
},
|
| 250 |
{
|
| 251 |
-
"epoch":
|
| 252 |
-
"learning_rate": 1.
|
| 253 |
-
"loss": 0.
|
| 254 |
"step": 205
|
| 255 |
},
|
| 256 |
{
|
| 257 |
-
"epoch":
|
| 258 |
-
"learning_rate": 1.
|
| 259 |
-
"loss":
|
| 260 |
"step": 210
|
| 261 |
},
|
| 262 |
{
|
| 263 |
-
"epoch":
|
| 264 |
-
"learning_rate": 1.
|
| 265 |
-
"loss": 0.
|
| 266 |
"step": 215
|
| 267 |
},
|
| 268 |
{
|
| 269 |
-
"epoch":
|
| 270 |
-
"learning_rate": 1.
|
| 271 |
-
"loss": 0.
|
| 272 |
"step": 220
|
| 273 |
},
|
| 274 |
{
|
| 275 |
-
"epoch":
|
| 276 |
-
"learning_rate": 1.
|
| 277 |
-
"loss": 0.
|
| 278 |
"step": 225
|
| 279 |
},
|
| 280 |
{
|
| 281 |
-
"epoch":
|
| 282 |
-
"learning_rate": 1.
|
| 283 |
-
"loss":
|
| 284 |
"step": 230
|
| 285 |
},
|
| 286 |
{
|
| 287 |
-
"epoch":
|
| 288 |
-
"learning_rate": 1.
|
| 289 |
-
"loss":
|
| 290 |
"step": 235
|
| 291 |
},
|
| 292 |
{
|
| 293 |
-
"epoch":
|
| 294 |
-
"learning_rate": 1.
|
| 295 |
-
"loss":
|
| 296 |
"step": 240
|
| 297 |
},
|
| 298 |
{
|
| 299 |
-
"epoch":
|
| 300 |
-
"learning_rate": 1.
|
| 301 |
-
"loss": 0.
|
| 302 |
"step": 245
|
| 303 |
},
|
| 304 |
{
|
| 305 |
-
"epoch":
|
| 306 |
-
"learning_rate":
|
| 307 |
-
"loss":
|
| 308 |
"step": 250
|
| 309 |
},
|
| 310 |
{
|
| 311 |
-
"epoch":
|
| 312 |
-
"learning_rate":
|
| 313 |
-
"loss":
|
| 314 |
"step": 255
|
| 315 |
},
|
| 316 |
{
|
| 317 |
-
"epoch":
|
| 318 |
-
"learning_rate":
|
| 319 |
-
"loss":
|
| 320 |
"step": 260
|
| 321 |
},
|
| 322 |
{
|
| 323 |
-
"epoch":
|
| 324 |
-
"learning_rate":
|
| 325 |
-
"loss": 0.
|
| 326 |
"step": 265
|
| 327 |
},
|
| 328 |
{
|
| 329 |
-
"epoch":
|
| 330 |
-
"learning_rate":
|
| 331 |
-
"loss": 0.
|
| 332 |
"step": 270
|
| 333 |
},
|
| 334 |
{
|
| 335 |
-
"epoch":
|
| 336 |
-
"learning_rate":
|
| 337 |
-
"loss": 0.
|
| 338 |
"step": 275
|
| 339 |
},
|
| 340 |
{
|
| 341 |
-
"epoch":
|
| 342 |
-
"learning_rate":
|
| 343 |
-
"loss":
|
| 344 |
"step": 280
|
| 345 |
},
|
| 346 |
{
|
| 347 |
-
"epoch":
|
| 348 |
-
"learning_rate":
|
| 349 |
-
"loss":
|
| 350 |
"step": 285
|
| 351 |
},
|
| 352 |
{
|
| 353 |
-
"epoch":
|
| 354 |
-
"learning_rate":
|
| 355 |
-
"loss":
|
| 356 |
"step": 290
|
| 357 |
-
},
|
| 358 |
-
{
|
| 359 |
-
"epoch": 0.47,
|
| 360 |
-
"learning_rate": 1.790876920029647e-05,
|
| 361 |
-
"loss": 0.9168,
|
| 362 |
-
"step": 295
|
| 363 |
-
},
|
| 364 |
-
{
|
| 365 |
-
"epoch": 0.47,
|
| 366 |
-
"learning_rate": 1.7829713694717665e-05,
|
| 367 |
-
"loss": 1.0295,
|
| 368 |
-
"step": 300
|
| 369 |
-
},
|
| 370 |
-
{
|
| 371 |
-
"epoch": 0.48,
|
| 372 |
-
"learning_rate": 1.774937290616533e-05,
|
| 373 |
-
"loss": 0.9455,
|
| 374 |
-
"step": 305
|
| 375 |
-
},
|
| 376 |
-
{
|
| 377 |
-
"epoch": 0.49,
|
| 378 |
-
"learning_rate": 1.7667760022943864e-05,
|
| 379 |
-
"loss": 1.0272,
|
| 380 |
-
"step": 310
|
| 381 |
-
},
|
| 382 |
-
{
|
| 383 |
-
"epoch": 0.5,
|
| 384 |
-
"learning_rate": 1.7584888442177774e-05,
|
| 385 |
-
"loss": 1.127,
|
| 386 |
-
"step": 315
|
| 387 |
-
},
|
| 388 |
-
{
|
| 389 |
-
"epoch": 0.51,
|
| 390 |
-
"learning_rate": 1.7500771767612473e-05,
|
| 391 |
-
"loss": 1.0332,
|
| 392 |
-
"step": 320
|
| 393 |
-
},
|
| 394 |
-
{
|
| 395 |
-
"epoch": 0.51,
|
| 396 |
-
"learning_rate": 1.7415423807381162e-05,
|
| 397 |
-
"loss": 1.0603,
|
| 398 |
-
"step": 325
|
| 399 |
-
},
|
| 400 |
-
{
|
| 401 |
-
"epoch": 0.52,
|
| 402 |
-
"learning_rate": 1.7328858571738157e-05,
|
| 403 |
-
"loss": 1.1075,
|
| 404 |
-
"step": 330
|
| 405 |
-
},
|
| 406 |
-
{
|
| 407 |
-
"epoch": 0.53,
|
| 408 |
-
"learning_rate": 1.7241090270759055e-05,
|
| 409 |
-
"loss": 1.1279,
|
| 410 |
-
"step": 335
|
| 411 |
-
},
|
| 412 |
-
{
|
| 413 |
-
"epoch": 0.54,
|
| 414 |
-
"learning_rate": 1.715213331200807e-05,
|
| 415 |
-
"loss": 1.1037,
|
| 416 |
-
"step": 340
|
| 417 |
-
},
|
| 418 |
-
{
|
| 419 |
-
"epoch": 0.55,
|
| 420 |
-
"learning_rate": 1.7062002298172984e-05,
|
| 421 |
-
"loss": 0.9818,
|
| 422 |
-
"step": 345
|
| 423 |
-
},
|
| 424 |
-
{
|
| 425 |
-
"epoch": 0.55,
|
| 426 |
-
"learning_rate": 1.697071202466803e-05,
|
| 427 |
-
"loss": 0.9672,
|
| 428 |
-
"step": 350
|
| 429 |
-
},
|
| 430 |
-
{
|
| 431 |
-
"epoch": 0.56,
|
| 432 |
-
"learning_rate": 1.687827747720517e-05,
|
| 433 |
-
"loss": 0.8006,
|
| 434 |
-
"step": 355
|
| 435 |
-
},
|
| 436 |
-
{
|
| 437 |
-
"epoch": 0.57,
|
| 438 |
-
"learning_rate": 1.6784713829334124e-05,
|
| 439 |
-
"loss": 0.9823,
|
| 440 |
-
"step": 360
|
| 441 |
-
},
|
| 442 |
-
{
|
| 443 |
-
"epoch": 0.58,
|
| 444 |
-
"learning_rate": 1.6690036439951552e-05,
|
| 445 |
-
"loss": 1.0844,
|
| 446 |
-
"step": 365
|
| 447 |
-
},
|
| 448 |
-
{
|
| 449 |
-
"epoch": 0.59,
|
| 450 |
-
"learning_rate": 1.6594260850779837e-05,
|
| 451 |
-
"loss": 1.0858,
|
| 452 |
-
"step": 370
|
| 453 |
-
},
|
| 454 |
-
{
|
| 455 |
-
"epoch": 0.59,
|
| 456 |
-
"learning_rate": 1.6497402783815834e-05,
|
| 457 |
-
"loss": 0.9117,
|
| 458 |
-
"step": 375
|
| 459 |
-
},
|
| 460 |
-
{
|
| 461 |
-
"epoch": 0.6,
|
| 462 |
-
"learning_rate": 1.6399478138750015e-05,
|
| 463 |
-
"loss": 0.9313,
|
| 464 |
-
"step": 380
|
| 465 |
-
},
|
| 466 |
-
{
|
| 467 |
-
"epoch": 0.61,
|
| 468 |
-
"learning_rate": 1.63005029903565e-05,
|
| 469 |
-
"loss": 0.9776,
|
| 470 |
-
"step": 385
|
| 471 |
-
},
|
| 472 |
-
{
|
| 473 |
-
"epoch": 0.62,
|
| 474 |
-
"learning_rate": 1.620049358585427e-05,
|
| 475 |
-
"loss": 1.1445,
|
| 476 |
-
"step": 390
|
| 477 |
-
},
|
| 478 |
-
{
|
| 479 |
-
"epoch": 0.62,
|
| 480 |
-
"learning_rate": 1.609946634224015e-05,
|
| 481 |
-
"loss": 1.0567,
|
| 482 |
-
"step": 395
|
| 483 |
-
},
|
| 484 |
-
{
|
| 485 |
-
"epoch": 0.63,
|
| 486 |
-
"learning_rate": 1.5997437843593856e-05,
|
| 487 |
-
"loss": 0.9138,
|
| 488 |
-
"step": 400
|
| 489 |
-
},
|
| 490 |
-
{
|
| 491 |
-
"epoch": 0.64,
|
| 492 |
-
"learning_rate": 1.5894424838355654e-05,
|
| 493 |
-
"loss": 1.1003,
|
| 494 |
-
"step": 405
|
| 495 |
-
},
|
| 496 |
-
{
|
| 497 |
-
"epoch": 0.65,
|
| 498 |
-
"learning_rate": 1.5790444236577028e-05,
|
| 499 |
-
"loss": 1.0624,
|
| 500 |
-
"step": 410
|
| 501 |
-
},
|
| 502 |
-
{
|
| 503 |
-
"epoch": 0.66,
|
| 504 |
-
"learning_rate": 1.568551310714482e-05,
|
| 505 |
-
"loss": 0.8902,
|
| 506 |
-
"step": 415
|
| 507 |
-
},
|
| 508 |
-
{
|
| 509 |
-
"epoch": 0.66,
|
| 510 |
-
"learning_rate": 1.557964867497929e-05,
|
| 511 |
-
"loss": 1.0329,
|
| 512 |
-
"step": 420
|
| 513 |
-
},
|
| 514 |
-
{
|
| 515 |
-
"epoch": 0.67,
|
| 516 |
-
"learning_rate": 1.5472868318206566e-05,
|
| 517 |
-
"loss": 1.0023,
|
| 518 |
-
"step": 425
|
| 519 |
-
},
|
| 520 |
-
{
|
| 521 |
-
"epoch": 0.68,
|
| 522 |
-
"learning_rate": 1.5365189565305957e-05,
|
| 523 |
-
"loss": 0.9393,
|
| 524 |
-
"step": 430
|
| 525 |
-
},
|
| 526 |
-
{
|
| 527 |
-
"epoch": 0.69,
|
| 528 |
-
"learning_rate": 1.5256630092232567e-05,
|
| 529 |
-
"loss": 0.9747,
|
| 530 |
-
"step": 435
|
| 531 |
-
},
|
| 532 |
-
{
|
| 533 |
-
"epoch": 0.7,
|
| 534 |
-
"learning_rate": 1.5147207719515692e-05,
|
| 535 |
-
"loss": 1.0078,
|
| 536 |
-
"step": 440
|
| 537 |
-
},
|
| 538 |
-
{
|
| 539 |
-
"epoch": 0.7,
|
| 540 |
-
"learning_rate": 1.5036940409333533e-05,
|
| 541 |
-
"loss": 0.9576,
|
| 542 |
-
"step": 445
|
| 543 |
-
},
|
| 544 |
-
{
|
| 545 |
-
"epoch": 0.71,
|
| 546 |
-
"learning_rate": 1.4925846262564592e-05,
|
| 547 |
-
"loss": 0.992,
|
| 548 |
-
"step": 450
|
| 549 |
-
},
|
| 550 |
-
{
|
| 551 |
-
"epoch": 0.72,
|
| 552 |
-
"learning_rate": 1.4813943515816344e-05,
|
| 553 |
-
"loss": 1.0192,
|
| 554 |
-
"step": 455
|
| 555 |
-
},
|
| 556 |
-
{
|
| 557 |
-
"epoch": 0.73,
|
| 558 |
-
"learning_rate": 1.4701250538431617e-05,
|
| 559 |
-
"loss": 1.0154,
|
| 560 |
-
"step": 460
|
| 561 |
-
},
|
| 562 |
-
{
|
| 563 |
-
"epoch": 0.74,
|
| 564 |
-
"learning_rate": 1.4587785829473173e-05,
|
| 565 |
-
"loss": 1.1043,
|
| 566 |
-
"step": 465
|
| 567 |
-
},
|
| 568 |
-
{
|
| 569 |
-
"epoch": 0.74,
|
| 570 |
-
"learning_rate": 1.4473568014687018e-05,
|
| 571 |
-
"loss": 0.8351,
|
| 572 |
-
"step": 470
|
| 573 |
-
},
|
| 574 |
-
{
|
| 575 |
-
"epoch": 0.75,
|
| 576 |
-
"learning_rate": 1.4358615843444876e-05,
|
| 577 |
-
"loss": 1.0276,
|
| 578 |
-
"step": 475
|
| 579 |
-
},
|
| 580 |
-
{
|
| 581 |
-
"epoch": 0.76,
|
| 582 |
-
"learning_rate": 1.4242948185666419e-05,
|
| 583 |
-
"loss": 0.9423,
|
| 584 |
-
"step": 480
|
| 585 |
-
},
|
| 586 |
-
{
|
| 587 |
-
"epoch": 0.77,
|
| 588 |
-
"learning_rate": 1.4126584028721677e-05,
|
| 589 |
-
"loss": 0.9598,
|
| 590 |
-
"step": 485
|
| 591 |
-
},
|
| 592 |
-
{
|
| 593 |
-
"epoch": 0.77,
|
| 594 |
-
"learning_rate": 1.4009542474314173e-05,
|
| 595 |
-
"loss": 1.1755,
|
| 596 |
-
"step": 490
|
| 597 |
-
},
|
| 598 |
-
{
|
| 599 |
-
"epoch": 0.78,
|
| 600 |
-
"learning_rate": 1.3891842735345285e-05,
|
| 601 |
-
"loss": 1.1018,
|
| 602 |
-
"step": 495
|
| 603 |
-
},
|
| 604 |
-
{
|
| 605 |
-
"epoch": 0.79,
|
| 606 |
-
"learning_rate": 1.3773504132760379e-05,
|
| 607 |
-
"loss": 1.0445,
|
| 608 |
-
"step": 500
|
| 609 |
-
},
|
| 610 |
-
{
|
| 611 |
-
"epoch": 0.8,
|
| 612 |
-
"learning_rate": 1.3654546092377166e-05,
|
| 613 |
-
"loss": 0.9674,
|
| 614 |
-
"step": 505
|
| 615 |
-
},
|
| 616 |
-
{
|
| 617 |
-
"epoch": 0.81,
|
| 618 |
-
"learning_rate": 1.3534988141696891e-05,
|
| 619 |
-
"loss": 1.0473,
|
| 620 |
-
"step": 510
|
| 621 |
-
},
|
| 622 |
-
{
|
| 623 |
-
"epoch": 0.81,
|
| 624 |
-
"learning_rate": 1.3414849906698788e-05,
|
| 625 |
-
"loss": 0.9346,
|
| 626 |
-
"step": 515
|
| 627 |
-
},
|
| 628 |
-
{
|
| 629 |
-
"epoch": 0.82,
|
| 630 |
-
"learning_rate": 1.3294151108618379e-05,
|
| 631 |
-
"loss": 0.9643,
|
| 632 |
-
"step": 520
|
| 633 |
-
},
|
| 634 |
-
{
|
| 635 |
-
"epoch": 0.83,
|
| 636 |
-
"learning_rate": 1.3172911560710167e-05,
|
| 637 |
-
"loss": 1.113,
|
| 638 |
-
"step": 525
|
| 639 |
-
},
|
| 640 |
-
{
|
| 641 |
-
"epoch": 0.84,
|
| 642 |
-
"learning_rate": 1.3051151164995188e-05,
|
| 643 |
-
"loss": 1.0155,
|
| 644 |
-
"step": 530
|
| 645 |
-
},
|
| 646 |
-
{
|
| 647 |
-
"epoch": 0.85,
|
| 648 |
-
"learning_rate": 1.2928889908994003e-05,
|
| 649 |
-
"loss": 0.9675,
|
| 650 |
-
"step": 535
|
| 651 |
-
},
|
| 652 |
-
{
|
| 653 |
-
"epoch": 0.85,
|
| 654 |
-
"learning_rate": 1.280614786244566e-05,
|
| 655 |
-
"loss": 0.8424,
|
| 656 |
-
"step": 540
|
| 657 |
-
},
|
| 658 |
-
{
|
| 659 |
-
"epoch": 0.86,
|
| 660 |
-
"learning_rate": 1.2682945174013148e-05,
|
| 661 |
-
"loss": 1.1247,
|
| 662 |
-
"step": 545
|
| 663 |
-
},
|
| 664 |
-
{
|
| 665 |
-
"epoch": 0.87,
|
| 666 |
-
"learning_rate": 1.2559302067975914e-05,
|
| 667 |
-
"loss": 0.9641,
|
| 668 |
-
"step": 550
|
| 669 |
-
},
|
| 670 |
-
{
|
| 671 |
-
"epoch": 0.88,
|
| 672 |
-
"learning_rate": 1.243523884090995e-05,
|
| 673 |
-
"loss": 1.0329,
|
| 674 |
-
"step": 555
|
| 675 |
-
},
|
| 676 |
-
{
|
| 677 |
-
"epoch": 0.89,
|
| 678 |
-
"learning_rate": 1.2310775858356017e-05,
|
| 679 |
-
"loss": 1.0533,
|
| 680 |
-
"step": 560
|
| 681 |
-
},
|
| 682 |
-
{
|
| 683 |
-
"epoch": 0.89,
|
| 684 |
-
"learning_rate": 1.2185933551476545e-05,
|
| 685 |
-
"loss": 1.0216,
|
| 686 |
-
"step": 565
|
| 687 |
-
},
|
| 688 |
-
{
|
| 689 |
-
"epoch": 0.9,
|
| 690 |
-
"learning_rate": 1.2060732413701773e-05,
|
| 691 |
-
"loss": 1.0346,
|
| 692 |
-
"step": 570
|
| 693 |
-
},
|
| 694 |
-
{
|
| 695 |
-
"epoch": 0.91,
|
| 696 |
-
"learning_rate": 1.1935192997365666e-05,
|
| 697 |
-
"loss": 0.9749,
|
| 698 |
-
"step": 575
|
| 699 |
-
},
|
| 700 |
-
{
|
| 701 |
-
"epoch": 0.92,
|
| 702 |
-
"learning_rate": 1.1809335910332136e-05,
|
| 703 |
-
"loss": 1.0901,
|
| 704 |
-
"step": 580
|
| 705 |
-
},
|
| 706 |
-
{
|
| 707 |
-
"epoch": 0.93,
|
| 708 |
-
"learning_rate": 1.1683181812612186e-05,
|
| 709 |
-
"loss": 1.0043,
|
| 710 |
-
"step": 585
|
| 711 |
-
},
|
| 712 |
-
{
|
| 713 |
-
"epoch": 0.93,
|
| 714 |
-
"learning_rate": 1.1556751412972462e-05,
|
| 715 |
-
"loss": 0.9162,
|
| 716 |
-
"step": 590
|
| 717 |
-
},
|
| 718 |
-
{
|
| 719 |
-
"epoch": 0.94,
|
| 720 |
-
"learning_rate": 1.1430065465535827e-05,
|
| 721 |
-
"loss": 0.9228,
|
| 722 |
-
"step": 595
|
| 723 |
-
},
|
| 724 |
-
{
|
| 725 |
-
"epoch": 0.95,
|
| 726 |
-
"learning_rate": 1.1303144766374476e-05,
|
| 727 |
-
"loss": 0.9568,
|
| 728 |
-
"step": 600
|
| 729 |
-
},
|
| 730 |
-
{
|
| 731 |
-
"epoch": 0.96,
|
| 732 |
-
"learning_rate": 1.1176010150096158e-05,
|
| 733 |
-
"loss": 1.063,
|
| 734 |
-
"step": 605
|
| 735 |
-
},
|
| 736 |
-
{
|
| 737 |
-
"epoch": 0.96,
|
| 738 |
-
"learning_rate": 1.104868248642408e-05,
|
| 739 |
-
"loss": 0.9938,
|
| 740 |
-
"step": 610
|
| 741 |
-
},
|
| 742 |
-
{
|
| 743 |
-
"epoch": 0.97,
|
| 744 |
-
"learning_rate": 1.092118267677106e-05,
|
| 745 |
-
"loss": 1.1056,
|
| 746 |
-
"step": 615
|
| 747 |
-
},
|
| 748 |
-
{
|
| 749 |
-
"epoch": 0.98,
|
| 750 |
-
"learning_rate": 1.0793531650808469e-05,
|
| 751 |
-
"loss": 0.9269,
|
| 752 |
-
"step": 620
|
| 753 |
-
},
|
| 754 |
-
{
|
| 755 |
-
"epoch": 0.99,
|
| 756 |
-
"learning_rate": 1.0665750363030498e-05,
|
| 757 |
-
"loss": 1.0452,
|
| 758 |
-
"step": 625
|
| 759 |
-
},
|
| 760 |
-
{
|
| 761 |
-
"epoch": 1.0,
|
| 762 |
-
"learning_rate": 1.0537859789314424e-05,
|
| 763 |
-
"loss": 0.8855,
|
| 764 |
-
"step": 630
|
| 765 |
-
},
|
| 766 |
-
{
|
| 767 |
-
"epoch": 1.0,
|
| 768 |
-
"learning_rate": 1.0409880923477293e-05,
|
| 769 |
-
"loss": 1.0583,
|
| 770 |
-
"step": 635
|
| 771 |
-
},
|
| 772 |
-
{
|
| 773 |
-
"epoch": 1.01,
|
| 774 |
-
"learning_rate": 1.028183477382971e-05,
|
| 775 |
-
"loss": 0.8533,
|
| 776 |
-
"step": 640
|
| 777 |
-
},
|
| 778 |
-
{
|
| 779 |
-
"epoch": 1.02,
|
| 780 |
-
"learning_rate": 1.0153742359727226e-05,
|
| 781 |
-
"loss": 0.942,
|
| 782 |
-
"step": 645
|
| 783 |
-
},
|
| 784 |
-
{
|
| 785 |
-
"epoch": 1.03,
|
| 786 |
-
"learning_rate": 1.0025624708119901e-05,
|
| 787 |
-
"loss": 1.0044,
|
| 788 |
-
"step": 650
|
| 789 |
-
},
|
| 790 |
-
{
|
| 791 |
-
"epoch": 1.04,
|
| 792 |
-
"learning_rate": 9.897502850100648e-06,
|
| 793 |
-
"loss": 0.9652,
|
| 794 |
-
"step": 655
|
| 795 |
-
},
|
| 796 |
-
{
|
| 797 |
-
"epoch": 1.04,
|
| 798 |
-
"learning_rate": 9.76939781745289e-06,
|
| 799 |
-
"loss": 1.0202,
|
| 800 |
-
"step": 660
|
| 801 |
-
},
|
| 802 |
-
{
|
| 803 |
-
"epoch": 1.05,
|
| 804 |
-
"learning_rate": 9.641330639198083e-06,
|
| 805 |
-
"loss": 0.9401,
|
| 806 |
-
"step": 665
|
| 807 |
-
},
|
| 808 |
-
{
|
| 809 |
-
"epoch": 1.06,
|
| 810 |
-
"learning_rate": 9.513322338143714e-06,
|
| 811 |
-
"loss": 0.8343,
|
| 812 |
-
"step": 670
|
| 813 |
-
},
|
| 814 |
-
{
|
| 815 |
-
"epoch": 1.07,
|
| 816 |
-
"learning_rate": 9.385393927432307e-06,
|
| 817 |
-
"loss": 0.8904,
|
| 818 |
-
"step": 675
|
| 819 |
-
},
|
| 820 |
-
{
|
| 821 |
-
"epoch": 1.08,
|
| 822 |
-
"learning_rate": 9.257566407092032e-06,
|
| 823 |
-
"loss": 0.9143,
|
| 824 |
-
"step": 680
|
| 825 |
-
},
|
| 826 |
-
{
|
| 827 |
-
"epoch": 1.08,
|
| 828 |
-
"learning_rate": 9.129860760589441e-06,
|
| 829 |
-
"loss": 0.8408,
|
| 830 |
-
"step": 685
|
| 831 |
-
},
|
| 832 |
-
{
|
| 833 |
-
"epoch": 1.09,
|
| 834 |
-
"learning_rate": 9.002297951384945e-06,
|
| 835 |
-
"loss": 0.9426,
|
| 836 |
-
"step": 690
|
| 837 |
-
},
|
| 838 |
-
{
|
| 839 |
-
"epoch": 1.1,
|
| 840 |
-
"learning_rate": 8.874898919491564e-06,
|
| 841 |
-
"loss": 0.9476,
|
| 842 |
-
"step": 695
|
| 843 |
-
},
|
| 844 |
-
{
|
| 845 |
-
"epoch": 1.11,
|
| 846 |
-
"learning_rate": 8.74768457803754e-06,
|
| 847 |
-
"loss": 0.9992,
|
| 848 |
-
"step": 700
|
| 849 |
-
},
|
| 850 |
-
{
|
| 851 |
-
"epoch": 1.12,
|
| 852 |
-
"learning_rate": 8.62067580983333e-06,
|
| 853 |
-
"loss": 0.8491,
|
| 854 |
-
"step": 705
|
| 855 |
-
},
|
| 856 |
-
{
|
| 857 |
-
"epoch": 1.12,
|
| 858 |
-
"learning_rate": 8.493893463943617e-06,
|
| 859 |
-
"loss": 0.8829,
|
| 860 |
-
"step": 710
|
| 861 |
-
},
|
| 862 |
-
{
|
| 863 |
-
"epoch": 1.13,
|
| 864 |
-
"learning_rate": 8.367358352264834e-06,
|
| 865 |
-
"loss": 0.7933,
|
| 866 |
-
"step": 715
|
| 867 |
-
},
|
| 868 |
-
{
|
| 869 |
-
"epoch": 1.14,
|
| 870 |
-
"learning_rate": 8.241091246108796e-06,
|
| 871 |
-
"loss": 0.9976,
|
| 872 |
-
"step": 720
|
| 873 |
-
},
|
| 874 |
-
{
|
| 875 |
-
"epoch": 1.15,
|
| 876 |
-
"learning_rate": 8.115112872793006e-06,
|
| 877 |
-
"loss": 0.9947,
|
| 878 |
-
"step": 725
|
| 879 |
-
},
|
| 880 |
-
{
|
| 881 |
-
"epoch": 1.15,
|
| 882 |
-
"learning_rate": 7.989443912238151e-06,
|
| 883 |
-
"loss": 0.9171,
|
| 884 |
-
"step": 730
|
| 885 |
-
},
|
| 886 |
-
{
|
| 887 |
-
"epoch": 1.16,
|
| 888 |
-
"learning_rate": 7.864104993573422e-06,
|
| 889 |
-
"loss": 0.9348,
|
| 890 |
-
"step": 735
|
| 891 |
-
},
|
| 892 |
-
{
|
| 893 |
-
"epoch": 1.17,
|
| 894 |
-
"learning_rate": 7.73911669175013e-06,
|
| 895 |
-
"loss": 0.9357,
|
| 896 |
-
"step": 740
|
| 897 |
-
},
|
| 898 |
-
{
|
| 899 |
-
"epoch": 1.18,
|
| 900 |
-
"learning_rate": 7.614499524164251e-06,
|
| 901 |
-
"loss": 0.9273,
|
| 902 |
-
"step": 745
|
| 903 |
-
},
|
| 904 |
-
{
|
| 905 |
-
"epoch": 1.19,
|
| 906 |
-
"learning_rate": 7.490273947288389e-06,
|
| 907 |
-
"loss": 0.8991,
|
| 908 |
-
"step": 750
|
| 909 |
-
},
|
| 910 |
-
{
|
| 911 |
-
"epoch": 1.19,
|
| 912 |
-
"learning_rate": 7.366460353313762e-06,
|
| 913 |
-
"loss": 0.8373,
|
| 914 |
-
"step": 755
|
| 915 |
-
},
|
| 916 |
-
{
|
| 917 |
-
"epoch": 1.2,
|
| 918 |
-
"learning_rate": 7.2430790668027274e-06,
|
| 919 |
-
"loss": 0.8316,
|
| 920 |
-
"step": 760
|
| 921 |
-
},
|
| 922 |
-
{
|
| 923 |
-
"epoch": 1.21,
|
| 924 |
-
"learning_rate": 7.120150341352413e-06,
|
| 925 |
-
"loss": 0.7532,
|
| 926 |
-
"step": 765
|
| 927 |
-
},
|
| 928 |
-
{
|
| 929 |
-
"epoch": 1.22,
|
| 930 |
-
"learning_rate": 6.99769435627e-06,
|
| 931 |
-
"loss": 0.8851,
|
| 932 |
-
"step": 770
|
| 933 |
-
},
|
| 934 |
-
{
|
| 935 |
-
"epoch": 1.23,
|
| 936 |
-
"learning_rate": 6.875731213260193e-06,
|
| 937 |
-
"loss": 0.9678,
|
| 938 |
-
"step": 775
|
| 939 |
-
},
|
| 940 |
-
{
|
| 941 |
-
"epoch": 1.23,
|
| 942 |
-
"learning_rate": 6.754280933125441e-06,
|
| 943 |
-
"loss": 0.9968,
|
| 944 |
-
"step": 780
|
| 945 |
-
},
|
| 946 |
-
{
|
| 947 |
-
"epoch": 1.24,
|
| 948 |
-
"learning_rate": 6.633363452479431e-06,
|
| 949 |
-
"loss": 0.9126,
|
| 950 |
-
"step": 785
|
| 951 |
-
},
|
| 952 |
-
{
|
| 953 |
-
"epoch": 1.25,
|
| 954 |
-
"learning_rate": 6.512998620474396e-06,
|
| 955 |
-
"loss": 0.8765,
|
| 956 |
-
"step": 790
|
| 957 |
-
},
|
| 958 |
-
{
|
| 959 |
-
"epoch": 1.26,
|
| 960 |
-
"learning_rate": 6.393206195542791e-06,
|
| 961 |
-
"loss": 0.8761,
|
| 962 |
-
"step": 795
|
| 963 |
-
},
|
| 964 |
-
{
|
| 965 |
-
"epoch": 1.27,
|
| 966 |
-
"learning_rate": 6.27400584215386e-06,
|
| 967 |
-
"loss": 0.99,
|
| 968 |
-
"step": 800
|
| 969 |
-
},
|
| 970 |
-
{
|
| 971 |
-
"epoch": 1.27,
|
| 972 |
-
"learning_rate": 6.155417127585617e-06,
|
| 973 |
-
"loss": 0.7691,
|
| 974 |
-
"step": 805
|
| 975 |
-
},
|
| 976 |
-
{
|
| 977 |
-
"epoch": 1.28,
|
| 978 |
-
"learning_rate": 6.037459518712796e-06,
|
| 979 |
-
"loss": 0.7794,
|
| 980 |
-
"step": 810
|
| 981 |
-
},
|
| 982 |
-
{
|
| 983 |
-
"epoch": 1.29,
|
| 984 |
-
"learning_rate": 5.920152378811268e-06,
|
| 985 |
-
"loss": 0.9978,
|
| 986 |
-
"step": 815
|
| 987 |
-
},
|
| 988 |
-
{
|
| 989 |
-
"epoch": 1.3,
|
| 990 |
-
"learning_rate": 5.803514964379482e-06,
|
| 991 |
-
"loss": 0.8165,
|
| 992 |
-
"step": 820
|
| 993 |
-
},
|
| 994 |
-
{
|
| 995 |
-
"epoch": 1.31,
|
| 996 |
-
"learning_rate": 5.68756642197741e-06,
|
| 997 |
-
"loss": 0.8918,
|
| 998 |
-
"step": 825
|
| 999 |
-
},
|
| 1000 |
-
{
|
| 1001 |
-
"epoch": 1.31,
|
| 1002 |
-
"learning_rate": 5.572325785083563e-06,
|
| 1003 |
-
"loss": 0.9572,
|
| 1004 |
-
"step": 830
|
| 1005 |
-
},
|
| 1006 |
-
{
|
| 1007 |
-
"epoch": 1.32,
|
| 1008 |
-
"learning_rate": 5.457811970970564e-06,
|
| 1009 |
-
"loss": 0.9112,
|
| 1010 |
-
"step": 835
|
| 1011 |
-
},
|
| 1012 |
-
{
|
| 1013 |
-
"epoch": 1.33,
|
| 1014 |
-
"learning_rate": 5.3440437775997636e-06,
|
| 1015 |
-
"loss": 0.9659,
|
| 1016 |
-
"step": 840
|
| 1017 |
-
},
|
| 1018 |
-
{
|
| 1019 |
-
"epoch": 1.34,
|
| 1020 |
-
"learning_rate": 5.231039880535511e-06,
|
| 1021 |
-
"loss": 0.9516,
|
| 1022 |
-
"step": 845
|
| 1023 |
-
},
|
| 1024 |
-
{
|
| 1025 |
-
"epoch": 1.34,
|
| 1026 |
-
"learning_rate": 5.118818829879442e-06,
|
| 1027 |
-
"loss": 1.076,
|
| 1028 |
-
"step": 850
|
| 1029 |
-
},
|
| 1030 |
-
{
|
| 1031 |
-
"epoch": 1.35,
|
| 1032 |
-
"learning_rate": 5.0073990472254075e-06,
|
| 1033 |
-
"loss": 0.8136,
|
| 1034 |
-
"step": 855
|
| 1035 |
-
},
|
| 1036 |
-
{
|
| 1037 |
-
"epoch": 1.36,
|
| 1038 |
-
"learning_rate": 4.8967988226354945e-06,
|
| 1039 |
-
"loss": 0.9711,
|
| 1040 |
-
"step": 860
|
| 1041 |
-
},
|
| 1042 |
-
{
|
| 1043 |
-
"epoch": 1.37,
|
| 1044 |
-
"learning_rate": 4.787036311637609e-06,
|
| 1045 |
-
"loss": 0.8879,
|
| 1046 |
-
"step": 865
|
| 1047 |
-
},
|
| 1048 |
-
{
|
| 1049 |
-
"epoch": 1.38,
|
| 1050 |
-
"learning_rate": 4.678129532245189e-06,
|
| 1051 |
-
"loss": 1.0423,
|
| 1052 |
-
"step": 870
|
| 1053 |
-
},
|
| 1054 |
-
{
|
| 1055 |
-
"epoch": 1.38,
|
| 1056 |
-
"learning_rate": 4.570096361999445e-06,
|
| 1057 |
-
"loss": 0.892,
|
| 1058 |
-
"step": 875
|
| 1059 |
-
},
|
| 1060 |
-
{
|
| 1061 |
-
"epoch": 1.39,
|
| 1062 |
-
"learning_rate": 4.462954535034692e-06,
|
| 1063 |
-
"loss": 0.9188,
|
| 1064 |
-
"step": 880
|
| 1065 |
-
},
|
| 1066 |
-
{
|
| 1067 |
-
"epoch": 1.4,
|
| 1068 |
-
"learning_rate": 4.356721639167202e-06,
|
| 1069 |
-
"loss": 0.8706,
|
| 1070 |
-
"step": 885
|
| 1071 |
-
},
|
| 1072 |
-
{
|
| 1073 |
-
"epoch": 1.41,
|
| 1074 |
-
"learning_rate": 4.251415113008096e-06,
|
| 1075 |
-
"loss": 0.8926,
|
| 1076 |
-
"step": 890
|
| 1077 |
-
},
|
| 1078 |
-
{
|
| 1079 |
-
"epoch": 1.42,
|
| 1080 |
-
"learning_rate": 4.147052243100706e-06,
|
| 1081 |
-
"loss": 0.9126,
|
| 1082 |
-
"step": 895
|
| 1083 |
-
},
|
| 1084 |
-
{
|
| 1085 |
-
"epoch": 1.42,
|
| 1086 |
-
"learning_rate": 4.043650161082913e-06,
|
| 1087 |
-
"loss": 0.9201,
|
| 1088 |
-
"step": 900
|
| 1089 |
-
},
|
| 1090 |
-
{
|
| 1091 |
-
"epoch": 1.43,
|
| 1092 |
-
"learning_rate": 3.941225840874925e-06,
|
| 1093 |
-
"loss": 0.8758,
|
| 1094 |
-
"step": 905
|
| 1095 |
-
},
|
| 1096 |
-
{
|
| 1097 |
-
"epoch": 1.44,
|
| 1098 |
-
"learning_rate": 3.839796095892905e-06,
|
| 1099 |
-
"loss": 0.8818,
|
| 1100 |
-
"step": 910
|
| 1101 |
-
},
|
| 1102 |
-
{
|
| 1103 |
-
"epoch": 1.45,
|
| 1104 |
-
"learning_rate": 3.7393775762889963e-06,
|
| 1105 |
-
"loss": 0.9018,
|
| 1106 |
-
"step": 915
|
| 1107 |
-
},
|
| 1108 |
-
{
|
| 1109 |
-
"epoch": 1.46,
|
| 1110 |
-
"learning_rate": 3.639986766218112e-06,
|
| 1111 |
-
"loss": 0.8346,
|
| 1112 |
-
"step": 920
|
| 1113 |
-
},
|
| 1114 |
-
{
|
| 1115 |
-
"epoch": 1.46,
|
| 1116 |
-
"learning_rate": 3.541639981131996e-06,
|
| 1117 |
-
"loss": 0.9619,
|
| 1118 |
-
"step": 925
|
| 1119 |
-
},
|
| 1120 |
-
{
|
| 1121 |
-
"epoch": 1.47,
|
| 1122 |
-
"learning_rate": 3.4443533651009474e-06,
|
| 1123 |
-
"loss": 1.0202,
|
| 1124 |
-
"step": 930
|
| 1125 |
-
},
|
| 1126 |
-
{
|
| 1127 |
-
"epoch": 1.48,
|
| 1128 |
-
"learning_rate": 3.348142888163726e-06,
|
| 1129 |
-
"loss": 0.9186,
|
| 1130 |
-
"step": 935
|
| 1131 |
-
},
|
| 1132 |
-
{
|
| 1133 |
-
"epoch": 1.49,
|
| 1134 |
-
"learning_rate": 3.2530243437059773e-06,
|
| 1135 |
-
"loss": 0.9326,
|
| 1136 |
-
"step": 940
|
| 1137 |
-
},
|
| 1138 |
-
{
|
| 1139 |
-
"epoch": 1.49,
|
| 1140 |
-
"learning_rate": 3.1590133458676787e-06,
|
| 1141 |
-
"loss": 0.8347,
|
| 1142 |
-
"step": 945
|
| 1143 |
-
},
|
| 1144 |
-
{
|
| 1145 |
-
"epoch": 1.5,
|
| 1146 |
-
"learning_rate": 3.066125326980027e-06,
|
| 1147 |
-
"loss": 0.8914,
|
| 1148 |
-
"step": 950
|
| 1149 |
-
},
|
| 1150 |
-
{
|
| 1151 |
-
"epoch": 1.51,
|
| 1152 |
-
"learning_rate": 2.9743755350321213e-06,
|
| 1153 |
-
"loss": 0.8869,
|
| 1154 |
-
"step": 955
|
| 1155 |
-
},
|
| 1156 |
-
{
|
| 1157 |
-
"epoch": 1.52,
|
| 1158 |
-
"learning_rate": 2.8837790311679625e-06,
|
| 1159 |
-
"loss": 0.9833,
|
| 1160 |
-
"step": 960
|
| 1161 |
-
},
|
| 1162 |
-
{
|
| 1163 |
-
"epoch": 1.53,
|
| 1164 |
-
"learning_rate": 2.7943506872140844e-06,
|
| 1165 |
-
"loss": 0.8893,
|
| 1166 |
-
"step": 965
|
| 1167 |
-
},
|
| 1168 |
-
{
|
| 1169 |
-
"epoch": 1.53,
|
| 1170 |
-
"learning_rate": 2.7061051832382836e-06,
|
| 1171 |
-
"loss": 0.8616,
|
| 1172 |
-
"step": 970
|
| 1173 |
-
},
|
| 1174 |
-
{
|
| 1175 |
-
"epoch": 1.54,
|
| 1176 |
-
"learning_rate": 2.6190570051398035e-06,
|
| 1177 |
-
"loss": 0.9909,
|
| 1178 |
-
"step": 975
|
| 1179 |
-
},
|
| 1180 |
-
{
|
| 1181 |
-
"epoch": 1.55,
|
| 1182 |
-
"learning_rate": 2.5332204422714368e-06,
|
| 1183 |
-
"loss": 0.9515,
|
| 1184 |
-
"step": 980
|
| 1185 |
-
},
|
| 1186 |
-
{
|
| 1187 |
-
"epoch": 1.56,
|
| 1188 |
-
"learning_rate": 2.4486095850938352e-06,
|
| 1189 |
-
"loss": 1.0862,
|
| 1190 |
-
"step": 985
|
| 1191 |
-
},
|
| 1192 |
-
{
|
| 1193 |
-
"epoch": 1.57,
|
| 1194 |
-
"learning_rate": 2.365238322862511e-06,
|
| 1195 |
-
"loss": 0.9123,
|
| 1196 |
-
"step": 990
|
| 1197 |
-
},
|
| 1198 |
-
{
|
| 1199 |
-
"epoch": 1.57,
|
| 1200 |
-
"learning_rate": 2.2831203413478555e-06,
|
| 1201 |
-
"loss": 0.8965,
|
| 1202 |
-
"step": 995
|
| 1203 |
-
},
|
| 1204 |
-
{
|
| 1205 |
-
"epoch": 1.58,
|
| 1206 |
-
"learning_rate": 2.202269120588546e-06,
|
| 1207 |
-
"loss": 0.9261,
|
| 1208 |
-
"step": 1000
|
| 1209 |
-
},
|
| 1210 |
-
{
|
| 1211 |
-
"epoch": 1.59,
|
| 1212 |
-
"learning_rate": 2.122697932678748e-06,
|
| 1213 |
-
"loss": 0.9044,
|
| 1214 |
-
"step": 1005
|
| 1215 |
-
},
|
| 1216 |
-
{
|
| 1217 |
-
"epoch": 1.6,
|
| 1218 |
-
"learning_rate": 2.0444198395894332e-06,
|
| 1219 |
-
"loss": 0.923,
|
| 1220 |
-
"step": 1010
|
| 1221 |
-
},
|
| 1222 |
-
{
|
| 1223 |
-
"epoch": 1.61,
|
| 1224 |
-
"learning_rate": 1.9674476910242055e-06,
|
| 1225 |
-
"loss": 0.9581,
|
| 1226 |
-
"step": 1015
|
| 1227 |
-
},
|
| 1228 |
-
{
|
| 1229 |
-
"epoch": 1.61,
|
| 1230 |
-
"learning_rate": 1.891794122309949e-06,
|
| 1231 |
-
"loss": 1.0578,
|
| 1232 |
-
"step": 1020
|
| 1233 |
-
},
|
| 1234 |
-
{
|
| 1235 |
-
"epoch": 1.62,
|
| 1236 |
-
"learning_rate": 1.8174715523227017e-06,
|
| 1237 |
-
"loss": 0.886,
|
| 1238 |
-
"step": 1025
|
| 1239 |
-
},
|
| 1240 |
-
{
|
| 1241 |
-
"epoch": 1.63,
|
| 1242 |
-
"learning_rate": 1.7444921814490256e-06,
|
| 1243 |
-
"loss": 0.8365,
|
| 1244 |
-
"step": 1030
|
| 1245 |
-
},
|
| 1246 |
-
{
|
| 1247 |
-
"epoch": 1.64,
|
| 1248 |
-
"learning_rate": 1.6728679895832622e-06,
|
| 1249 |
-
"loss": 0.9913,
|
| 1250 |
-
"step": 1035
|
| 1251 |
-
},
|
| 1252 |
-
{
|
| 1253 |
-
"epoch": 1.65,
|
| 1254 |
-
"learning_rate": 1.6026107341609842e-06,
|
| 1255 |
-
"loss": 0.8921,
|
| 1256 |
-
"step": 1040
|
| 1257 |
-
},
|
| 1258 |
-
{
|
| 1259 |
-
"epoch": 1.65,
|
| 1260 |
-
"learning_rate": 1.5337319482289503e-06,
|
| 1261 |
-
"loss": 0.8323,
|
| 1262 |
-
"step": 1045
|
| 1263 |
-
},
|
| 1264 |
-
{
|
| 1265 |
-
"epoch": 1.66,
|
| 1266 |
-
"learning_rate": 1.4662429385519084e-06,
|
| 1267 |
-
"loss": 0.8869,
|
| 1268 |
-
"step": 1050
|
| 1269 |
-
},
|
| 1270 |
-
{
|
| 1271 |
-
"epoch": 1.67,
|
| 1272 |
-
"learning_rate": 1.400154783756541e-06,
|
| 1273 |
-
"loss": 0.9799,
|
| 1274 |
-
"step": 1055
|
| 1275 |
-
},
|
| 1276 |
-
{
|
| 1277 |
-
"epoch": 1.68,
|
| 1278 |
-
"learning_rate": 1.3354783325128561e-06,
|
| 1279 |
-
"loss": 0.9416,
|
| 1280 |
-
"step": 1060
|
| 1281 |
-
},
|
| 1282 |
-
{
|
| 1283 |
-
"epoch": 1.68,
|
| 1284 |
-
"learning_rate": 1.2722242017533192e-06,
|
| 1285 |
-
"loss": 0.9801,
|
| 1286 |
-
"step": 1065
|
| 1287 |
-
},
|
| 1288 |
-
{
|
| 1289 |
-
"epoch": 1.69,
|
| 1290 |
-
"learning_rate": 1.2104027749300574e-06,
|
| 1291 |
-
"loss": 0.9614,
|
| 1292 |
-
"step": 1070
|
| 1293 |
-
},
|
| 1294 |
-
{
|
| 1295 |
-
"epoch": 1.7,
|
| 1296 |
-
"learning_rate": 1.150024200310348e-06,
|
| 1297 |
-
"loss": 1.0792,
|
| 1298 |
-
"step": 1075
|
| 1299 |
-
},
|
| 1300 |
-
{
|
| 1301 |
-
"epoch": 1.71,
|
| 1302 |
-
"learning_rate": 1.0910983893107419e-06,
|
| 1303 |
-
"loss": 0.8622,
|
| 1304 |
-
"step": 1080
|
| 1305 |
-
},
|
| 1306 |
-
{
|
| 1307 |
-
"epoch": 1.72,
|
| 1308 |
-
"learning_rate": 1.0336350148700668e-06,
|
| 1309 |
-
"loss": 0.8627,
|
| 1310 |
-
"step": 1085
|
| 1311 |
-
},
|
| 1312 |
-
{
|
| 1313 |
-
"epoch": 1.72,
|
| 1314 |
-
"learning_rate": 9.776435098615578e-07,
|
| 1315 |
-
"loss": 0.857,
|
| 1316 |
-
"step": 1090
|
| 1317 |
-
},
|
| 1318 |
-
{
|
| 1319 |
-
"epoch": 1.73,
|
| 1320 |
-
"learning_rate": 9.231330655444193e-07,
|
| 1321 |
-
"loss": 1.0396,
|
| 1322 |
-
"step": 1095
|
| 1323 |
-
},
|
| 1324 |
-
{
|
| 1325 |
-
"epoch": 1.74,
|
| 1326 |
-
"learning_rate": 8.701126300550322e-07,
|
| 1327 |
-
"loss": 1.0174,
|
| 1328 |
-
"step": 1100
|
| 1329 |
-
},
|
| 1330 |
-
{
|
| 1331 |
-
"epoch": 1.75,
|
| 1332 |
-
"learning_rate": 8.185909069380782e-07,
|
| 1333 |
-
"loss": 1.031,
|
| 1334 |
-
"step": 1105
|
| 1335 |
-
},
|
| 1336 |
-
{
|
| 1337 |
-
"epoch": 1.76,
|
| 1338 |
-
"learning_rate": 7.685763537178093e-07,
|
| 1339 |
-
"loss": 0.9254,
|
| 1340 |
-
"step": 1110
|
| 1341 |
-
},
|
| 1342 |
-
{
|
| 1343 |
-
"epoch": 1.76,
|
| 1344 |
-
"learning_rate": 7.200771805097206e-07,
|
| 1345 |
-
"loss": 0.9294,
|
| 1346 |
-
"step": 1115
|
| 1347 |
-
},
|
| 1348 |
-
{
|
| 1349 |
-
"epoch": 1.77,
|
| 1350 |
-
"learning_rate": 6.731013486728044e-07,
|
| 1351 |
-
"loss": 0.8641,
|
| 1352 |
-
"step": 1120
|
| 1353 |
-
},
|
| 1354 |
-
{
|
| 1355 |
-
"epoch": 1.78,
|
| 1356 |
-
"learning_rate": 6.276565695026671e-07,
|
| 1357 |
-
"loss": 0.9669,
|
| 1358 |
-
"step": 1125
|
| 1359 |
-
},
|
| 1360 |
-
{
|
| 1361 |
-
"epoch": 1.79,
|
| 1362 |
-
"learning_rate": 5.837503029656888e-07,
|
| 1363 |
-
"loss": 0.8447,
|
| 1364 |
-
"step": 1130
|
| 1365 |
-
},
|
| 1366 |
-
{
|
| 1367 |
-
"epoch": 1.8,
|
| 1368 |
-
"learning_rate": 5.413897564744253e-07,
|
| 1369 |
-
"loss": 0.9566,
|
| 1370 |
-
"step": 1135
|
| 1371 |
-
},
|
| 1372 |
-
{
|
| 1373 |
-
"epoch": 1.8,
|
| 1374 |
-
"learning_rate": 5.005818837044885e-07,
|
| 1375 |
-
"loss": 0.9457,
|
| 1376 |
-
"step": 1140
|
| 1377 |
-
},
|
| 1378 |
-
{
|
| 1379 |
-
"epoch": 1.81,
|
| 1380 |
-
"learning_rate": 4.613333834530631e-07,
|
| 1381 |
-
"loss": 0.8523,
|
| 1382 |
-
"step": 1145
|
| 1383 |
-
},
|
| 1384 |
-
{
|
| 1385 |
-
"epoch": 1.82,
|
| 1386 |
-
"learning_rate": 4.23650698539273e-07,
|
| 1387 |
-
"loss": 0.9696,
|
| 1388 |
-
"step": 1150
|
| 1389 |
-
},
|
| 1390 |
-
{
|
| 1391 |
-
"epoch": 1.83,
|
| 1392 |
-
"learning_rate": 3.8754001474655354e-07,
|
| 1393 |
-
"loss": 0.7867,
|
| 1394 |
-
"step": 1155
|
| 1395 |
-
},
|
| 1396 |
-
{
|
| 1397 |
-
"epoch": 1.83,
|
| 1398 |
-
"learning_rate": 3.530072598072454e-07,
|
| 1399 |
-
"loss": 0.9534,
|
| 1400 |
-
"step": 1160
|
| 1401 |
-
},
|
| 1402 |
-
{
|
| 1403 |
-
"epoch": 1.84,
|
| 1404 |
-
"learning_rate": 3.200581024295102e-07,
|
| 1405 |
-
"loss": 0.9209,
|
| 1406 |
-
"step": 1165
|
| 1407 |
-
},
|
| 1408 |
-
{
|
| 1409 |
-
"epoch": 1.85,
|
| 1410 |
-
"learning_rate": 2.886979513667998e-07,
|
| 1411 |
-
"loss": 0.8257,
|
| 1412 |
-
"step": 1170
|
| 1413 |
-
},
|
| 1414 |
-
{
|
| 1415 |
-
"epoch": 1.86,
|
| 1416 |
-
"learning_rate": 2.589319545299807e-07,
|
| 1417 |
-
"loss": 0.9424,
|
| 1418 |
-
"step": 1175
|
| 1419 |
-
},
|
| 1420 |
-
{
|
| 1421 |
-
"epoch": 1.87,
|
| 1422 |
-
"learning_rate": 2.3076499814227992e-07,
|
| 1423 |
-
"loss": 0.873,
|
| 1424 |
-
"step": 1180
|
| 1425 |
-
},
|
| 1426 |
-
{
|
| 1427 |
-
"epoch": 1.87,
|
| 1428 |
-
"learning_rate": 2.042017059371948e-07,
|
| 1429 |
-
"loss": 0.843,
|
| 1430 |
-
"step": 1185
|
| 1431 |
-
},
|
| 1432 |
-
{
|
| 1433 |
-
"epoch": 1.88,
|
| 1434 |
-
"learning_rate": 1.7924643839947632e-07,
|
| 1435 |
-
"loss": 0.9136,
|
| 1436 |
-
"step": 1190
|
| 1437 |
-
},
|
| 1438 |
-
{
|
| 1439 |
-
"epoch": 1.89,
|
| 1440 |
-
"learning_rate": 1.559032920493464e-07,
|
| 1441 |
-
"loss": 1.0255,
|
| 1442 |
-
"step": 1195
|
| 1443 |
-
},
|
| 1444 |
-
{
|
| 1445 |
-
"epoch": 1.9,
|
| 1446 |
-
"learning_rate": 1.3417609877002691e-07,
|
| 1447 |
-
"loss": 0.8384,
|
| 1448 |
-
"step": 1200
|
| 1449 |
-
},
|
| 1450 |
-
{
|
| 1451 |
-
"epoch": 1.91,
|
| 1452 |
-
"learning_rate": 1.1406842517872608e-07,
|
| 1453 |
-
"loss": 0.7154,
|
| 1454 |
-
"step": 1205
|
| 1455 |
-
},
|
| 1456 |
-
{
|
| 1457 |
-
"epoch": 1.91,
|
| 1458 |
-
"learning_rate": 9.558357204115464e-08,
|
| 1459 |
-
"loss": 0.8805,
|
| 1460 |
-
"step": 1210
|
| 1461 |
-
},
|
| 1462 |
-
{
|
| 1463 |
-
"epoch": 1.92,
|
| 1464 |
-
"learning_rate": 7.872457372969711e-08,
|
| 1465 |
-
"loss": 0.7834,
|
| 1466 |
-
"step": 1215
|
| 1467 |
-
},
|
| 1468 |
-
{
|
| 1469 |
-
"epoch": 1.93,
|
| 1470 |
-
"learning_rate": 6.34941977253023e-08,
|
| 1471 |
-
"loss": 0.8752,
|
| 1472 |
-
"step": 1220
|
| 1473 |
-
},
|
| 1474 |
-
{
|
| 1475 |
-
"epoch": 1.94,
|
| 1476 |
-
"learning_rate": 4.989494416318685e-08,
|
| 1477 |
-
"loss": 0.9148,
|
| 1478 |
-
"step": 1225
|
| 1479 |
-
},
|
| 1480 |
-
{
|
| 1481 |
-
"epoch": 1.95,
|
| 1482 |
-
"learning_rate": 3.7929045422432364e-08,
|
| 1483 |
-
"loss": 0.8612,
|
| 1484 |
-
"step": 1230
|
| 1485 |
-
},
|
| 1486 |
-
{
|
| 1487 |
-
"epoch": 1.95,
|
| 1488 |
-
"learning_rate": 2.7598465759526294e-08,
|
| 1489 |
-
"loss": 0.9299,
|
| 1490 |
-
"step": 1235
|
| 1491 |
-
},
|
| 1492 |
-
{
|
| 1493 |
-
"epoch": 1.96,
|
| 1494 |
-
"learning_rate": 1.8904900985918796e-08,
|
| 1495 |
-
"loss": 0.9918,
|
| 1496 |
-
"step": 1240
|
| 1497 |
-
},
|
| 1498 |
-
{
|
| 1499 |
-
"epoch": 1.97,
|
| 1500 |
-
"learning_rate": 1.184977818965205e-08,
|
| 1501 |
-
"loss": 0.9008,
|
| 1502 |
-
"step": 1245
|
| 1503 |
-
},
|
| 1504 |
-
{
|
| 1505 |
-
"epoch": 1.98,
|
| 1506 |
-
"learning_rate": 6.434255501095443e-09,
|
| 1507 |
-
"loss": 0.9461,
|
| 1508 |
-
"step": 1250
|
| 1509 |
-
},
|
| 1510 |
-
{
|
| 1511 |
-
"epoch": 1.99,
|
| 1512 |
-
"learning_rate": 2.659221902830966e-09,
|
| 1513 |
-
"loss": 0.8181,
|
| 1514 |
-
"step": 1255
|
| 1515 |
-
},
|
| 1516 |
-
{
|
| 1517 |
-
"epoch": 1.99,
|
| 1518 |
-
"learning_rate": 5.252970837255067e-10,
|
| 1519 |
-
"loss": 0.8643,
|
| 1520 |
-
"step": 1260
|
| 1521 |
-
},
|
| 1522 |
-
{
|
| 1523 |
-
"epoch": 2.0,
|
| 1524 |
-
"step": 1264,
|
| 1525 |
-
"total_flos": 3.882961297263821e+17,
|
| 1526 |
-
"train_loss": 0.9575079066466682,
|
| 1527 |
-
"train_runtime": 77706.2136,
|
| 1528 |
-
"train_samples_per_second": 0.26,
|
| 1529 |
-
"train_steps_per_second": 0.016
|
| 1530 |
}
|
| 1531 |
],
|
| 1532 |
-
"max_steps":
|
| 1533 |
-
"num_train_epochs":
|
| 1534 |
-
"total_flos":
|
| 1535 |
"trial_name": null,
|
| 1536 |
"trial_params": null
|
| 1537 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"best_metric": null,
|
| 3 |
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 2.9914638001896936,
|
| 5 |
+
"global_step": 294,
|
| 6 |
"is_hyper_param_search": false,
|
| 7 |
"is_local_process_zero": true,
|
| 8 |
"is_world_process_zero": true,
|
| 9 |
"log_history": [
|
| 10 |
{
|
| 11 |
+
"epoch": 0.05,
|
| 12 |
+
"learning_rate": 7.5e-06,
|
| 13 |
+
"loss": 0.481,
|
| 14 |
"step": 5
|
| 15 |
},
|
| 16 |
{
|
| 17 |
+
"epoch": 0.1,
|
| 18 |
+
"learning_rate": 1.5e-05,
|
| 19 |
+
"loss": 0.5091,
|
| 20 |
"step": 10
|
| 21 |
},
|
| 22 |
{
|
| 23 |
+
"epoch": 0.15,
|
| 24 |
+
"learning_rate": 2.25e-05,
|
| 25 |
+
"loss": 0.4303,
|
| 26 |
"step": 15
|
| 27 |
},
|
| 28 |
{
|
| 29 |
+
"epoch": 0.2,
|
| 30 |
+
"learning_rate": 3e-05,
|
| 31 |
+
"loss": 0.4055,
|
| 32 |
"step": 20
|
| 33 |
},
|
| 34 |
{
|
| 35 |
+
"epoch": 0.25,
|
| 36 |
+
"learning_rate": 2.998662940889891e-05,
|
| 37 |
+
"loss": 0.4338,
|
| 38 |
"step": 25
|
| 39 |
},
|
| 40 |
{
|
| 41 |
+
"epoch": 0.3,
|
| 42 |
+
"learning_rate": 2.9946541471956496e-05,
|
| 43 |
+
"loss": 0.4793,
|
| 44 |
"step": 30
|
| 45 |
},
|
| 46 |
{
|
| 47 |
+
"epoch": 0.35,
|
| 48 |
+
"learning_rate": 2.9879807655761145e-05,
|
| 49 |
+
"loss": 0.4291,
|
| 50 |
"step": 35
|
| 51 |
},
|
| 52 |
{
|
| 53 |
+
"epoch": 0.4,
|
| 54 |
+
"learning_rate": 2.9786546929722055e-05,
|
| 55 |
+
"loss": 0.4908,
|
| 56 |
"step": 40
|
| 57 |
},
|
| 58 |
{
|
| 59 |
+
"epoch": 0.46,
|
| 60 |
+
"learning_rate": 2.966692555397705e-05,
|
| 61 |
+
"loss": 0.463,
|
| 62 |
"step": 45
|
| 63 |
},
|
| 64 |
{
|
| 65 |
+
"epoch": 0.51,
|
| 66 |
+
"learning_rate": 2.9521156782993066e-05,
|
| 67 |
+
"loss": 0.528,
|
| 68 |
"step": 50
|
| 69 |
},
|
| 70 |
{
|
| 71 |
+
"epoch": 0.56,
|
| 72 |
+
"learning_rate": 2.9349500485387718e-05,
|
| 73 |
+
"loss": 0.5178,
|
| 74 |
"step": 55
|
| 75 |
},
|
| 76 |
{
|
| 77 |
+
"epoch": 0.61,
|
| 78 |
+
"learning_rate": 2.9152262680649704e-05,
|
| 79 |
+
"loss": 0.4602,
|
| 80 |
"step": 60
|
| 81 |
},
|
| 82 |
{
|
| 83 |
+
"epoch": 0.66,
|
| 84 |
+
"learning_rate": 2.8929794993583937e-05,
|
| 85 |
+
"loss": 0.5044,
|
| 86 |
"step": 65
|
| 87 |
},
|
| 88 |
{
|
| 89 |
+
"epoch": 0.71,
|
| 90 |
+
"learning_rate": 2.8682494027454e-05,
|
| 91 |
+
"loss": 0.4217,
|
| 92 |
"step": 70
|
| 93 |
},
|
| 94 |
{
|
| 95 |
+
"epoch": 0.76,
|
| 96 |
+
"learning_rate": 2.8410800656939512e-05,
|
| 97 |
+
"loss": 0.502,
|
| 98 |
"step": 75
|
| 99 |
},
|
| 100 |
{
|
| 101 |
+
"epoch": 0.81,
|
| 102 |
+
"learning_rate": 2.811519924216873e-05,
|
| 103 |
+
"loss": 0.4549,
|
| 104 |
"step": 80
|
| 105 |
},
|
| 106 |
{
|
| 107 |
+
"epoch": 0.86,
|
| 108 |
+
"learning_rate": 2.779621676522777e-05,
|
| 109 |
+
"loss": 0.5692,
|
| 110 |
"step": 85
|
| 111 |
},
|
| 112 |
{
|
| 113 |
+
"epoch": 0.91,
|
| 114 |
+
"learning_rate": 2.7454421890685647e-05,
|
| 115 |
+
"loss": 0.4312,
|
| 116 |
"step": 90
|
| 117 |
},
|
| 118 |
{
|
| 119 |
+
"epoch": 0.96,
|
| 120 |
+
"learning_rate": 2.709042395181008e-05,
|
| 121 |
+
"loss": 0.4938,
|
| 122 |
"step": 95
|
| 123 |
},
|
| 124 |
{
|
| 125 |
+
"epoch": 1.02,
|
| 126 |
+
"learning_rate": 2.6704871864281377e-05,
|
| 127 |
+
"loss": 0.5433,
|
| 128 |
"step": 100
|
| 129 |
},
|
| 130 |
{
|
| 131 |
+
"epoch": 1.07,
|
| 132 |
+
"learning_rate": 2.6298452969340952e-05,
|
| 133 |
+
"loss": 0.3459,
|
| 134 |
"step": 105
|
| 135 |
},
|
| 136 |
{
|
| 137 |
+
"epoch": 1.12,
|
| 138 |
+
"learning_rate": 2.58718918084368e-05,
|
| 139 |
+
"loss": 0.3739,
|
| 140 |
"step": 110
|
| 141 |
},
|
| 142 |
{
|
| 143 |
+
"epoch": 1.17,
|
| 144 |
+
"learning_rate": 2.5425948831550528e-05,
|
| 145 |
+
"loss": 0.375,
|
| 146 |
"step": 115
|
| 147 |
},
|
| 148 |
{
|
| 149 |
+
"epoch": 1.22,
|
| 150 |
+
"learning_rate": 2.496141904150859e-05,
|
| 151 |
+
"loss": 0.3809,
|
| 152 |
"step": 120
|
| 153 |
},
|
| 154 |
{
|
| 155 |
+
"epoch": 1.27,
|
| 156 |
+
"learning_rate": 2.447913057669456e-05,
|
| 157 |
+
"loss": 0.4183,
|
| 158 |
"step": 125
|
| 159 |
},
|
| 160 |
{
|
| 161 |
+
"epoch": 1.32,
|
| 162 |
+
"learning_rate": 2.3979943234689226e-05,
|
| 163 |
+
"loss": 0.4207,
|
| 164 |
"step": 130
|
| 165 |
},
|
| 166 |
{
|
| 167 |
+
"epoch": 1.37,
|
| 168 |
+
"learning_rate": 2.3464746939470288e-05,
|
| 169 |
+
"loss": 0.3767,
|
| 170 |
"step": 135
|
| 171 |
},
|
| 172 |
{
|
| 173 |
+
"epoch": 1.42,
|
| 174 |
+
"learning_rate": 2.2934460154904436e-05,
|
| 175 |
+
"loss": 0.4248,
|
| 176 |
"step": 140
|
| 177 |
},
|
| 178 |
{
|
| 179 |
+
"epoch": 1.48,
|
| 180 |
+
"learning_rate": 2.2390028247360042e-05,
|
| 181 |
+
"loss": 0.3374,
|
| 182 |
"step": 145
|
| 183 |
},
|
| 184 |
{
|
| 185 |
+
"epoch": 1.53,
|
| 186 |
+
"learning_rate": 2.183242180035951e-05,
|
| 187 |
+
"loss": 0.4582,
|
| 188 |
"step": 150
|
| 189 |
},
|
| 190 |
{
|
| 191 |
+
"epoch": 1.58,
|
| 192 |
+
"learning_rate": 2.1262634884275948e-05,
|
| 193 |
+
"loss": 0.4153,
|
| 194 |
"step": 155
|
| 195 |
},
|
| 196 |
{
|
| 197 |
+
"epoch": 1.63,
|
| 198 |
+
"learning_rate": 2.068168328415864e-05,
|
| 199 |
+
"loss": 0.409,
|
| 200 |
"step": 160
|
| 201 |
},
|
| 202 |
{
|
| 203 |
+
"epoch": 1.68,
|
| 204 |
+
"learning_rate": 2.0090602688846884e-05,
|
| 205 |
+
"loss": 0.4023,
|
| 206 |
"step": 165
|
| 207 |
},
|
| 208 |
{
|
| 209 |
+
"epoch": 1.73,
|
| 210 |
+
"learning_rate": 1.9490446844600375e-05,
|
| 211 |
+
"loss": 0.3426,
|
| 212 |
"step": 170
|
| 213 |
},
|
| 214 |
{
|
| 215 |
+
"epoch": 1.78,
|
| 216 |
+
"learning_rate": 1.888228567653781e-05,
|
| 217 |
+
"loss": 0.4059,
|
| 218 |
"step": 175
|
| 219 |
},
|
| 220 |
{
|
| 221 |
+
"epoch": 1.83,
|
| 222 |
+
"learning_rate": 1.8267203381232774e-05,
|
| 223 |
+
"loss": 0.4449,
|
| 224 |
"step": 180
|
| 225 |
},
|
| 226 |
{
|
| 227 |
+
"epoch": 1.88,
|
| 228 |
+
"learning_rate": 1.764629649386713e-05,
|
| 229 |
+
"loss": 0.4362,
|
| 230 |
"step": 185
|
| 231 |
},
|
| 232 |
{
|
| 233 |
+
"epoch": 1.93,
|
| 234 |
+
"learning_rate": 1.7020671933387917e-05,
|
| 235 |
+
"loss": 0.4874,
|
| 236 |
"step": 190
|
| 237 |
},
|
| 238 |
{
|
| 239 |
+
"epoch": 1.98,
|
| 240 |
+
"learning_rate": 1.63914450291526e-05,
|
| 241 |
+
"loss": 0.3326,
|
| 242 |
"step": 195
|
| 243 |
},
|
| 244 |
{
|
| 245 |
+
"epoch": 2.04,
|
| 246 |
+
"learning_rate": 1.5633197410233404e-05,
|
| 247 |
+
"loss": 0.4035,
|
| 248 |
"step": 200
|
| 249 |
},
|
| 250 |
{
|
| 251 |
+
"epoch": 2.09,
|
| 252 |
+
"learning_rate": 1.5e-05,
|
| 253 |
+
"loss": 0.3291,
|
| 254 |
"step": 205
|
| 255 |
},
|
| 256 |
{
|
| 257 |
+
"epoch": 2.14,
|
| 258 |
+
"learning_rate": 1.4366802589766598e-05,
|
| 259 |
+
"loss": 0.353,
|
| 260 |
"step": 210
|
| 261 |
},
|
| 262 |
{
|
| 263 |
+
"epoch": 2.19,
|
| 264 |
+
"learning_rate": 1.373473400935433e-05,
|
| 265 |
+
"loss": 0.319,
|
| 266 |
"step": 215
|
| 267 |
},
|
| 268 |
{
|
| 269 |
+
"epoch": 2.24,
|
| 270 |
+
"learning_rate": 1.3104921076168065e-05,
|
| 271 |
+
"loss": 0.341,
|
| 272 |
"step": 220
|
| 273 |
},
|
| 274 |
{
|
| 275 |
+
"epoch": 2.29,
|
| 276 |
+
"learning_rate": 1.247848658636778e-05,
|
| 277 |
+
"loss": 0.3276,
|
| 278 |
"step": 225
|
| 279 |
},
|
| 280 |
{
|
| 281 |
+
"epoch": 2.34,
|
| 282 |
+
"learning_rate": 1.185654731320877e-05,
|
| 283 |
+
"loss": 0.3628,
|
| 284 |
"step": 230
|
| 285 |
},
|
| 286 |
{
|
| 287 |
+
"epoch": 2.39,
|
| 288 |
+
"learning_rate": 1.124021201611919e-05,
|
| 289 |
+
"loss": 0.2727,
|
| 290 |
"step": 235
|
| 291 |
},
|
| 292 |
{
|
| 293 |
+
"epoch": 2.45,
|
| 294 |
+
"learning_rate": 1.0630579464064182e-05,
|
| 295 |
+
"loss": 0.3466,
|
| 296 |
"step": 240
|
| 297 |
},
|
| 298 |
{
|
| 299 |
+
"epoch": 2.5,
|
| 300 |
+
"learning_rate": 1.0028736476720464e-05,
|
| 301 |
+
"loss": 0.3187,
|
| 302 |
"step": 245
|
| 303 |
},
|
| 304 |
{
|
| 305 |
+
"epoch": 2.55,
|
| 306 |
+
"learning_rate": 9.435755986953485e-06,
|
| 307 |
+
"loss": 0.3837,
|
| 308 |
"step": 250
|
| 309 |
},
|
| 310 |
{
|
| 311 |
+
"epoch": 2.6,
|
| 312 |
+
"learning_rate": 8.852695128051192e-06,
|
| 313 |
+
"loss": 0.2955,
|
| 314 |
"step": 255
|
| 315 |
},
|
| 316 |
{
|
| 317 |
+
"epoch": 2.65,
|
| 318 |
+
"learning_rate": 8.280593349124432e-06,
|
| 319 |
+
"loss": 0.3793,
|
| 320 |
"step": 260
|
| 321 |
},
|
| 322 |
{
|
| 323 |
+
"epoch": 2.7,
|
| 324 |
+
"learning_rate": 7.720470562033787e-06,
|
| 325 |
+
"loss": 0.3443,
|
| 326 |
"step": 265
|
| 327 |
},
|
| 328 |
{
|
| 329 |
+
"epoch": 2.75,
|
| 330 |
+
"learning_rate": 7.17332532314626e-06,
|
| 331 |
+
"loss": 0.2915,
|
| 332 |
"step": 270
|
| 333 |
},
|
| 334 |
{
|
| 335 |
+
"epoch": 2.8,
|
| 336 |
+
"learning_rate": 6.640133053163455e-06,
|
| 337 |
+
"loss": 0.3514,
|
| 338 |
"step": 275
|
| 339 |
},
|
| 340 |
{
|
| 341 |
+
"epoch": 2.85,
|
| 342 |
+
"learning_rate": 6.12184429819474e-06,
|
| 343 |
+
"loss": 0.3221,
|
| 344 |
"step": 280
|
| 345 |
},
|
| 346 |
{
|
| 347 |
+
"epoch": 2.9,
|
| 348 |
+
"learning_rate": 5.619383035175448e-06,
|
| 349 |
+
"loss": 0.2903,
|
| 350 |
"step": 285
|
| 351 |
},
|
| 352 |
{
|
| 353 |
+
"epoch": 2.95,
|
| 354 |
+
"learning_rate": 5.133645024651171e-06,
|
| 355 |
+
"loss": 0.3397,
|
| 356 |
"step": 290
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
}
|
| 358 |
],
|
| 359 |
+
"max_steps": 392,
|
| 360 |
+
"num_train_epochs": 4,
|
| 361 |
+
"total_flos": 1.821325738775675e+17,
|
| 362 |
"trial_name": null,
|
| 363 |
"trial_params": null
|
| 364 |
}
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4399
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb4937467d6816f4a87c65a795706d60d5c1945956041be1f6697c8ed7d29b1c
|
| 3 |
size 4399
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
| 4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 6 |
+
# application.
|
| 7 |
+
#
|
| 8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 9 |
+
|
| 10 |
+
import argparse
|
| 11 |
+
import torch
|
| 12 |
+
import glob
|
| 13 |
+
import math
|
| 14 |
+
import os
|
| 15 |
+
import re
|
| 16 |
+
from collections import OrderedDict
|
| 17 |
+
|
| 18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 20 |
+
import deepspeed
|
| 21 |
+
from deepspeed.utils import logger
|
| 22 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
| 23 |
+
OPTIMIZER_STATE_DICT,
|
| 24 |
+
PARAM_SHAPES,
|
| 25 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 26 |
+
FP32_FLAT_GROUPS,
|
| 27 |
+
ZERO_STAGE,
|
| 28 |
+
PARTITION_COUNT,
|
| 29 |
+
PARAM_SHAPES,
|
| 30 |
+
BUFFER_NAMES)
|
| 31 |
+
|
| 32 |
+
debug = 0
|
| 33 |
+
|
| 34 |
+
# load to cpu
|
| 35 |
+
device = torch.device('cpu')
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def atoi(text):
|
| 39 |
+
return int(text) if text.isdigit() else text
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def natural_keys(text):
|
| 43 |
+
'''
|
| 44 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 45 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 46 |
+
(See Toothy's implementation in the comments)
|
| 47 |
+
'''
|
| 48 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 52 |
+
if not os.path.isdir(checkpoint_dir):
|
| 53 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 54 |
+
|
| 55 |
+
# there should be only one file
|
| 56 |
+
if zero_stage == 2:
|
| 57 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 58 |
+
elif zero_stage == 3:
|
| 59 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 60 |
+
|
| 61 |
+
if not os.path.exists(file):
|
| 62 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 63 |
+
|
| 64 |
+
return file
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def get_optim_files(checkpoint_dir):
|
| 68 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 69 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
| 70 |
+
"*_optim_states.pt")),
|
| 71 |
+
key=natural_keys)
|
| 72 |
+
|
| 73 |
+
if len(optim_files) == 0:
|
| 74 |
+
raise FileNotFoundError(
|
| 75 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
| 76 |
+
|
| 77 |
+
return optim_files
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def parse_model_state(file):
|
| 81 |
+
state_dict = torch.load(file, map_location=device)
|
| 82 |
+
|
| 83 |
+
if BUFFER_NAMES not in state_dict:
|
| 84 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 85 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 86 |
+
if debug:
|
| 87 |
+
print("Found buffers:", buffer_names)
|
| 88 |
+
|
| 89 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 90 |
+
buffers = {
|
| 91 |
+
k: v.float()
|
| 92 |
+
for k,
|
| 93 |
+
v in state_dict["module"].items() if k in buffer_names
|
| 94 |
+
}
|
| 95 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 96 |
+
|
| 97 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 98 |
+
|
| 99 |
+
return buffers, param_shapes, ds_version
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 103 |
+
|
| 104 |
+
total_files = len(files)
|
| 105 |
+
state_dicts = []
|
| 106 |
+
for f in files:
|
| 107 |
+
state_dicts.append(torch.load(f, map_location=device))
|
| 108 |
+
|
| 109 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 110 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 111 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 112 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 113 |
+
|
| 114 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 115 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 116 |
+
# use the max of the partition_count to get the dp world_size.
|
| 117 |
+
|
| 118 |
+
if type(world_size) is list:
|
| 119 |
+
world_size = max(world_size)
|
| 120 |
+
|
| 121 |
+
if world_size != total_files:
|
| 122 |
+
raise ValueError(
|
| 123 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 124 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# the groups are named differently in each stage
|
| 128 |
+
if zero_stage == 2:
|
| 129 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 130 |
+
elif zero_stage == 3:
|
| 131 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 132 |
+
else:
|
| 133 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 134 |
+
|
| 135 |
+
if zero_stage == 2:
|
| 136 |
+
fp32_flat_groups = [
|
| 137 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
| 138 |
+
for i in range(len(state_dicts))
|
| 139 |
+
]
|
| 140 |
+
elif zero_stage == 3:
|
| 141 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 142 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 143 |
+
#
|
| 144 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 145 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 146 |
+
|
| 147 |
+
fp32_flat_groups = [
|
| 148 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
| 149 |
+
0) for i in range(len(state_dicts))
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 156 |
+
"""
|
| 157 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 161 |
+
|
| 162 |
+
"""
|
| 163 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 164 |
+
|
| 165 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 166 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 167 |
+
print(
|
| 168 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 169 |
+
|
| 170 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
| 171 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
| 172 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
| 173 |
+
|
| 174 |
+
if zero_stage == 2:
|
| 175 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
| 176 |
+
param_shapes,
|
| 177 |
+
fp32_flat_groups,
|
| 178 |
+
buffers)
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
| 181 |
+
param_shapes,
|
| 182 |
+
fp32_flat_groups,
|
| 183 |
+
buffers)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
| 187 |
+
param_shapes,
|
| 188 |
+
fp32_flat_groups,
|
| 189 |
+
buffers):
|
| 190 |
+
|
| 191 |
+
# Reconstruction protocol:
|
| 192 |
+
#
|
| 193 |
+
# XXX: document this
|
| 194 |
+
|
| 195 |
+
if debug:
|
| 196 |
+
for i in range(world_size):
|
| 197 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 198 |
+
print(
|
| 199 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 200 |
+
|
| 201 |
+
# XXX: memory usage doubles here (zero2)
|
| 202 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 203 |
+
merged_single_partition_of_fp32_groups = []
|
| 204 |
+
for i in range(num_param_groups):
|
| 205 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 206 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 207 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 208 |
+
avail_numel = sum([
|
| 209 |
+
full_single_fp32_vector.numel()
|
| 210 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
| 211 |
+
])
|
| 212 |
+
|
| 213 |
+
if debug:
|
| 214 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 215 |
+
wanted_numel = sum(
|
| 216 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 217 |
+
# not asserting if there is a mismatch due to possible padding
|
| 218 |
+
print(f"Have {avail_numel} numels to process.")
|
| 219 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 220 |
+
|
| 221 |
+
state_dict = OrderedDict()
|
| 222 |
+
|
| 223 |
+
# buffers
|
| 224 |
+
state_dict.update(buffers)
|
| 225 |
+
if debug:
|
| 226 |
+
print(f"added {len(buffers)} buffers")
|
| 227 |
+
|
| 228 |
+
# params
|
| 229 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 230 |
+
# out-of-core computing solution
|
| 231 |
+
total_numel = 0
|
| 232 |
+
total_params = 0
|
| 233 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 234 |
+
offset = 0
|
| 235 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 236 |
+
for name, shape in shapes.items():
|
| 237 |
+
|
| 238 |
+
unpartitioned_numel = shape.numel()
|
| 239 |
+
total_numel += unpartitioned_numel
|
| 240 |
+
total_params += 1
|
| 241 |
+
|
| 242 |
+
if debug:
|
| 243 |
+
print(
|
| 244 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
| 245 |
+
)
|
| 246 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
| 247 |
+
0,
|
| 248 |
+
offset,
|
| 249 |
+
unpartitioned_numel).view(shape)
|
| 250 |
+
offset += unpartitioned_numel
|
| 251 |
+
|
| 252 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 253 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 254 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 255 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 256 |
+
align_to = 2 * world_size
|
| 257 |
+
|
| 258 |
+
def zero2_align(x):
|
| 259 |
+
return align_to * math.ceil(x / align_to)
|
| 260 |
+
|
| 261 |
+
if debug:
|
| 262 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 263 |
+
|
| 264 |
+
offset = zero2_align(offset)
|
| 265 |
+
avail_numel = zero2_align(avail_numel)
|
| 266 |
+
|
| 267 |
+
if debug:
|
| 268 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 269 |
+
|
| 270 |
+
# Sanity check
|
| 271 |
+
if offset != avail_numel:
|
| 272 |
+
raise ValueError(
|
| 273 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 274 |
+
|
| 275 |
+
print(
|
| 276 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
return state_dict
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 283 |
+
remainder = unpartitioned_numel % world_size
|
| 284 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 285 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 286 |
+
return partitioned_numel, padding_numel
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
| 290 |
+
param_shapes,
|
| 291 |
+
fp32_flat_groups,
|
| 292 |
+
buffers):
|
| 293 |
+
|
| 294 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 295 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 296 |
+
|
| 297 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 298 |
+
# merge list of dicts, preserving order
|
| 299 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
for i in range(world_size):
|
| 303 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 304 |
+
|
| 305 |
+
wanted_params = len(param_shapes)
|
| 306 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 307 |
+
# not asserting if there is a mismatch due to possible padding
|
| 308 |
+
print(f"Have {avail_numel} numels to process.")
|
| 309 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 310 |
+
|
| 311 |
+
state_dict = OrderedDict()
|
| 312 |
+
|
| 313 |
+
# buffers
|
| 314 |
+
state_dict.update(buffers)
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"added {len(buffers)} buffers")
|
| 317 |
+
|
| 318 |
+
# params
|
| 319 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 320 |
+
# out-of-core computing solution
|
| 321 |
+
offset = 0
|
| 322 |
+
total_numel = 0
|
| 323 |
+
total_params = 0
|
| 324 |
+
for name, shape in param_shapes.items():
|
| 325 |
+
|
| 326 |
+
unpartitioned_numel = shape.numel()
|
| 327 |
+
total_numel += unpartitioned_numel
|
| 328 |
+
total_params += 1
|
| 329 |
+
|
| 330 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 331 |
+
|
| 332 |
+
if debug:
|
| 333 |
+
print(
|
| 334 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# XXX: memory usage doubles here
|
| 338 |
+
state_dict[name] = torch.cat(
|
| 339 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
| 340 |
+
offset,
|
| 341 |
+
partitioned_numel)
|
| 342 |
+
for i in range(world_size)),
|
| 343 |
+
0).narrow(0,
|
| 344 |
+
0,
|
| 345 |
+
unpartitioned_numel).view(shape)
|
| 346 |
+
offset += partitioned_numel
|
| 347 |
+
|
| 348 |
+
offset *= world_size
|
| 349 |
+
|
| 350 |
+
# Sanity check
|
| 351 |
+
if offset != avail_numel:
|
| 352 |
+
raise ValueError(
|
| 353 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 354 |
+
|
| 355 |
+
print(
|
| 356 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
return state_dict
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 363 |
+
"""
|
| 364 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 365 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 366 |
+
via a model hub.
|
| 367 |
+
|
| 368 |
+
Args:
|
| 369 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 370 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 371 |
+
|
| 372 |
+
Returns:
|
| 373 |
+
- pytorch ``state_dict``
|
| 374 |
+
|
| 375 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 376 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 377 |
+
the checkpoint.
|
| 378 |
+
|
| 379 |
+
A typical usage might be ::
|
| 380 |
+
|
| 381 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 382 |
+
# do the training and checkpoint saving
|
| 383 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 384 |
+
model = model.cpu() # move to cpu
|
| 385 |
+
model.load_state_dict(state_dict)
|
| 386 |
+
# submit to model hub or save the model to share with others
|
| 387 |
+
|
| 388 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 389 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 390 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 391 |
+
|
| 392 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 393 |
+
|
| 394 |
+
"""
|
| 395 |
+
if tag is None:
|
| 396 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 397 |
+
if os.path.isfile(latest_path):
|
| 398 |
+
with open(latest_path, 'r') as fd:
|
| 399 |
+
tag = fd.read().strip()
|
| 400 |
+
else:
|
| 401 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 402 |
+
|
| 403 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 404 |
+
|
| 405 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 406 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 407 |
+
|
| 408 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 412 |
+
"""
|
| 413 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 414 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 415 |
+
|
| 416 |
+
Args:
|
| 417 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 418 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 419 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 420 |
+
"""
|
| 421 |
+
|
| 422 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 423 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 424 |
+
torch.save(state_dict, output_file)
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 428 |
+
"""
|
| 429 |
+
1. Put the provided model to cpu
|
| 430 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 431 |
+
3. Load it into the provided model
|
| 432 |
+
|
| 433 |
+
Args:
|
| 434 |
+
- ``model``: the model object to update
|
| 435 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 436 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 437 |
+
|
| 438 |
+
Returns:
|
| 439 |
+
- ``model`: modified model
|
| 440 |
+
|
| 441 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 442 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 443 |
+
conveniently placed for you in the checkpoint folder.
|
| 444 |
+
|
| 445 |
+
A typical usage might be ::
|
| 446 |
+
|
| 447 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 448 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 449 |
+
# submit to model hub or save the model to share with others
|
| 450 |
+
|
| 451 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 452 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 453 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 454 |
+
|
| 455 |
+
"""
|
| 456 |
+
logger.info(f"Extracting fp32 weights")
|
| 457 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 458 |
+
|
| 459 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 460 |
+
model = model.cpu()
|
| 461 |
+
model.load_state_dict(state_dict, strict=False)
|
| 462 |
+
|
| 463 |
+
return model
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
if __name__ == "__main__":
|
| 467 |
+
|
| 468 |
+
parser = argparse.ArgumentParser()
|
| 469 |
+
parser.add_argument(
|
| 470 |
+
"checkpoint_dir",
|
| 471 |
+
type=str,
|
| 472 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 473 |
+
parser.add_argument(
|
| 474 |
+
"output_file",
|
| 475 |
+
type=str,
|
| 476 |
+
help=
|
| 477 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
| 478 |
+
)
|
| 479 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 480 |
+
args = parser.parse_args()
|
| 481 |
+
|
| 482 |
+
debug = args.debug
|
| 483 |
+
|
| 484 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|