Upload pipeline.py with huggingface_hub
Browse files- pipeline.py +90 -0
pipeline.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import StableDiffusionModelEditingPipeline as SDTIME
|
| 5 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 6 |
+
from diffusers.pipelines.deprecated.stable_diffusion_variants.pipeline_stable_diffusion_model_editing import (
|
| 7 |
+
AUGS_CONST,
|
| 8 |
+
)
|
| 9 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
| 10 |
+
StableDiffusionSafetyChecker,
|
| 11 |
+
)
|
| 12 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
| 13 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class StableDiffusionModelEditingPipeline(SDTIME):
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
vae: AutoencoderKL,
|
| 20 |
+
text_encoder: CLIPTextModel,
|
| 21 |
+
tokenizer: CLIPTokenizer,
|
| 22 |
+
unet: UNet2DConditionModel,
|
| 23 |
+
scheduler: SchedulerMixin,
|
| 24 |
+
safety_checker: StableDiffusionSafetyChecker,
|
| 25 |
+
feature_extractor: CLIPImageProcessor,
|
| 26 |
+
requires_safety_checker: bool = True,
|
| 27 |
+
with_to_k: bool = True,
|
| 28 |
+
with_augs: List[str] = AUGS_CONST,
|
| 29 |
+
) -> None:
|
| 30 |
+
super().__init__(
|
| 31 |
+
vae,
|
| 32 |
+
text_encoder,
|
| 33 |
+
tokenizer,
|
| 34 |
+
unet,
|
| 35 |
+
scheduler,
|
| 36 |
+
safety_checker,
|
| 37 |
+
feature_extractor,
|
| 38 |
+
requires_safety_checker,
|
| 39 |
+
with_to_k,
|
| 40 |
+
with_augs,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# get cross-attention layers
|
| 44 |
+
ca_layers = []
|
| 45 |
+
|
| 46 |
+
def append_ca(net_):
|
| 47 |
+
# In diffusers v1.15.0 and later, `CrossAttention` has been changed to `Attention`
|
| 48 |
+
# Refer to the pipeline in the fork:
|
| 49 |
+
# https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py#L135
|
| 50 |
+
if net_.__class__.__name__ == "Attention":
|
| 51 |
+
ca_layers.append(net_)
|
| 52 |
+
elif hasattr(net_, "children"):
|
| 53 |
+
for net__ in net_.children():
|
| 54 |
+
append_ca(net__)
|
| 55 |
+
|
| 56 |
+
# recursively find all cross-attention layers in unet
|
| 57 |
+
for net in self.unet.named_children():
|
| 58 |
+
if "down" in net[0]:
|
| 59 |
+
append_ca(net[1])
|
| 60 |
+
elif "up" in net[0]:
|
| 61 |
+
append_ca(net[1])
|
| 62 |
+
elif "mid" in net[0]:
|
| 63 |
+
append_ca(net[1])
|
| 64 |
+
|
| 65 |
+
# get projection matrices
|
| 66 |
+
self.ca_clip_layers = [l for l in ca_layers if l.to_v.in_features == 768]
|
| 67 |
+
assert len(self.ca_clip_layers) > 0
|
| 68 |
+
self.projection_matrices = [l.to_v for l in self.ca_clip_layers]
|
| 69 |
+
assert len(self.projection_matrices) > 0
|
| 70 |
+
|
| 71 |
+
if self.with_to_k:
|
| 72 |
+
projection_matrices = [l.to_k for l in self.ca_clip_layers]
|
| 73 |
+
self.projection_matrices = self.projection_matrices + projection_matrices
|
| 74 |
+
assert len(self.projection_matrices) > 0
|
| 75 |
+
|
| 76 |
+
@torch.no_grad()
|
| 77 |
+
def edit_model(
|
| 78 |
+
self,
|
| 79 |
+
source_prompt: str,
|
| 80 |
+
destination_prompt: str,
|
| 81 |
+
lamb: float = 0.1,
|
| 82 |
+
**kwargs,
|
| 83 |
+
) -> None:
|
| 84 |
+
# `restart_params` creates a copy of the object when restoring the original weights,
|
| 85 |
+
# which can lead to problems such as the device not being set correctly
|
| 86 |
+
# when exiting the pipeline. For these reasons, `restart_params` is set to `False`.
|
| 87 |
+
# If you want to restore the original weights, it is recommended to reload the pipeline.
|
| 88 |
+
super().edit_model(
|
| 89 |
+
source_prompt, destination_prompt, lamb, restart_params=False
|
| 90 |
+
)
|