--- license: mit language: - en base_model: - facebook/esm2_t33_650M_UR50D tags: - protein-classification - bioinformatics - anticancer - esm2 - transformers - torch --- # ANTICP3: Anticancer Protein Prediction This model is a fine-tuned version of [`facebook/esm2-t33-650M-UR50D`](https://huggingface.co/facebook/esm2_t33_650M_UR50D) designed for **binary classification of anticancer proteins (ACPs)** from their primary sequence. > **Developed by**: [G. P. S. Raghava Lab, IIIT-Delhi](https://webs.iiitd.edu.in/raghava/) > > **Model hosted by**: [Dr. GPS Raghava's Group](https://huggingface.co/raghavagps-group/anticp3) --- ## Model Details | Feature | Description | |--------------------|--------------------------------------------------------------| | **Base Model** | [`facebook/esm2_t33_650M_UR50D`](https://huggingface.co/facebook/esm2_t33_650M_UR50D) | | **Fine-tuned On** | Anticancer Protein Dataset | | **Model Type** | Binary Classification | | **Labels** | `0`: Non-Anticancer
`1`: Anticancer | | **Framework** | [Transformers](https://huggingface.co/docs/transformers) + PyTorch | | **Format** | `safetensors` | --- ## Usage Use this model with the Hugging Face `transformers` library: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load tokenizer and fine-tuned model tokenizer = AutoTokenizer.from_pretrained("raghavagps-group/anticp3") model = AutoModelForSequenceClassification.from_pretrained("raghavagps-group/anticp3") # Example protein sequence sequence = "MANCVVGYIGERCQYRDLKWWELRGGGGSGGGGSAPAFSVSPASGLSDGQSVSVSVSGAAAGETYYIAQCAPVGGQDACNPATATSFTTDASGAASFSFVVRKSYTGSTPEGTPVGSVDCATAACNLGAGNSGLDLGHVALTFGGGGGSGGGGSDHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCKLEHHHHHH" # Tokenize and run inference inputs = tokenizer(sequence, return_tensors="pt", truncation=True) with torch.no_grad(): logits = model(**inputs).logits probs = torch.nn.functional.softmax(logits, dim=-1) prediction = torch.argmax(probs, dim=1).item() labels = {0: "Non-Anticancer", 1: "Anticancer"} print("Prediction:", labels[prediction])