File size: 31,037 Bytes
c5eff42 e05f7dd c5eff42 220a2b3 c5eff42 e05f7dd 220a2b3 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 220a2b3 c5eff42 c2b27cd c5eff42 220a2b3 c5eff42 220a2b3 c5eff42 220a2b3 c5eff42 220a2b3 c5eff42 220a2b3 c5eff42 220a2b3 c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 220a2b3 c5eff42 220a2b3 c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 e05f7dd c5eff42 220a2b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
---
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:800000
- loss:SpladeLoss
- loss:SparseMarginMSELoss
- loss:FlopsLoss
base_model:
- prajjwal1/bert-small
widget:
- text: leagues, define
- text: >-
WATCH HOW YOU WANT. STARZ lets you stream hit original series and movies on
your favorite devices. Plus you can get the STARZ app on your smartphone or
tablet and download full movies and shows to watch off-line, anytime,
anywhere. START YOUR FREE TRIAL NOW.
- text: >-
Furthermore, priority must be given to national jurisdiction. Pointing out
that States applied universal jurisdiction differently, he expressed concern
at the abuse of its application by some national courts, which rendered it a
source of international conflict.
- text: >-
My sil tells me that my mil cooked the eggplant at high heat for a very long
time until it was almost burned. Is it possible that cooking it in such a
way gets rid of the bitterness? My mil bought her eggplants at the chain
grocery store- so this is not a freshness issue. Thanks for any ideas.
- text: how many tablespoons of garlic powder are in an ounce
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
model-index:
- name: SPLADE Sparse Encoder
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: dot_accuracy@1
value: 0.45475
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7685
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8785833333333334
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9484166666666667
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.45475
name: Dot Precision@1
- type: dot_precision@3
value: 0.2634444444444444
name: Dot Precision@3
- type: dot_precision@5
value: 0.18283333333333338
name: Dot Precision@5
- type: dot_precision@10
value: 0.09981666666666668
name: Dot Precision@10
- type: dot_recall@1
value: 0.43995833333333334
name: Dot Recall@1
- type: dot_recall@3
value: 0.754263888888889
name: Dot Recall@3
- type: dot_recall@5
value: 0.867825
name: Dot Recall@5
- type: dot_recall@10
value: 0.942448611111111
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7030603243631471
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6287952050264416
name: Dot Mrr@10
- type: dot_map@100
value: 0.625266158775858
name: Dot Map@100
- type: query_active_dims
value: 24.914167404174805
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9991837308366367
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 171.85920667832903
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9943693333766356
name: Corpus Sparsity Ratio
datasets:
- microsoft/ms_marco
language:
- en
---
# SPLADE-Small
This is a SPLADE sparse retrieval model based on BERT-Small (29M) that was trained by distilling a Cross-Encoder on the MSMARCO dataset. The cross-encoder used was [ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2).
This SPLADE model is `2x` smaller than Naver's official `splade-v3-distilbert` while having `91%` of it's performance on the MSMARCO benchmark. This model is small enough to be used without a GPU on a dataset of a few thousand documents.
- `Collection:` https://huggingface.co/collections/rasyosef/splade-tiny-msmarco-687c548c0691d95babf65b70
- `Distillation Dataset:` https://huggingface.co/datasets/yosefw/msmarco-train-distil-v2
- `Code:` https://github.com/rasyosef/splade-tiny-msmarco
## Performance
The splade models were evaluated on 55 thousand queries and 8.84 million documents from the [MSMARCO](https://huggingface.co/datasets/microsoft/ms_marco) dataset.
||Size (# Params)|MRR@10 (MS MARCO dev)|
|:---|:----|:-------------------|
|`BM25`|-|18.0|-|-|
|`rasyosef/splade-tiny`|4.4M|30.9|
|`rasyosef/splade-mini`|11.2M|34.1|
|`rasyosef/splade-small`|28.8M|35.4|
|`naver/splade-v3-distilbert`|67.0M|38.7|
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("rasyosef/splade-small")
# Run inference
queries = [
"how many tablespoons of garlic powder are in an ounce",
]
documents = [
'1 Fluid Ounce (fl oz) = 2 tablespoons 16 Tablespoons = 1 cup 16 Fluid Ounce (fl oz) = 2 cup. two ! 9.7 grams of garlic powder will be present in a tablespoon. 1 dry ounce is between 2 and 2.38 tablespoons, 16 tablespoons is incorrect. --------------------- 16 tablespoons per dry ounce. It is approximately 1/2 ounce. Usually 1/4 to 1/2 tsp.',
'Spices, garlic powder weigh(s) 164 gram per (metric cup) or 5.47 ounce per (US cup)',
'How many teaspoons of garlic powder equal a clove of garlic? Weigh the garlic clove and then weigh the garlic powder to make sure it is the same weight. That is how much powder equals a clove of garlic.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[26.3104, 20.4381, 15.5539]])
```
## Model Details
### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## More
<details><summary>Click to expand</summary>
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.4547 |
| dot_accuracy@3 | 0.7685 |
| dot_accuracy@5 | 0.8786 |
| dot_accuracy@10 | 0.9484 |
| dot_precision@1 | 0.4547 |
| dot_precision@3 | 0.2634 |
| dot_precision@5 | 0.1828 |
| dot_precision@10 | 0.0998 |
| dot_recall@1 | 0.44 |
| dot_recall@3 | 0.7543 |
| dot_recall@5 | 0.8678 |
| dot_recall@10 | 0.9424 |
| **dot_ndcg@10** | **0.7031** |
| dot_mrr@10 | 0.6288 |
| dot_map@100 | 0.6253 |
| query_active_dims | 24.9142 |
| query_sparsity_ratio | 0.9992 |
| corpus_active_dims | 171.8592 |
| corpus_sparsity_ratio | 0.9944 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 800,000 training samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative_1 | negative_2 | negative_3 | negative_4 | label |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------|
| type | string | string | string | string | string | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.96 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 79.51 tokens</li><li>max: 230 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 78.09 tokens</li><li>max: 203 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 77.84 tokens</li><li>max: 215 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 76.65 tokens</li><li>max: 249 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 74.67 tokens</li><li>max: 227 tokens</li></ul> | <ul><li>size: 4 elements</li></ul> |
* Samples:
| query | positive | negative_1 | negative_2 | negative_3 | negative_4 | label |
|:----------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|
| <code>who was president during detente</code> | <code>Détente ended after the Soviet intervention in Afghanistan, which led to the United States boycott of the 1980 Olympics in Moscow. Ronald Reagan's election as president in 1980, based in large part on an anti-détente campaign, marked the close of détente and a return to Cold War tensions.</code> | <code>Soviet Premier Alexei Kosygin (front) next to U.S. President Lyndon B. Johnson (behind) during the Glassboro Summit Conference The most obvious manifestation of détente was the series of summits held between the leaders of the two superpowers and the treaties that resulted from these meetings.</code> | <code>The activities of President Ronald Reagan returned tensions to a fever pitch. Soviet relations with the People's Republic of China Détente could probably not have taken place, and certainly wouldn't have assumed the form that it did, without the rift that developed between the world's two primary communist regimes, the Soviet Union and the People's Republic of China (PRC).</code> | <code>Détente is the easing of strained relations, especially in a political situation. The term originates in the time of the Triple Entente and Entente cordiale in reference to an easing of tensions between England and France who, subsequent to being commingled polities under Norman rule, were warring rivals for the better part of a millennium but pursuant to a policy of détente became enduring allies. In the context of the Cold War, the lessening of tensions between the East and West, along ...</code> | <code>Détente (French pronunciation: [detɑ̃t], meaning relaxation)[1] is the easing of strained relations, especially in political situation.</code> | <code>[1.0, 2.1879749298095703, 8.371654510498047, 10.16702938079834]</code> |
| <code>what is an ftp file</code> | <code>File Transfer Protocol (FTP) is a standard Internet protocol for transmitting files between computers on the Internet over TCP/IP connections. FTP is a client-server protocol that relies on two communications channels between client and server: a command channel for controlling the conversation and a data channel for transmitting file content. Clients initiate conversations with servers by requesting to download a file.</code> | <code>The FTP (File Transfer Protocol) utility program is commonly used for copying files to and from other computers. These computers may be at the same site or at different sites thousands of miles apart. FTP is a general protocol that works on UNIX systems as well as a variety of other (non-UNIX) systems.</code> | <code>To transfer files via File Transfer Protocol (FTP), you need to establish an FTP connection. To make an FTP connection you can use a standard Web browser (Internet Explorer, Mozilla Firefox, etc.) or an FTP Client. To transfer a file with FTP you need to have an FTP accounts for the web space you are going to transfer the file to. FTP hosting account where you plan to upload your files.</code> | <code>The Difference Between FTP Servers and File Servers. When two terms are similar and even describe a similar concept, people have a tendency to start using them interchangeably. This is definitely true in the case of FTP servers and file servers, which sound like they accomplish the same goal but in reality are two very different animals altogether.</code> | <code>The command-line secure file transfer program (sftp) and graphical SFTP clients, such as WinSCP and Fetch, use SSH2 encryption to authenticate and establish secure channels between networked hosts.</code> | <code>[1.0, 5.810799598693848, 7.961757183074951, 18.629709243774414]</code> |
| <code>what causes a t wave abnormality</code> | <code>T –wave abnormalities may not necessarily indicate the presence of a severe heart condition. There are non-specific wave changes that result from common, non-specific causes of T-wave abnormality which includes the following: 1 No obvious causes, which are usually associated with women. Fever.</code> | <code>5 Causes Of T-Wave Abnormality. T wave is basically the diagrammatically representation of ventricular polarization called electrocardiography. The structure of a T wave is like slight inverted upward stroke that follow a peak generated by R and S waves. One heart beat is represented in form of Q, R, S and T wave. The abnormality in T waves may be indicated by longer, flatter or higher peaks in the diagram. The measurement of heart beat in such a way makes it possible to diagnose heart related problems easily. If you are suffering from any heart related disease, the electrocardiogram will show an abnormality in the T wave. In this write up we will discuss various causes of abnormality in T wave measurement.</code> | <code>Specific states or conditions that cause T-wave abnormality. Complete inversions can signify the presence of cardiovascular diseases and other serious complications, which include the following: Ischemia is a condition in which oxygenated blood becomes constrained in a certain body part.</code> | <code>T Wave Abnormalities. christine m. smith. I just received a copy of an ECG I had done in Sept 1998. The preliminary report was borderline ECG and the final interpretation was Abnormal ECG. There was normal sinus rhythm and Nonspecific Anterior T abnormalities. When compared to an ECG taken in 1986 there was minimal T wave change. I have been told by many that abnormalities like this are usually no problem.</code> | <code>Prolonged Q-T interval. Long QT syndrome is a heart rhythm disorder that can cause serious irregular heart rhythms (arrhythmias). In a normal heart, your heart circulates blood throughout your body during each heartbeat. Your heart's chambers contract and relax to pump blood.</code> | <code>[1.0, 1.0, 5.3564229011535645, 11.585516929626465]</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
```json
{
"loss": "SparseMarginMSELoss",
"document_regularizer_weight": 0.12,
"query_regularizer_weight": 0.2
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 48
- `per_device_eval_batch_size`: 48
- `learning_rate`: 4e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.025
- `fp16`: True
- `load_best_model_at_end`: True
- `push_to_hub`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 48
- `per_device_eval_batch_size`: 48
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 4e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.025
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | dot_ndcg@10 |
|:-----:|:-----:|:-------------:|:-----------:|
| 1.0 | 16667 | 8.363 | 0.6961 |
| 2.0 | 33334 | 6.5021 | 0.7031 |
| 3.0 | 50001 | 5.2209 | 0.7031 |
### Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.55.3
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
```
#### SparseMarginMSELoss
```bibtex
@misc{hofstätter2021improving,
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
year={2021},
eprint={2010.02666},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```
#### FlopsLoss
```bibtex
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
</details> |