---
language:
- en
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
tags:
- mixture-of-attentions
- distance-attention
- metric-attention
- mqa
- hyperffn
- router-gating
datasets:
- nvidia/Nemotron-Math-HumanReasoning
- WeMake/Intelligent-Content-Understanding
---
# MoAMetricLM‑100M — Mixture of Attentions (MoA)
**A geometry‑aware Transformer that mixes several attention mechanisms and routes them with a metric‑based router.**
- **Parameters:** ~185 M (≈ 100 M effective due to the mixture)
- **Task:** Causal language modeling (decoder‑only)
- **Library:** 🤗 Transformers
- **KV cache:** Not yet implemented (generation recomputes the full context at every step)
---
## Model card
| **Model ID** | `reaperdoesntknow/MoA-100M` |
|--------------|-------------------------------------|
| **Architecture** | `moa_metric` (custom) |
| **Tokenizer** | GPT‑2 (`gpt2`) – `pad_token` set to `eos_token` |
| **Context length** | 2048 tokens |
| **Training data** | 2 × ≈ 256 k tokens from the datasets listed above |
| **Training compute** | CPU‑only (Intel), FP32 |
| **Training hyper‑parameters** | LR = 5e‑4 (AdamW), batch = 4, seq ≤ 512, 500 k total tokens |
| **Final loss** | ≈ 0.30 (train) |
| **License** | Apache‑2.0 |
| **Safety** | No alignment or safety fine‑tuning – outputs may be biased or inaccurate. |
| **Intended use** | Research on geometry‑aware attention, structured sparsity, and mixture‑of‑attention models. |
| **Limitations** | • No KV‑cache → slower generation.
• Small token budget → not a general‑purpose LM.
• No safety/alignment training. |
| **Out‑of‑scope** | High‑stakes applications (medical, legal, etc.) without further evaluation. |
---
## Overview
MoA replaces the classic dot‑product attention with **metric‑based attention** and blends **four** distinct heads per Transformer block:
| Head type | Description |
|-----------|-------------|
| **LocalConvHead** | Depthwise‑separable 1‑D convolution → captures short‑range context. |
| **Metric Multi‑Head Attention (MetricMHAttention)** | Soft‑min over **L2 / cosine / diagonal‑Mahalanobis** distances:
\(\displaystyle \text{attn}_{h}(i,j) \propto \exp\!\big(-\alpha_h\|q_i-k_j\|^2\big)\) |
| **Metric MQA** | Multi‑Query attention (shared K/V) in the same metric space – cheaper than full MHA. |
| **ChannelMixHead** | Per‑token MLP that mixes channel dimensions (no positional mixing). |
A **token‑wise router** decides, for each token, which head(s) to use and applies **feature‑gates** (FiLM‑style) and **router‑bias gates** for up/down‑scaling.
The **FFN** is a **HyperFFN** – three parallel branches (SwiGLU MLP, separable‑conv, low‑rank) combined by a **branch router**. LayerScale and optional DropPath keep training stable.
### Regularisation (optional)
* **Triangle‑inequality (TI) penalty** on sampled triples to encourage true‑metric behaviour.
* **Ball pruning** – each head learns an **origin** \(o_h\) and **radius** \(r_h\); keys outside the ball are masked, giving structured sparsity.
---
## Architecture diagram (high‑level)
```
Input → Embedding → (PreNorm) → Block₁ → … → Blockₙ → LM‑Head → Output
│
├─ LocalConvHead
├─ MetricMHAttention
├─ MetricMQA
└─ ChannelMixHead
(router decides per‑token)
Each Block also contains:
→ HyperFFN (SwiGLU | Conv | Low‑rank) ← branch router
→ LayerScale + DropPath
```
---
## Configuration (example)
```json
{
"model_type": "moa_metric",
"vocab_size": 50257,
"dim": 768,
"num_layers": 12,
"attn_heads": 8,
"mqa_q_heads": 8,
"mixer_hidden": 3072,
"ffn_hidden": 3072,
"metric": "l2", // "l2" | "cosine" | "maha_diag"
"alpha_init": 1.0,
"learn_alpha": true,
"use_balls": true,
"radius_init": 3.0,
"learn_radius": true,
"origin_init_scale": 0.0,
"maha_init": 1.0,
"ti_reg_weight": 0.0,
"ti_reg_samples": 0,
"router_hidden": 128,
"router_dropout": 0.1,
"router_temperature": 1.0,
"attn_drop": 0.1,
"proj_drop": 0.1,
"drop_path": 0.0,
"max_position_embeddings": 2048,
"pad_token_id": 50256,
"bos_token_id": 50256,
"eos_token_id": 50256
}
```
> **Tip:** If you use the GPT‑2 tokenizer, set `pad_token = eos_token` and make sure `vocab_size` matches the tokenizer (50257).
---
## Quick‑start (inference)
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model_id = "reaperdoesntknow/MoA-100M"
>>> tokenizer = AutoTokenizer.from_pretrained(model_id)
>>> tokenizer.pad_token = tokenizer.eos_token # needed for the GPT‑2 tokenizer
>>> model = AutoModelForCausalLM.from_pretrained(model_id)
>>> prompt = "Explain metric‑based attention in simple terms:"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> output_ids = model.generate(
... **inputs,
... max_new_tokens=128,
... do_sample=False, # deterministic; set temperature>0 for sampling
... pad_token_id=tokenizer.pad_token_id,
... )
>>> print(tokenizer.decode(output_ids[0], skip_special_tokens=True))
```
*Note:* Because KV‑cache is not implemented, generation time grows linearly with the total context length.
---
## Training (custom loop sketch)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModeling
from torch.utils.data import DataLoader
import torch, torch.nn.functional as F
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
def collate_fn(examples):
batch = tokenizer(
[ex["text"] for ex in examples],
padding="max_length",
truncation=True,
max_length=512,
return_tensors="pt",
)
labels = batch["input_ids"].clone()
labels[batch["attention_mask"] == 0] = -100
batch["labels"] = labels
return batch
# dataset = load_dataset(..., split="train") # must contain a 'text' field
# loader = DataLoader(dataset, batch_size=4, shuffle=True, collate_fn=collate_fn)
model = AutoModelForCausalLM.from_pretrained("reaperdoesntknow/MoA-100M")
optimizer = torch.optim.AdamW(
model.parameters(),
lr=5e-4,
betas=(0.9, 0.95),
weight_decay=0.01,
)
for batch in loader:
out = model(**batch)
out.loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.2)
optimizer.step()
optimizer.zero_grad()
```
---
## Evaluation checklist
* **Perplexity** on a held‑out split of the two training datasets.
* **Ablation studies** (keep total token budget constant):
* L2 vs. cosine vs. diagonal‑Mahalanobis distance.
* With / without ball pruning.
* With / without HyperFFN branch router.
* With / without TI regulariser.
* **Speed / memory** comparison against a vanilla GPT‑2‑size model (same `dim`/`layers`).
---
## Efficiency notes
| Feature | What it does |
|---------|--------------|
| **Ball pruning** | Masks keys that lie outside a learned radius → reduces the quadratic attention cost. |
| **Metric MQA** | Shares K/V across heads → fewer projection matrices, lower FLOPs. |
| **HyperFFN branch router** | Token‑wise top‑k routing means only the most useful branch is evaluated per token. |
| **CPU tips** | Set `OMP_NUM_THREADS` / `MKL_NUM_THREADS` to the number of physical cores; use `torch.set_num_threads()` if needed. |
Future roadmap: metric‑aware KV‑cache, kernelised distance approximations (e.g., Random Fourier Features), quantisation & mixed‑precision inference.
---
## Safety, Bias & Risks
* The model **has not been fine‑tuned for safety or alignment**.
* Outputs may contain **biases, profanity, or factual errors**.
* Do **not** deploy in high‑stakes contexts without additional evaluation, moderation, and possibly further fine‑tuning.
---
## License
Apache‑2.0 – see the `LICENSE` file in the repository.
---
## Citation
```bibtex
@misc{moametriclm185m,
title = {reaperdoesntknow/MoA-100M: A Geometry-Aware Mixture-of-Attentions Language Model},
author = {Colca, Roy Shawn and collaborators},
year = {2025},
url = {https://huggingface.co/reaperdoesntknow/MoA-100M}
}
```
---
## Changelog
| Version | Date | Notes |
|---------|------|-------|
| **v0.2** | 2025‑09‑20 | 500 k‑token CPU run, GPT‑2 tokenizer, LR = 5e‑4, final loss ≈ 0.30. |
| **v0.1** | 2025‑09‑20 | Initial public release: metric heads, MQA, ball pruning, HyperFFN, router & gates; HF‑compatible; no KV cache. |
---
## Maintainers
* **Author:** reaper (Convergent Intelligence LLC)
* **Contact:** *Email* (convergentintelligencenyc@gmail.com)*
---
## Special Remarks
- This models still in an extremely experimental state. As are most of them, but im working on stabilizing this one for general inference.
- I design create and train all of my models using my mathematical research and pure disgust for the dot product!
- For those of you who actually read this and use my models, you make my day everytime I see another download, so thank you for being awesome!