Add new CrossEncoder model
Browse files- README.md +85 -85
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -41,25 +41,25 @@ model-index:
|
|
| 41 |
type: test_cls
|
| 42 |
metrics:
|
| 43 |
- type: accuracy
|
| 44 |
-
value: 0.
|
| 45 |
name: Accuracy
|
| 46 |
- type: accuracy_threshold
|
| 47 |
-
value: 0.
|
| 48 |
name: Accuracy Threshold
|
| 49 |
- type: f1
|
| 50 |
-
value: 0.
|
| 51 |
name: F1
|
| 52 |
- type: f1_threshold
|
| 53 |
-
value: 0.
|
| 54 |
name: F1 Threshold
|
| 55 |
- type: precision
|
| 56 |
-
value: 0.
|
| 57 |
name: Precision
|
| 58 |
- type: recall
|
| 59 |
-
value: 0.
|
| 60 |
name: Recall
|
| 61 |
- type: average_precision
|
| 62 |
-
value: 0.
|
| 63 |
name: Average Precision
|
| 64 |
- task:
|
| 65 |
type: cross-encoder-reranking
|
|
@@ -69,13 +69,13 @@ model-index:
|
|
| 69 |
type: NanoQuoraRetrieval_R25
|
| 70 |
metrics:
|
| 71 |
- type: map
|
| 72 |
-
value: 0.
|
| 73 |
name: Map
|
| 74 |
- type: mrr@1
|
| 75 |
-
value: 0.
|
| 76 |
name: Mrr@1
|
| 77 |
- type: ndcg@1
|
| 78 |
-
value: 0.
|
| 79 |
name: Ndcg@1
|
| 80 |
- task:
|
| 81 |
type: cross-encoder-reranking
|
|
@@ -85,13 +85,13 @@ model-index:
|
|
| 85 |
type: NanoMSMARCO_R25
|
| 86 |
metrics:
|
| 87 |
- type: map
|
| 88 |
-
value: 0.
|
| 89 |
name: Map
|
| 90 |
- type: mrr@1
|
| 91 |
-
value: 0.
|
| 92 |
name: Mrr@1
|
| 93 |
- type: ndcg@1
|
| 94 |
-
value: 0.
|
| 95 |
name: Ndcg@1
|
| 96 |
- task:
|
| 97 |
type: cross-encoder-reranking
|
|
@@ -101,13 +101,13 @@ model-index:
|
|
| 101 |
type: NanoNQ_R25
|
| 102 |
metrics:
|
| 103 |
- type: map
|
| 104 |
-
value: 0.
|
| 105 |
name: Map
|
| 106 |
- type: mrr@1
|
| 107 |
-
value: 0.
|
| 108 |
name: Mrr@1
|
| 109 |
- type: ndcg@1
|
| 110 |
-
value: 0.
|
| 111 |
name: Ndcg@1
|
| 112 |
- task:
|
| 113 |
type: cross-encoder-nano-beir
|
|
@@ -117,13 +117,13 @@ model-index:
|
|
| 117 |
type: NanoBEIR_R25_mean
|
| 118 |
metrics:
|
| 119 |
- type: map
|
| 120 |
-
value: 0.
|
| 121 |
name: Map
|
| 122 |
- type: mrr@1
|
| 123 |
-
value: 0.
|
| 124 |
name: Mrr@1
|
| 125 |
- type: ndcg@1
|
| 126 |
-
value: 0.
|
| 127 |
name: Ndcg@1
|
| 128 |
---
|
| 129 |
|
|
@@ -227,13 +227,13 @@ You can finetune this model on your own dataset.
|
|
| 227 |
|
| 228 |
| Metric | Value |
|
| 229 |
|:----------------------|:-----------|
|
| 230 |
-
| accuracy | 0.
|
| 231 |
-
| accuracy_threshold | 0.
|
| 232 |
-
| f1 | 0.
|
| 233 |
-
| f1_threshold | 0.
|
| 234 |
-
| precision | 0.
|
| 235 |
-
| recall | 0.
|
| 236 |
-
| **average_precision** | **0.
|
| 237 |
|
| 238 |
#### Cross Encoder Reranking
|
| 239 |
|
|
@@ -248,9 +248,9 @@ You can finetune this model on your own dataset.
|
|
| 248 |
|
| 249 |
| Metric | NanoQuoraRetrieval_R25 | NanoMSMARCO_R25 | NanoNQ_R25 |
|
| 250 |
|:-----------|:-----------------------|:---------------------|:---------------------|
|
| 251 |
-
| map | 0.
|
| 252 |
-
| mrr@1 | 0.
|
| 253 |
-
| **ndcg@1** | **0.
|
| 254 |
|
| 255 |
#### Cross Encoder Nano BEIR
|
| 256 |
|
|
@@ -271,9 +271,9 @@ You can finetune this model on your own dataset.
|
|
| 271 |
|
| 272 |
| Metric | Value |
|
| 273 |
|:-----------|:---------------------|
|
| 274 |
-
| map | 0.
|
| 275 |
-
| mrr@1 | 0.
|
| 276 |
-
| **ndcg@1** | **0.
|
| 277 |
|
| 278 |
<!--
|
| 279 |
## Bias, Risks and Limitations
|
|
@@ -407,7 +407,7 @@ You can finetune this model on your own dataset.
|
|
| 407 |
- `bf16_full_eval`: False
|
| 408 |
- `fp16_full_eval`: False
|
| 409 |
- `tf32`: None
|
| 410 |
-
- `local_rank`:
|
| 411 |
- `ddp_backend`: None
|
| 412 |
- `tpu_num_cores`: None
|
| 413 |
- `tpu_metrics_debug`: False
|
|
@@ -508,7 +508,7 @@ You can finetune this model on your own dataset.
|
|
| 508 |
| 0.0816 | 17000 | 0.1825 | - | - | - | - | - | - |
|
| 509 |
| 0.0864 | 18000 | 0.1822 | - | - | - | - | - | - |
|
| 510 |
| 0.0912 | 19000 | 0.1819 | - | - | - | - | - | - |
|
| 511 |
-
| 0.0960 | 20000 | 0.1817 | 0.1721 | 0.
|
| 512 |
| 0.1008 | 21000 | 0.1814 | - | - | - | - | - | - |
|
| 513 |
| 0.1056 | 22000 | 0.1813 | - | - | - | - | - | - |
|
| 514 |
| 0.1104 | 23000 | 0.1811 | - | - | - | - | - | - |
|
|
@@ -528,7 +528,7 @@ You can finetune this model on your own dataset.
|
|
| 528 |
| 0.1775 | 37000 | 0.1792 | - | - | - | - | - | - |
|
| 529 |
| 0.1823 | 38000 | 0.1791 | - | - | - | - | - | - |
|
| 530 |
| 0.1871 | 39000 | 0.179 | - | - | - | - | - | - |
|
| 531 |
-
| 0.1919 | 40000 | 0.179 | 0.1659 | 0.
|
| 532 |
| 0.1967 | 41000 | 0.1789 | - | - | - | - | - | - |
|
| 533 |
| 0.2015 | 42000 | 0.1788 | - | - | - | - | - | - |
|
| 534 |
| 0.2063 | 43000 | 0.1787 | - | - | - | - | - | - |
|
|
@@ -548,7 +548,7 @@ You can finetune this model on your own dataset.
|
|
| 548 |
| 0.2735 | 57000 | 0.1773 | - | - | - | - | - | - |
|
| 549 |
| 0.2783 | 58000 | 0.1771 | - | - | - | - | - | - |
|
| 550 |
| 0.2831 | 59000 | 0.1771 | - | - | - | - | - | - |
|
| 551 |
-
| 0.2879 | 60000 | 0.177 | 0.1599 | 0.
|
| 552 |
| 0.2927 | 61000 | 0.1769 | - | - | - | - | - | - |
|
| 553 |
| 0.2975 | 62000 | 0.1768 | - | - | - | - | - | - |
|
| 554 |
| 0.3023 | 63000 | 0.1768 | - | - | - | - | - | - |
|
|
@@ -568,7 +568,7 @@ You can finetune this model on your own dataset.
|
|
| 568 |
| 0.3695 | 77000 | 0.1753 | - | - | - | - | - | - |
|
| 569 |
| 0.3743 | 78000 | 0.1752 | - | - | - | - | - | - |
|
| 570 |
| 0.3791 | 79000 | 0.1751 | - | - | - | - | - | - |
|
| 571 |
-
| 0.3839 | 80000 | 0.175 | 0.1535 | 0.
|
| 572 |
| 0.3887 | 81000 | 0.175 | - | - | - | - | - | - |
|
| 573 |
| 0.3934 | 82000 | 0.1749 | - | - | - | - | - | - |
|
| 574 |
| 0.3982 | 83000 | 0.1748 | - | - | - | - | - | - |
|
|
@@ -588,7 +588,7 @@ You can finetune this model on your own dataset.
|
|
| 588 |
| 0.4654 | 97000 | 0.1744 | - | - | - | - | - | - |
|
| 589 |
| 0.4702 | 98000 | 0.1744 | - | - | - | - | - | - |
|
| 590 |
| 0.4750 | 99000 | 0.1744 | - | - | - | - | - | - |
|
| 591 |
-
| 0.4798 | 100000 | 0.1745 | 0.1477 | 0.
|
| 592 |
| 0.4846 | 101000 | 0.1744 | - | - | - | - | - | - |
|
| 593 |
| 0.4894 | 102000 | 0.1744 | - | - | - | - | - | - |
|
| 594 |
| 0.4942 | 103000 | 0.1744 | - | - | - | - | - | - |
|
|
@@ -608,7 +608,7 @@ You can finetune this model on your own dataset.
|
|
| 608 |
| 0.5614 | 117000 | 0.1742 | - | - | - | - | - | - |
|
| 609 |
| 0.5662 | 118000 | 0.1742 | - | - | - | - | - | - |
|
| 610 |
| 0.5710 | 119000 | 0.1742 | - | - | - | - | - | - |
|
| 611 |
-
| 0.5758 | 120000 | 0.1741 | 0.1434 | 0.
|
| 612 |
| 0.5806 | 121000 | 0.1742 | - | - | - | - | - | - |
|
| 613 |
| 0.5854 | 122000 | 0.1742 | - | - | - | - | - | - |
|
| 614 |
| 0.5902 | 123000 | 0.1742 | - | - | - | - | - | - |
|
|
@@ -628,7 +628,7 @@ You can finetune this model on your own dataset.
|
|
| 628 |
| 0.6573 | 137000 | 0.174 | - | - | - | - | - | - |
|
| 629 |
| 0.6621 | 138000 | 0.1741 | - | - | - | - | - | - |
|
| 630 |
| 0.6669 | 139000 | 0.174 | - | - | - | - | - | - |
|
| 631 |
-
| 0.6717 | 140000 | 0.1741 | 0.1425 | 0.
|
| 632 |
| 0.6765 | 141000 | 0.174 | - | - | - | - | - | - |
|
| 633 |
| 0.6813 | 142000 | 0.1741 | - | - | - | - | - | - |
|
| 634 |
| 0.6861 | 143000 | 0.174 | - | - | - | - | - | - |
|
|
@@ -648,7 +648,7 @@ You can finetune this model on your own dataset.
|
|
| 648 |
| 0.7533 | 157000 | 0.1741 | - | - | - | - | - | - |
|
| 649 |
| 0.7581 | 158000 | 0.174 | - | - | - | - | - | - |
|
| 650 |
| 0.7629 | 159000 | 0.174 | - | - | - | - | - | - |
|
| 651 |
-
| 0.7677 | 160000 | 0.174 | 0.1412 | 0.
|
| 652 |
| 0.7725 | 161000 | 0.174 | - | - | - | - | - | - |
|
| 653 |
| 0.7773 | 162000 | 0.1739 | - | - | - | - | - | - |
|
| 654 |
| 0.7821 | 163000 | 0.174 | - | - | - | - | - | - |
|
|
@@ -668,7 +668,7 @@ You can finetune this model on your own dataset.
|
|
| 668 |
| 0.8493 | 177000 | 0.174 | - | - | - | - | - | - |
|
| 669 |
| 0.8541 | 178000 | 0.174 | - | - | - | - | - | - |
|
| 670 |
| 0.8589 | 179000 | 0.1739 | - | - | - | - | - | - |
|
| 671 |
-
| 0.8637 | 180000 | 0.1739 | 0.1403 | 0.
|
| 672 |
| 0.8685 | 181000 | 0.174 | - | - | - | - | - | - |
|
| 673 |
| 0.8733 | 182000 | 0.174 | - | - | - | - | - | - |
|
| 674 |
| 0.8781 | 183000 | 0.1739 | - | - | - | - | - | - |
|
|
@@ -688,7 +688,7 @@ You can finetune this model on your own dataset.
|
|
| 688 |
| 0.9452 | 197000 | 0.1739 | - | - | - | - | - | - |
|
| 689 |
| 0.9500 | 198000 | 0.174 | - | - | - | - | - | - |
|
| 690 |
| 0.9548 | 199000 | 0.1739 | - | - | - | - | - | - |
|
| 691 |
-
| 0.9596 | 200000 | 0.1739 | 0.1405 | 0.
|
| 692 |
| 0.9644 | 201000 | 0.174 | - | - | - | - | - | - |
|
| 693 |
| 0.9692 | 202000 | 0.174 | - | - | - | - | - | - |
|
| 694 |
| 0.9740 | 203000 | 0.1739 | - | - | - | - | - | - |
|
|
@@ -708,7 +708,7 @@ You can finetune this model on your own dataset.
|
|
| 708 |
| 1.0412 | 217000 | 0.1739 | - | - | - | - | - | - |
|
| 709 |
| 1.0460 | 218000 | 0.1739 | - | - | - | - | - | - |
|
| 710 |
| 1.0508 | 219000 | 0.1739 | - | - | - | - | - | - |
|
| 711 |
-
| 1.0556 | 220000 | 0.174 | 0.1395 | 0.
|
| 712 |
| 1.0604 | 221000 | 0.1739 | - | - | - | - | - | - |
|
| 713 |
| 1.0652 | 222000 | 0.1738 | - | - | - | - | - | - |
|
| 714 |
| 1.0700 | 223000 | 0.1739 | - | - | - | - | - | - |
|
|
@@ -728,7 +728,7 @@ You can finetune this model on your own dataset.
|
|
| 728 |
| 1.1372 | 237000 | 0.1739 | - | - | - | - | - | - |
|
| 729 |
| 1.1420 | 238000 | 0.1739 | - | - | - | - | - | - |
|
| 730 |
| 1.1468 | 239000 | 0.1739 | - | - | - | - | - | - |
|
| 731 |
-
| 1.1516 | 240000 | 0.1738 | 0.1394 | 0.
|
| 732 |
| 1.1564 | 241000 | 0.174 | - | - | - | - | - | - |
|
| 733 |
| 1.1612 | 242000 | 0.1739 | - | - | - | - | - | - |
|
| 734 |
| 1.1660 | 243000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -748,7 +748,7 @@ You can finetune this model on your own dataset.
|
|
| 748 |
| 1.2331 | 257000 | 0.1739 | - | - | - | - | - | - |
|
| 749 |
| 1.2379 | 258000 | 0.1739 | - | - | - | - | - | - |
|
| 750 |
| 1.2427 | 259000 | 0.1738 | - | - | - | - | - | - |
|
| 751 |
-
| 1.2475 | 260000 | 0.1738 | 0.1392 | 0.
|
| 752 |
| 1.2523 | 261000 | 0.174 | - | - | - | - | - | - |
|
| 753 |
| 1.2571 | 262000 | 0.1739 | - | - | - | - | - | - |
|
| 754 |
| 1.2619 | 263000 | 0.1739 | - | - | - | - | - | - |
|
|
@@ -768,7 +768,7 @@ You can finetune this model on your own dataset.
|
|
| 768 |
| 1.3291 | 277000 | 0.1739 | - | - | - | - | - | - |
|
| 769 |
| 1.3339 | 278000 | 0.1738 | - | - | - | - | - | - |
|
| 770 |
| 1.3387 | 279000 | 0.1739 | - | - | - | - | - | - |
|
| 771 |
-
| 1.3435 | 280000 | 0.1738 | 0.1394 | 0.
|
| 772 |
| 1.3483 | 281000 | 0.1739 | - | - | - | - | - | - |
|
| 773 |
| 1.3531 | 282000 | 0.1739 | - | - | - | - | - | - |
|
| 774 |
| 1.3579 | 283000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -788,7 +788,7 @@ You can finetune this model on your own dataset.
|
|
| 788 |
| 1.4251 | 297000 | 0.1738 | - | - | - | - | - | - |
|
| 789 |
| 1.4299 | 298000 | 0.1738 | - | - | - | - | - | - |
|
| 790 |
| 1.4347 | 299000 | 0.1738 | - | - | - | - | - | - |
|
| 791 |
-
| 1.4394 | 300000 | 0.1738 | 0.1395 | 0.
|
| 792 |
| 1.4442 | 301000 | 0.1739 | - | - | - | - | - | - |
|
| 793 |
| 1.4490 | 302000 | 0.1738 | - | - | - | - | - | - |
|
| 794 |
| 1.4538 | 303000 | 0.1737 | - | - | - | - | - | - |
|
|
@@ -808,7 +808,7 @@ You can finetune this model on your own dataset.
|
|
| 808 |
| 1.5210 | 317000 | 0.1737 | - | - | - | - | - | - |
|
| 809 |
| 1.5258 | 318000 | 0.1738 | - | - | - | - | - | - |
|
| 810 |
| 1.5306 | 319000 | 0.1739 | - | - | - | - | - | - |
|
| 811 |
-
| 1.5354 | 320000 | 0.1738 | 0.1388 | 0.
|
| 812 |
| 1.5402 | 321000 | 0.1738 | - | - | - | - | - | - |
|
| 813 |
| 1.5450 | 322000 | 0.1738 | - | - | - | - | - | - |
|
| 814 |
| 1.5498 | 323000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -828,7 +828,7 @@ You can finetune this model on your own dataset.
|
|
| 828 |
| 1.6170 | 337000 | 0.1739 | - | - | - | - | - | - |
|
| 829 |
| 1.6218 | 338000 | 0.1738 | - | - | - | - | - | - |
|
| 830 |
| 1.6266 | 339000 | 0.1738 | - | - | - | - | - | - |
|
| 831 |
-
| 1.6314 | 340000 | 0.1738 | 0.1388 | 0.
|
| 832 |
| 1.6362 | 341000 | 0.1737 | - | - | - | - | - | - |
|
| 833 |
| 1.6410 | 342000 | 0.1738 | - | - | - | - | - | - |
|
| 834 |
| 1.6458 | 343000 | 0.1737 | - | - | - | - | - | - |
|
|
@@ -848,7 +848,7 @@ You can finetune this model on your own dataset.
|
|
| 848 |
| 1.7129 | 357000 | 0.1738 | - | - | - | - | - | - |
|
| 849 |
| 1.7177 | 358000 | 0.1737 | - | - | - | - | - | - |
|
| 850 |
| 1.7225 | 359000 | 0.1738 | - | - | - | - | - | - |
|
| 851 |
-
| 1.7273 | 360000 | 0.1738 | 0.1386 | 0.
|
| 852 |
| 1.7321 | 361000 | 0.1738 | - | - | - | - | - | - |
|
| 853 |
| 1.7369 | 362000 | 0.1737 | - | - | - | - | - | - |
|
| 854 |
| 1.7417 | 363000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -868,7 +868,7 @@ You can finetune this model on your own dataset.
|
|
| 868 |
| 1.8089 | 377000 | 0.1738 | - | - | - | - | - | - |
|
| 869 |
| 1.8137 | 378000 | 0.1737 | - | - | - | - | - | - |
|
| 870 |
| 1.8185 | 379000 | 0.1738 | - | - | - | - | - | - |
|
| 871 |
-
|
|
| 872 |
| 1.8281 | 381000 | 0.1738 | - | - | - | - | - | - |
|
| 873 |
| 1.8329 | 382000 | 0.1738 | - | - | - | - | - | - |
|
| 874 |
| 1.8377 | 383000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -888,7 +888,7 @@ You can finetune this model on your own dataset.
|
|
| 888 |
| 1.9049 | 397000 | 0.1739 | - | - | - | - | - | - |
|
| 889 |
| 1.9097 | 398000 | 0.1738 | - | - | - | - | - | - |
|
| 890 |
| 1.9145 | 399000 | 0.1738 | - | - | - | - | - | - |
|
| 891 |
-
| 1.9193 | 400000 | 0.1738 | 0.1389 | 0.
|
| 892 |
| 1.9241 | 401000 | 0.1739 | - | - | - | - | - | - |
|
| 893 |
| 1.9289 | 402000 | 0.1738 | - | - | - | - | - | - |
|
| 894 |
| 1.9337 | 403000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -908,7 +908,7 @@ You can finetune this model on your own dataset.
|
|
| 908 |
| 2.0008 | 417000 | 0.1737 | - | - | - | - | - | - |
|
| 909 |
| 2.0056 | 418000 | 0.1737 | - | - | - | - | - | - |
|
| 910 |
| 2.0104 | 419000 | 0.1738 | - | - | - | - | - | - |
|
| 911 |
-
| 2.0152
|
| 912 |
| 2.0200 | 421000 | 0.1738 | - | - | - | - | - | - |
|
| 913 |
| 2.0248 | 422000 | 0.1737 | - | - | - | - | - | - |
|
| 914 |
| 2.0296 | 423000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -928,7 +928,7 @@ You can finetune this model on your own dataset.
|
|
| 928 |
| 2.0968 | 437000 | 0.1738 | - | - | - | - | - | - |
|
| 929 |
| 2.1016 | 438000 | 0.1738 | - | - | - | - | - | - |
|
| 930 |
| 2.1064 | 439000 | 0.1738 | - | - | - | - | - | - |
|
| 931 |
-
| 2.1112 | 440000 | 0.1738 | 0.1388 | 0.
|
| 932 |
| 2.1160 | 441000 | 0.1739 | - | - | - | - | - | - |
|
| 933 |
| 2.1208 | 442000 | 0.1738 | - | - | - | - | - | - |
|
| 934 |
| 2.1256 | 443000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -948,7 +948,7 @@ You can finetune this model on your own dataset.
|
|
| 948 |
| 2.1928 | 457000 | 0.1738 | - | - | - | - | - | - |
|
| 949 |
| 2.1976 | 458000 | 0.1739 | - | - | - | - | - | - |
|
| 950 |
| 2.2024 | 459000 | 0.1737 | - | - | - | - | - | - |
|
| 951 |
-
| 2.2072 | 460000 | 0.1738 | 0.1390 | 0.
|
| 952 |
| 2.2120 | 461000 | 0.1738 | - | - | - | - | - | - |
|
| 953 |
| 2.2168 | 462000 | 0.1738 | - | - | - | - | - | - |
|
| 954 |
| 2.2216 | 463000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -968,7 +968,7 @@ You can finetune this model on your own dataset.
|
|
| 968 |
| 2.2887 | 477000 | 0.1738 | - | - | - | - | - | - |
|
| 969 |
| 2.2935 | 478000 | 0.1738 | - | - | - | - | - | - |
|
| 970 |
| 2.2983 | 479000 | 0.1738 | - | - | - | - | - | - |
|
| 971 |
-
| 2.3031 | 480000 | 0.1739 | 0.1386 | 0.
|
| 972 |
| 2.3079 | 481000 | 0.1738 | - | - | - | - | - | - |
|
| 973 |
| 2.3127 | 482000 | 0.1738 | - | - | - | - | - | - |
|
| 974 |
| 2.3175 | 483000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -988,7 +988,7 @@ You can finetune this model on your own dataset.
|
|
| 988 |
| 2.3847 | 497000 | 0.1738 | - | - | - | - | - | - |
|
| 989 |
| 2.3895 | 498000 | 0.1737 | - | - | - | - | - | - |
|
| 990 |
| 2.3943 | 499000 | 0.1738 | - | - | - | - | - | - |
|
| 991 |
-
| 2.3991 | 500000 | 0.1737 | 0.1385 | 0.
|
| 992 |
| 2.4039 | 501000 | 0.1737 | - | - | - | - | - | - |
|
| 993 |
| 2.4087 | 502000 | 0.1738 | - | - | - | - | - | - |
|
| 994 |
| 2.4135 | 503000 | 0.1737 | - | - | - | - | - | - |
|
|
@@ -1008,7 +1008,7 @@ You can finetune this model on your own dataset.
|
|
| 1008 |
| 2.4807 | 517000 | 0.1738 | - | - | - | - | - | - |
|
| 1009 |
| 2.4854 | 518000 | 0.1738 | - | - | - | - | - | - |
|
| 1010 |
| 2.4902 | 519000 | 0.1737 | - | - | - | - | - | - |
|
| 1011 |
-
| 2.4950 | 520000 | 0.1738 | 0.1388 | 0.
|
| 1012 |
| 2.4998 | 521000 | 0.1737 | - | - | - | - | - | - |
|
| 1013 |
| 2.5046 | 522000 | 0.1738 | - | - | - | - | - | - |
|
| 1014 |
| 2.5094 | 523000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1028,7 +1028,7 @@ You can finetune this model on your own dataset.
|
|
| 1028 |
| 2.5766 | 537000 | 0.1737 | - | - | - | - | - | - |
|
| 1029 |
| 2.5814 | 538000 | 0.1738 | - | - | - | - | - | - |
|
| 1030 |
| 2.5862 | 539000 | 0.1738 | - | - | - | - | - | - |
|
| 1031 |
-
| 2.5910 | 540000 | 0.1738 | 0.1388 | 0.
|
| 1032 |
| 2.5958 | 541000 | 0.1737 | - | - | - | - | - | - |
|
| 1033 |
| 2.6006 | 542000 | 0.1737 | - | - | - | - | - | - |
|
| 1034 |
| 2.6054 | 543000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1048,7 +1048,7 @@ You can finetune this model on your own dataset.
|
|
| 1048 |
| 2.6726 | 557000 | 0.1738 | - | - | - | - | - | - |
|
| 1049 |
| 2.6774 | 558000 | 0.1738 | - | - | - | - | - | - |
|
| 1050 |
| 2.6822 | 559000 | 0.1738 | - | - | - | - | - | - |
|
| 1051 |
-
| 2.6870 | 560000 | 0.1737 | 0.1388 | 0.
|
| 1052 |
| 2.6918 | 561000 | 0.1737 | - | - | - | - | - | - |
|
| 1053 |
| 2.6966 | 562000 | 0.1738 | - | - | - | - | - | - |
|
| 1054 |
| 2.7014 | 563000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1068,7 +1068,7 @@ You can finetune this model on your own dataset.
|
|
| 1068 |
| 2.7685 | 577000 | 0.1738 | - | - | - | - | - | - |
|
| 1069 |
| 2.7733 | 578000 | 0.1738 | - | - | - | - | - | - |
|
| 1070 |
| 2.7781 | 579000 | 0.1737 | - | - | - | - | - | - |
|
| 1071 |
-
| 2.7829 | 580000 | 0.1738 | 0.1387 | 0.
|
| 1072 |
| 2.7877 | 581000 | 0.1739 | - | - | - | - | - | - |
|
| 1073 |
| 2.7925 | 582000 | 0.1737 | - | - | - | - | - | - |
|
| 1074 |
| 2.7973 | 583000 | 0.1737 | - | - | - | - | - | - |
|
|
@@ -1088,7 +1088,7 @@ You can finetune this model on your own dataset.
|
|
| 1088 |
| 2.8645 | 597000 | 0.1738 | - | - | - | - | - | - |
|
| 1089 |
| 2.8693 | 598000 | 0.1738 | - | - | - | - | - | - |
|
| 1090 |
| 2.8741 | 599000 | 0.1738 | - | - | - | - | - | - |
|
| 1091 |
-
| 2.8789 | 600000 | 0.1738 | 0.1388 | 0.
|
| 1092 |
| 2.8837 | 601000 | 0.1738 | - | - | - | - | - | - |
|
| 1093 |
| 2.8885 | 602000 | 0.1738 | - | - | - | - | - | - |
|
| 1094 |
| 2.8933 | 603000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1108,7 +1108,7 @@ You can finetune this model on your own dataset.
|
|
| 1108 |
| 2.9605 | 617000 | 0.1737 | - | - | - | - | - | - |
|
| 1109 |
| 2.9653 | 618000 | 0.1738 | - | - | - | - | - | - |
|
| 1110 |
| 2.9701 | 619000 | 0.1739 | - | - | - | - | - | - |
|
| 1111 |
-
| 2.9749 | 620000 | 0.1738 | 0.1388 | 0.
|
| 1112 |
| 2.9797 | 621000 | 0.1737 | - | - | - | - | - | - |
|
| 1113 |
| 2.9845 | 622000 | 0.1738 | - | - | - | - | - | - |
|
| 1114 |
| 2.9893 | 623000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1128,7 +1128,7 @@ You can finetune this model on your own dataset.
|
|
| 1128 |
| 3.0564 | 637000 | 0.1739 | - | - | - | - | - | - |
|
| 1129 |
| 3.0612 | 638000 | 0.1738 | - | - | - | - | - | - |
|
| 1130 |
| 3.0660 | 639000 | 0.1737 | - | - | - | - | - | - |
|
| 1131 |
-
| 3.0708 | 640000 | 0.1738 | 0.1388 | 0.
|
| 1132 |
| 3.0756 | 641000 | 0.1738 | - | - | - | - | - | - |
|
| 1133 |
| 3.0804 | 642000 | 0.1738 | - | - | - | - | - | - |
|
| 1134 |
| 3.0852 | 643000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1148,7 +1148,7 @@ You can finetune this model on your own dataset.
|
|
| 1148 |
| 3.1524 | 657000 | 0.1738 | - | - | - | - | - | - |
|
| 1149 |
| 3.1572 | 658000 | 0.1738 | - | - | - | - | - | - |
|
| 1150 |
| 3.1620 | 659000 | 0.1738 | - | - | - | - | - | - |
|
| 1151 |
-
| 3.1668 | 660000 | 0.1738 | 0.1390 | 0.
|
| 1152 |
| 3.1716 | 661000 | 0.1738 | - | - | - | - | - | - |
|
| 1153 |
| 3.1764 | 662000 | 0.1738 | - | - | - | - | - | - |
|
| 1154 |
| 3.1812 | 663000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1168,7 +1168,7 @@ You can finetune this model on your own dataset.
|
|
| 1168 |
| 3.2484 | 677000 | 0.1738 | - | - | - | - | - | - |
|
| 1169 |
| 3.2532 | 678000 | 0.1739 | - | - | - | - | - | - |
|
| 1170 |
| 3.2580 | 679000 | 0.1738 | - | - | - | - | - | - |
|
| 1171 |
-
| 3.2628 | 680000 | 0.1738 | 0.1390 | 0.
|
| 1172 |
| 3.2676 | 681000 | 0.1738 | - | - | - | - | - | - |
|
| 1173 |
| 3.2723 | 682000 | 0.1738 | - | - | - | - | - | - |
|
| 1174 |
| 3.2771 | 683000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1188,7 +1188,7 @@ You can finetune this model on your own dataset.
|
|
| 1188 |
| 3.3443 | 697000 | 0.1737 | - | - | - | - | - | - |
|
| 1189 |
| 3.3491 | 698000 | 0.1739 | - | - | - | - | - | - |
|
| 1190 |
| 3.3539 | 699000 | 0.1738 | - | - | - | - | - | - |
|
| 1191 |
-
| 3.3587 | 700000 | 0.1738 | 0.1390 | 0.
|
| 1192 |
| 3.3635 | 701000 | 0.1739 | - | - | - | - | - | - |
|
| 1193 |
| 3.3683 | 702000 | 0.1738 | - | - | - | - | - | - |
|
| 1194 |
| 3.3731 | 703000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1208,7 +1208,7 @@ You can finetune this model on your own dataset.
|
|
| 1208 |
| 3.4403 | 717000 | 0.1738 | - | - | - | - | - | - |
|
| 1209 |
| 3.4451 | 718000 | 0.1738 | - | - | - | - | - | - |
|
| 1210 |
| 3.4499 | 719000 | 0.1737 | - | - | - | - | - | - |
|
| 1211 |
-
| 3.4547 | 720000 | 0.1737 | 0.1389 | 0.
|
| 1212 |
| 3.4595 | 721000 | 0.1738 | - | - | - | - | - | - |
|
| 1213 |
| 3.4643 | 722000 | 0.1738 | - | - | - | - | - | - |
|
| 1214 |
| 3.4691 | 723000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1228,7 +1228,7 @@ You can finetune this model on your own dataset.
|
|
| 1228 |
| 3.5362 | 737000 | 0.1737 | - | - | - | - | - | - |
|
| 1229 |
| 3.5410 | 738000 | 0.1738 | - | - | - | - | - | - |
|
| 1230 |
| 3.5458 | 739000 | 0.1738 | - | - | - | - | - | - |
|
| 1231 |
-
| 3.5506 | 740000 | 0.1738 | 0.1390 | 0.
|
| 1232 |
| 3.5554 | 741000 | 0.1738 | - | - | - | - | - | - |
|
| 1233 |
| 3.5602 | 742000 | 0.1737 | - | - | - | - | - | - |
|
| 1234 |
| 3.5650 | 743000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1248,7 +1248,7 @@ You can finetune this model on your own dataset.
|
|
| 1248 |
| 3.6322 | 757000 | 0.1738 | - | - | - | - | - | - |
|
| 1249 |
| 3.6370 | 758000 | 0.1737 | - | - | - | - | - | - |
|
| 1250 |
| 3.6418 | 759000 | 0.1738 | - | - | - | - | - | - |
|
| 1251 |
-
| 3.6466 | 760000 | 0.1737 | 0.1390 | 0.
|
| 1252 |
| 3.6514 | 761000 | 0.1739 | - | - | - | - | - | - |
|
| 1253 |
| 3.6562 | 762000 | 0.1738 | - | - | - | - | - | - |
|
| 1254 |
| 3.6610 | 763000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1268,7 +1268,7 @@ You can finetune this model on your own dataset.
|
|
| 1268 |
| 3.7282 | 777000 | 0.1738 | - | - | - | - | - | - |
|
| 1269 |
| 3.7330 | 778000 | 0.1738 | - | - | - | - | - | - |
|
| 1270 |
| 3.7378 | 779000 | 0.1738 | - | - | - | - | - | - |
|
| 1271 |
-
| 3.7426 | 780000 | 0.1738 | 0.1390 | 0.
|
| 1272 |
| 3.7474 | 781000 | 0.1737 | - | - | - | - | - | - |
|
| 1273 |
| 3.7522 | 782000 | 0.1738 | - | - | - | - | - | - |
|
| 1274 |
| 3.7570 | 783000 | 0.1739 | - | - | - | - | - | - |
|
|
@@ -1288,7 +1288,7 @@ You can finetune this model on your own dataset.
|
|
| 1288 |
| 3.8241 | 797000 | 0.1738 | - | - | - | - | - | - |
|
| 1289 |
| 3.8289 | 798000 | 0.1738 | - | - | - | - | - | - |
|
| 1290 |
| 3.8337 | 799000 | 0.1738 | - | - | - | - | - | - |
|
| 1291 |
-
| 3.8385 | 800000 | 0.1739 | 0.1391 | 0.
|
| 1292 |
| 3.8433 | 801000 | 0.1739 | - | - | - | - | - | - |
|
| 1293 |
| 3.8481 | 802000 | 0.1738 | - | - | - | - | - | - |
|
| 1294 |
| 3.8529 | 803000 | 0.1739 | - | - | - | - | - | - |
|
|
@@ -1308,7 +1308,7 @@ You can finetune this model on your own dataset.
|
|
| 1308 |
| 3.9201 | 817000 | 0.1738 | - | - | - | - | - | - |
|
| 1309 |
| 3.9249 | 818000 | 0.1739 | - | - | - | - | - | - |
|
| 1310 |
| 3.9297 | 819000 | 0.1738 | - | - | - | - | - | - |
|
| 1311 |
-
| 3.9345 | 820000 | 0.1738 | 0.1390 | 0.
|
| 1312 |
| 3.9393 | 821000 | 0.1738 | - | - | - | - | - | - |
|
| 1313 |
| 3.9441 | 822000 | 0.1738 | - | - | - | - | - | - |
|
| 1314 |
| 3.9489 | 823000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1328,7 +1328,7 @@ You can finetune this model on your own dataset.
|
|
| 1328 |
| 4.0161 | 837000 | 0.1738 | - | - | - | - | - | - |
|
| 1329 |
| 4.0209 | 838000 | 0.1738 | - | - | - | - | - | - |
|
| 1330 |
| 4.0257 | 839000 | 0.1738 | - | - | - | - | - | - |
|
| 1331 |
-
| 4.0305 | 840000 | 0.1738 | 0.1391 | 0.
|
| 1332 |
| 4.0353 | 841000 | 0.1738 | - | - | - | - | - | - |
|
| 1333 |
| 4.0401 | 842000 | 0.1738 | - | - | - | - | - | - |
|
| 1334 |
| 4.0449 | 843000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1348,7 +1348,7 @@ You can finetune this model on your own dataset.
|
|
| 1348 |
| 4.1120 | 857000 | 0.1738 | - | - | - | - | - | - |
|
| 1349 |
| 4.1168 | 858000 | 0.1739 | - | - | - | - | - | - |
|
| 1350 |
| 4.1216 | 859000 | 0.1739 | - | - | - | - | - | - |
|
| 1351 |
-
| 4.1264 | 860000 | 0.1739 | 0.1391 | 0.
|
| 1352 |
| 4.1312 | 861000 | 0.1739 | - | - | - | - | - | - |
|
| 1353 |
| 4.1360 | 862000 | 0.1739 | - | - | - | - | - | - |
|
| 1354 |
| 4.1408 | 863000 | 0.1739 | - | - | - | - | - | - |
|
|
@@ -1368,7 +1368,7 @@ You can finetune this model on your own dataset.
|
|
| 1368 |
| 4.2080 | 877000 | 0.1738 | - | - | - | - | - | - |
|
| 1369 |
| 4.2128 | 878000 | 0.1738 | - | - | - | - | - | - |
|
| 1370 |
| 4.2176 | 879000 | 0.1738 | - | - | - | - | - | - |
|
| 1371 |
-
| 4.2224 | 880000 | 0.1739 | 0.1391 | 0.
|
| 1372 |
| 4.2272 | 881000 | 0.1738 | - | - | - | - | - | - |
|
| 1373 |
| 4.2320 | 882000 | 0.1738 | - | - | - | - | - | - |
|
| 1374 |
| 4.2368 | 883000 | 0.1739 | - | - | - | - | - | - |
|
|
@@ -1388,7 +1388,7 @@ You can finetune this model on your own dataset.
|
|
| 1388 |
| 4.3040 | 897000 | 0.1739 | - | - | - | - | - | - |
|
| 1389 |
| 4.3088 | 898000 | 0.1738 | - | - | - | - | - | - |
|
| 1390 |
| 4.3136 | 899000 | 0.1739 | - | - | - | - | - | - |
|
| 1391 |
-
| 4.3183 | 900000 | 0.1738 | 0.1391 | 0.
|
| 1392 |
| 4.3231 | 901000 | 0.1739 | - | - | - | - | - | - |
|
| 1393 |
| 4.3279 | 902000 | 0.1738 | - | - | - | - | - | - |
|
| 1394 |
| 4.3327 | 903000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1408,7 +1408,7 @@ You can finetune this model on your own dataset.
|
|
| 1408 |
| 4.3999 | 917000 | 0.1738 | - | - | - | - | - | - |
|
| 1409 |
| 4.4047 | 918000 | 0.1737 | - | - | - | - | - | - |
|
| 1410 |
| 4.4095 | 919000 | 0.1738 | - | - | - | - | - | - |
|
| 1411 |
-
| 4.4143 | 920000 | 0.1737 | 0.1391 | 0.
|
| 1412 |
| 4.4191 | 921000 | 0.1738 | - | - | - | - | - | - |
|
| 1413 |
| 4.4239 | 922000 | 0.1738 | - | - | - | - | - | - |
|
| 1414 |
| 4.4287 | 923000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1428,7 +1428,7 @@ You can finetune this model on your own dataset.
|
|
| 1428 |
| 4.4959 | 937000 | 0.1738 | - | - | - | - | - | - |
|
| 1429 |
| 4.5007 | 938000 | 0.1738 | - | - | - | - | - | - |
|
| 1430 |
| 4.5055 | 939000 | 0.1738 | - | - | - | - | - | - |
|
| 1431 |
-
| 4.5103 | 940000 | 0.1738 | 0.1391 | 0.
|
| 1432 |
| 4.5151 | 941000 | 0.1738 | - | - | - | - | - | - |
|
| 1433 |
| 4.5199 | 942000 | 0.1738 | - | - | - | - | - | - |
|
| 1434 |
| 4.5247 | 943000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1448,7 +1448,7 @@ You can finetune this model on your own dataset.
|
|
| 1448 |
| 4.5918 | 957000 | 0.1738 | - | - | - | - | - | - |
|
| 1449 |
| 4.5966 | 958000 | 0.1737 | - | - | - | - | - | - |
|
| 1450 |
| 4.6014 | 959000 | 0.1737 | - | - | - | - | - | - |
|
| 1451 |
-
| 4.6062 | 960000 | 0.1738 | 0.1391 | 0.
|
| 1452 |
| 4.6110 | 961000 | 0.1738 | - | - | - | - | - | - |
|
| 1453 |
| 4.6158 | 962000 | 0.1739 | - | - | - | - | - | - |
|
| 1454 |
| 4.6206 | 963000 | 0.1739 | - | - | - | - | - | - |
|
|
@@ -1468,7 +1468,7 @@ You can finetune this model on your own dataset.
|
|
| 1468 |
| 4.6878 | 977000 | 0.1738 | - | - | - | - | - | - |
|
| 1469 |
| 4.6926 | 978000 | 0.1738 | - | - | - | - | - | - |
|
| 1470 |
| 4.6974 | 979000 | 0.1738 | - | - | - | - | - | - |
|
| 1471 |
-
| 4.7022 | 980000 | 0.1739 | 0.1391 | 0.
|
| 1472 |
| 4.7070 | 981000 | 0.1738 | - | - | - | - | - | - |
|
| 1473 |
| 4.7118 | 982000 | 0.1739 | - | - | - | - | - | - |
|
| 1474 |
| 4.7166 | 983000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1488,7 +1488,7 @@ You can finetune this model on your own dataset.
|
|
| 1488 |
| 4.7838 | 997000 | 0.1738 | - | - | - | - | - | - |
|
| 1489 |
| 4.7886 | 998000 | 0.1738 | - | - | - | - | - | - |
|
| 1490 |
| 4.7934 | 999000 | 0.1738 | - | - | - | - | - | - |
|
| 1491 |
-
| 4.7982 | 1000000 | 0.1737 | 0.1391 | 0.
|
| 1492 |
| 4.8030 | 1001000 | 0.1738 | - | - | - | - | - | - |
|
| 1493 |
| 4.8078 | 1002000 | 0.1739 | - | - | - | - | - | - |
|
| 1494 |
| 4.8126 | 1003000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1508,7 +1508,7 @@ You can finetune this model on your own dataset.
|
|
| 1508 |
| 4.8797 | 1017000 | 0.1738 | - | - | - | - | - | - |
|
| 1509 |
| 4.8845 | 1018000 | 0.1739 | - | - | - | - | - | - |
|
| 1510 |
| 4.8893 | 1019000 | 0.1738 | - | - | - | - | - | - |
|
| 1511 |
-
| 4.8941 | 1020000 | 0.1738 | 0.1391 | 0.
|
| 1512 |
| 4.8989 | 1021000 | 0.1739 | - | - | - | - | - | - |
|
| 1513 |
| 4.9037 | 1022000 | 0.1739 | - | - | - | - | - | - |
|
| 1514 |
| 4.9085 | 1023000 | 0.1738 | - | - | - | - | - | - |
|
|
@@ -1528,7 +1528,7 @@ You can finetune this model on your own dataset.
|
|
| 1528 |
| 4.9757 | 1037000 | 0.1738 | - | - | - | - | - | - |
|
| 1529 |
| 4.9805 | 1038000 | 0.1738 | - | - | - | - | - | - |
|
| 1530 |
| 4.9853 | 1039000 | 0.1738 | - | - | - | - | - | - |
|
| 1531 |
-
| 4.9901 | 1040000 | 0.1738 | 0.1391 | 0.
|
| 1532 |
| 4.9949 | 1041000 | 0.1738 | - | - | - | - | - | - |
|
| 1533 |
| 4.9997 | 1042000 | 0.1738 | - | - | - | - | - | - |
|
| 1534 |
|
|
|
|
| 41 |
type: test_cls
|
| 42 |
metrics:
|
| 43 |
- type: accuracy
|
| 44 |
+
value: 0.7486299064162122
|
| 45 |
name: Accuracy
|
| 46 |
- type: accuracy_threshold
|
| 47 |
+
value: 0.09521484375
|
| 48 |
name: Accuracy Threshold
|
| 49 |
- type: f1
|
| 50 |
+
value: 0.7540239164438165
|
| 51 |
name: F1
|
| 52 |
- type: f1_threshold
|
| 53 |
+
value: 0.078125
|
| 54 |
name: F1 Threshold
|
| 55 |
- type: precision
|
| 56 |
+
value: 0.6489913794975355
|
| 57 |
name: Precision
|
| 58 |
- type: recall
|
| 59 |
+
value: 0.8996177347018631
|
| 60 |
name: Recall
|
| 61 |
- type: average_precision
|
| 62 |
+
value: 0.739506568318167
|
| 63 |
name: Average Precision
|
| 64 |
- task:
|
| 65 |
type: cross-encoder-reranking
|
|
|
|
| 69 |
type: NanoQuoraRetrieval_R25
|
| 70 |
metrics:
|
| 71 |
- type: map
|
| 72 |
+
value: 0.6478
|
| 73 |
name: Map
|
| 74 |
- type: mrr@1
|
| 75 |
+
value: 0.5
|
| 76 |
name: Mrr@1
|
| 77 |
- type: ndcg@1
|
| 78 |
+
value: 0.51
|
| 79 |
name: Ndcg@1
|
| 80 |
- task:
|
| 81 |
type: cross-encoder-reranking
|
|
|
|
| 85 |
type: NanoMSMARCO_R25
|
| 86 |
metrics:
|
| 87 |
- type: map
|
| 88 |
+
value: 0.3689
|
| 89 |
name: Map
|
| 90 |
- type: mrr@1
|
| 91 |
+
value: 0.2
|
| 92 |
name: Mrr@1
|
| 93 |
- type: ndcg@1
|
| 94 |
+
value: 0.2
|
| 95 |
name: Ndcg@1
|
| 96 |
- task:
|
| 97 |
type: cross-encoder-reranking
|
|
|
|
| 101 |
type: NanoNQ_R25
|
| 102 |
metrics:
|
| 103 |
- type: map
|
| 104 |
+
value: 0.5243
|
| 105 |
name: Map
|
| 106 |
- type: mrr@1
|
| 107 |
+
value: 0.4
|
| 108 |
name: Mrr@1
|
| 109 |
- type: ndcg@1
|
| 110 |
+
value: 0.4
|
| 111 |
name: Ndcg@1
|
| 112 |
- task:
|
| 113 |
type: cross-encoder-nano-beir
|
|
|
|
| 117 |
type: NanoBEIR_R25_mean
|
| 118 |
metrics:
|
| 119 |
- type: map
|
| 120 |
+
value: 0.5136
|
| 121 |
name: Map
|
| 122 |
- type: mrr@1
|
| 123 |
+
value: 0.3667
|
| 124 |
name: Mrr@1
|
| 125 |
- type: ndcg@1
|
| 126 |
+
value: 0.37
|
| 127 |
name: Ndcg@1
|
| 128 |
---
|
| 129 |
|
|
|
|
| 227 |
|
| 228 |
| Metric | Value |
|
| 229 |
|:----------------------|:-----------|
|
| 230 |
+
| accuracy | 0.7486 |
|
| 231 |
+
| accuracy_threshold | 0.0952 |
|
| 232 |
+
| f1 | 0.754 |
|
| 233 |
+
| f1_threshold | 0.0781 |
|
| 234 |
+
| precision | 0.649 |
|
| 235 |
+
| recall | 0.8996 |
|
| 236 |
+
| **average_precision** | **0.7395** |
|
| 237 |
|
| 238 |
#### Cross Encoder Reranking
|
| 239 |
|
|
|
|
| 248 |
|
| 249 |
| Metric | NanoQuoraRetrieval_R25 | NanoMSMARCO_R25 | NanoNQ_R25 |
|
| 250 |
|:-----------|:-----------------------|:---------------------|:---------------------|
|
| 251 |
+
| map | 0.6478 (-0.1827) | 0.3689 (-0.1189) | 0.5243 (+0.1043) |
|
| 252 |
+
| mrr@1 | 0.5000 (-0.3000) | 0.2000 (-0.1400) | 0.4000 (+0.1600) |
|
| 253 |
+
| **ndcg@1** | **0.5100 (-0.2900)** | **0.2000 (-0.1400)** | **0.4000 (+0.1600)** |
|
| 254 |
|
| 255 |
#### Cross Encoder Nano BEIR
|
| 256 |
|
|
|
|
| 271 |
|
| 272 |
| Metric | Value |
|
| 273 |
|:-----------|:---------------------|
|
| 274 |
+
| map | 0.5136 (-0.0658) |
|
| 275 |
+
| mrr@1 | 0.3667 (-0.0933) |
|
| 276 |
+
| **ndcg@1** | **0.3700 (-0.0900)** |
|
| 277 |
|
| 278 |
<!--
|
| 279 |
## Bias, Risks and Limitations
|
|
|
|
| 407 |
- `bf16_full_eval`: False
|
| 408 |
- `fp16_full_eval`: False
|
| 409 |
- `tf32`: None
|
| 410 |
+
- `local_rank`: 0
|
| 411 |
- `ddp_backend`: None
|
| 412 |
- `tpu_num_cores`: None
|
| 413 |
- `tpu_metrics_debug`: False
|
|
|
|
| 508 |
| 0.0816 | 17000 | 0.1825 | - | - | - | - | - | - |
|
| 509 |
| 0.0864 | 18000 | 0.1822 | - | - | - | - | - | - |
|
| 510 |
| 0.0912 | 19000 | 0.1819 | - | - | - | - | - | - |
|
| 511 |
+
| 0.0960 | 20000 | 0.1817 | 0.1721 | 0.5585 | 0.3000 (-0.5000) | 0.3900 (+0.0500) | 0.5500 (+0.3100) | 0.4133 (-0.0467) |
|
| 512 |
| 0.1008 | 21000 | 0.1814 | - | - | - | - | - | - |
|
| 513 |
| 0.1056 | 22000 | 0.1813 | - | - | - | - | - | - |
|
| 514 |
| 0.1104 | 23000 | 0.1811 | - | - | - | - | - | - |
|
|
|
|
| 528 |
| 0.1775 | 37000 | 0.1792 | - | - | - | - | - | - |
|
| 529 |
| 0.1823 | 38000 | 0.1791 | - | - | - | - | - | - |
|
| 530 |
| 0.1871 | 39000 | 0.179 | - | - | - | - | - | - |
|
| 531 |
+
| 0.1919 | 40000 | 0.179 | 0.1659 | 0.5798 | 0.6000 (-0.2000) | 0.3200 (-0.0200) | 0.4767 (+0.2367) | 0.4656 (+0.0056) |
|
| 532 |
| 0.1967 | 41000 | 0.1789 | - | - | - | - | - | - |
|
| 533 |
| 0.2015 | 42000 | 0.1788 | - | - | - | - | - | - |
|
| 534 |
| 0.2063 | 43000 | 0.1787 | - | - | - | - | - | - |
|
|
|
|
| 548 |
| 0.2735 | 57000 | 0.1773 | - | - | - | - | - | - |
|
| 549 |
| 0.2783 | 58000 | 0.1771 | - | - | - | - | - | - |
|
| 550 |
| 0.2831 | 59000 | 0.1771 | - | - | - | - | - | - |
|
| 551 |
+
| 0.2879 | 60000 | 0.177 | 0.1599 | 0.6128 | 0.5300 (-0.2700) | 0.1900 (-0.1500) | 0.3400 (+0.1000) | 0.3533 (-0.1067) |
|
| 552 |
| 0.2927 | 61000 | 0.1769 | - | - | - | - | - | - |
|
| 553 |
| 0.2975 | 62000 | 0.1768 | - | - | - | - | - | - |
|
| 554 |
| 0.3023 | 63000 | 0.1768 | - | - | - | - | - | - |
|
|
|
|
| 568 |
| 0.3695 | 77000 | 0.1753 | - | - | - | - | - | - |
|
| 569 |
| 0.3743 | 78000 | 0.1752 | - | - | - | - | - | - |
|
| 570 |
| 0.3791 | 79000 | 0.1751 | - | - | - | - | - | - |
|
| 571 |
+
| 0.3839 | 80000 | 0.175 | 0.1535 | 0.6545 | 0.3800 (-0.4200) | 0.2100 (-0.1300) | 0.2600 (+0.0200) | 0.2833 (-0.1767) |
|
| 572 |
| 0.3887 | 81000 | 0.175 | - | - | - | - | - | - |
|
| 573 |
| 0.3934 | 82000 | 0.1749 | - | - | - | - | - | - |
|
| 574 |
| 0.3982 | 83000 | 0.1748 | - | - | - | - | - | - |
|
|
|
|
| 588 |
| 0.4654 | 97000 | 0.1744 | - | - | - | - | - | - |
|
| 589 |
| 0.4702 | 98000 | 0.1744 | - | - | - | - | - | - |
|
| 590 |
| 0.4750 | 99000 | 0.1744 | - | - | - | - | - | - |
|
| 591 |
+
| 0.4798 | 100000 | 0.1745 | 0.1477 | 0.6925 | 0.5600 (-0.2400) | 0.2000 (-0.1400) | 0.2600 (+0.0200) | 0.3400 (-0.1200) |
|
| 592 |
| 0.4846 | 101000 | 0.1744 | - | - | - | - | - | - |
|
| 593 |
| 0.4894 | 102000 | 0.1744 | - | - | - | - | - | - |
|
| 594 |
| 0.4942 | 103000 | 0.1744 | - | - | - | - | - | - |
|
|
|
|
| 608 |
| 0.5614 | 117000 | 0.1742 | - | - | - | - | - | - |
|
| 609 |
| 0.5662 | 118000 | 0.1742 | - | - | - | - | - | - |
|
| 610 |
| 0.5710 | 119000 | 0.1742 | - | - | - | - | - | - |
|
| 611 |
+
| 0.5758 | 120000 | 0.1741 | 0.1434 | 0.7063 | 0.5300 (-0.2700) | 0.1600 (-0.1800) | 0.2500 (+0.0100) | 0.3133 (-0.1467) |
|
| 612 |
| 0.5806 | 121000 | 0.1742 | - | - | - | - | - | - |
|
| 613 |
| 0.5854 | 122000 | 0.1742 | - | - | - | - | - | - |
|
| 614 |
| 0.5902 | 123000 | 0.1742 | - | - | - | - | - | - |
|
|
|
|
| 628 |
| 0.6573 | 137000 | 0.174 | - | - | - | - | - | - |
|
| 629 |
| 0.6621 | 138000 | 0.1741 | - | - | - | - | - | - |
|
| 630 |
| 0.6669 | 139000 | 0.174 | - | - | - | - | - | - |
|
| 631 |
+
| 0.6717 | 140000 | 0.1741 | 0.1425 | 0.7261 | 0.5300 (-0.2700) | 0.1600 (-0.1800) | 0.3300 (+0.0900) | 0.3400 (-0.1200) |
|
| 632 |
| 0.6765 | 141000 | 0.174 | - | - | - | - | - | - |
|
| 633 |
| 0.6813 | 142000 | 0.1741 | - | - | - | - | - | - |
|
| 634 |
| 0.6861 | 143000 | 0.174 | - | - | - | - | - | - |
|
|
|
|
| 648 |
| 0.7533 | 157000 | 0.1741 | - | - | - | - | - | - |
|
| 649 |
| 0.7581 | 158000 | 0.174 | - | - | - | - | - | - |
|
| 650 |
| 0.7629 | 159000 | 0.174 | - | - | - | - | - | - |
|
| 651 |
+
| 0.7677 | 160000 | 0.174 | 0.1412 | 0.7252 | 0.4800 (-0.3200) | 0.1600 (-0.1800) | 0.3067 (+0.0667) | 0.3156 (-0.1444) |
|
| 652 |
| 0.7725 | 161000 | 0.174 | - | - | - | - | - | - |
|
| 653 |
| 0.7773 | 162000 | 0.1739 | - | - | - | - | - | - |
|
| 654 |
| 0.7821 | 163000 | 0.174 | - | - | - | - | - | - |
|
|
|
|
| 668 |
| 0.8493 | 177000 | 0.174 | - | - | - | - | - | - |
|
| 669 |
| 0.8541 | 178000 | 0.174 | - | - | - | - | - | - |
|
| 670 |
| 0.8589 | 179000 | 0.1739 | - | - | - | - | - | - |
|
| 671 |
+
| 0.8637 | 180000 | 0.1739 | 0.1403 | 0.7127 | 0.4000 (-0.4000) | 0.1800 (-0.1600) | 0.3700 (+0.1300) | 0.3167 (-0.1433) |
|
| 672 |
| 0.8685 | 181000 | 0.174 | - | - | - | - | - | - |
|
| 673 |
| 0.8733 | 182000 | 0.174 | - | - | - | - | - | - |
|
| 674 |
| 0.8781 | 183000 | 0.1739 | - | - | - | - | - | - |
|
|
|
|
| 688 |
| 0.9452 | 197000 | 0.1739 | - | - | - | - | - | - |
|
| 689 |
| 0.9500 | 198000 | 0.174 | - | - | - | - | - | - |
|
| 690 |
| 0.9548 | 199000 | 0.1739 | - | - | - | - | - | - |
|
| 691 |
+
| 0.9596 | 200000 | 0.1739 | 0.1405 | 0.7189 | 0.4100 (-0.3900) | 0.1800 (-0.1600) | 0.3700 (+0.1300) | 0.3200 (-0.1400) |
|
| 692 |
| 0.9644 | 201000 | 0.174 | - | - | - | - | - | - |
|
| 693 |
| 0.9692 | 202000 | 0.174 | - | - | - | - | - | - |
|
| 694 |
| 0.9740 | 203000 | 0.1739 | - | - | - | - | - | - |
|
|
|
|
| 708 |
| 1.0412 | 217000 | 0.1739 | - | - | - | - | - | - |
|
| 709 |
| 1.0460 | 218000 | 0.1739 | - | - | - | - | - | - |
|
| 710 |
| 1.0508 | 219000 | 0.1739 | - | - | - | - | - | - |
|
| 711 |
+
| 1.0556 | 220000 | 0.174 | 0.1395 | 0.7357 | 0.5800 (-0.2200) | 0.1800 (-0.1600) | 0.3800 (+0.1400) | 0.3800 (-0.0800) |
|
| 712 |
| 1.0604 | 221000 | 0.1739 | - | - | - | - | - | - |
|
| 713 |
| 1.0652 | 222000 | 0.1738 | - | - | - | - | - | - |
|
| 714 |
| 1.0700 | 223000 | 0.1739 | - | - | - | - | - | - |
|
|
|
|
| 728 |
| 1.1372 | 237000 | 0.1739 | - | - | - | - | - | - |
|
| 729 |
| 1.1420 | 238000 | 0.1739 | - | - | - | - | - | - |
|
| 730 |
| 1.1468 | 239000 | 0.1739 | - | - | - | - | - | - |
|
| 731 |
+
| 1.1516 | 240000 | 0.1738 | 0.1394 | 0.7347 | 0.4200 (-0.3800) | 0.1900 (-0.1500) | 0.3600 (+0.1200) | 0.3233 (-0.1367) |
|
| 732 |
| 1.1564 | 241000 | 0.174 | - | - | - | - | - | - |
|
| 733 |
| 1.1612 | 242000 | 0.1739 | - | - | - | - | - | - |
|
| 734 |
| 1.1660 | 243000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 748 |
| 1.2331 | 257000 | 0.1739 | - | - | - | - | - | - |
|
| 749 |
| 1.2379 | 258000 | 0.1739 | - | - | - | - | - | - |
|
| 750 |
| 1.2427 | 259000 | 0.1738 | - | - | - | - | - | - |
|
| 751 |
+
| 1.2475 | 260000 | 0.1738 | 0.1392 | 0.7325 | 0.4500 (-0.3500) | 0.2000 (-0.1400) | 0.3600 (+0.1200) | 0.3367 (-0.1233) |
|
| 752 |
| 1.2523 | 261000 | 0.174 | - | - | - | - | - | - |
|
| 753 |
| 1.2571 | 262000 | 0.1739 | - | - | - | - | - | - |
|
| 754 |
| 1.2619 | 263000 | 0.1739 | - | - | - | - | - | - |
|
|
|
|
| 768 |
| 1.3291 | 277000 | 0.1739 | - | - | - | - | - | - |
|
| 769 |
| 1.3339 | 278000 | 0.1738 | - | - | - | - | - | - |
|
| 770 |
| 1.3387 | 279000 | 0.1739 | - | - | - | - | - | - |
|
| 771 |
+
| 1.3435 | 280000 | 0.1738 | 0.1394 | 0.7343 | 0.4900 (-0.3100) | 0.1600 (-0.1800) | 0.4100 (+0.1700) | 0.3533 (-0.1067) |
|
| 772 |
| 1.3483 | 281000 | 0.1739 | - | - | - | - | - | - |
|
| 773 |
| 1.3531 | 282000 | 0.1739 | - | - | - | - | - | - |
|
| 774 |
| 1.3579 | 283000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 788 |
| 1.4251 | 297000 | 0.1738 | - | - | - | - | - | - |
|
| 789 |
| 1.4299 | 298000 | 0.1738 | - | - | - | - | - | - |
|
| 790 |
| 1.4347 | 299000 | 0.1738 | - | - | - | - | - | - |
|
| 791 |
+
| 1.4394 | 300000 | 0.1738 | 0.1395 | 0.7236 | 0.4000 (-0.4000) | 0.1800 (-0.1600) | 0.3900 (+0.1500) | 0.3233 (-0.1367) |
|
| 792 |
| 1.4442 | 301000 | 0.1739 | - | - | - | - | - | - |
|
| 793 |
| 1.4490 | 302000 | 0.1738 | - | - | - | - | - | - |
|
| 794 |
| 1.4538 | 303000 | 0.1737 | - | - | - | - | - | - |
|
|
|
|
| 808 |
| 1.5210 | 317000 | 0.1737 | - | - | - | - | - | - |
|
| 809 |
| 1.5258 | 318000 | 0.1738 | - | - | - | - | - | - |
|
| 810 |
| 1.5306 | 319000 | 0.1739 | - | - | - | - | - | - |
|
| 811 |
+
| 1.5354 | 320000 | 0.1738 | 0.1388 | 0.7420 | 0.4800 (-0.3200) | 0.1800 (-0.1600) | 0.4000 (+0.1600) | 0.3533 (-0.1067) |
|
| 812 |
| 1.5402 | 321000 | 0.1738 | - | - | - | - | - | - |
|
| 813 |
| 1.5450 | 322000 | 0.1738 | - | - | - | - | - | - |
|
| 814 |
| 1.5498 | 323000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 828 |
| 1.6170 | 337000 | 0.1739 | - | - | - | - | - | - |
|
| 829 |
| 1.6218 | 338000 | 0.1738 | - | - | - | - | - | - |
|
| 830 |
| 1.6266 | 339000 | 0.1738 | - | - | - | - | - | - |
|
| 831 |
+
| 1.6314 | 340000 | 0.1738 | 0.1388 | 0.7394 | 0.4900 (-0.3100) | 0.1800 (-0.1600) | 0.4000 (+0.1600) | 0.3567 (-0.1033) |
|
| 832 |
| 1.6362 | 341000 | 0.1737 | - | - | - | - | - | - |
|
| 833 |
| 1.6410 | 342000 | 0.1738 | - | - | - | - | - | - |
|
| 834 |
| 1.6458 | 343000 | 0.1737 | - | - | - | - | - | - |
|
|
|
|
| 848 |
| 1.7129 | 357000 | 0.1738 | - | - | - | - | - | - |
|
| 849 |
| 1.7177 | 358000 | 0.1737 | - | - | - | - | - | - |
|
| 850 |
| 1.7225 | 359000 | 0.1738 | - | - | - | - | - | - |
|
| 851 |
+
| 1.7273 | 360000 | 0.1738 | 0.1386 | 0.7350 | 0.5067 (-0.2933) | 0.2300 (-0.1100) | 0.4200 (+0.1800) | 0.3856 (-0.0744) |
|
| 852 |
| 1.7321 | 361000 | 0.1738 | - | - | - | - | - | - |
|
| 853 |
| 1.7369 | 362000 | 0.1737 | - | - | - | - | - | - |
|
| 854 |
| 1.7417 | 363000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 868 |
| 1.8089 | 377000 | 0.1738 | - | - | - | - | - | - |
|
| 869 |
| 1.8137 | 378000 | 0.1737 | - | - | - | - | - | - |
|
| 870 |
| 1.8185 | 379000 | 0.1738 | - | - | - | - | - | - |
|
| 871 |
+
| 1.8233 | 380000 | 0.1737 | 0.1384 | 0.7420 | 0.4700 (-0.3300) | 0.2000 (-0.1400) | 0.4100 (+0.1700) | 0.3600 (-0.1000) |
|
| 872 |
| 1.8281 | 381000 | 0.1738 | - | - | - | - | - | - |
|
| 873 |
| 1.8329 | 382000 | 0.1738 | - | - | - | - | - | - |
|
| 874 |
| 1.8377 | 383000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 888 |
| 1.9049 | 397000 | 0.1739 | - | - | - | - | - | - |
|
| 889 |
| 1.9097 | 398000 | 0.1738 | - | - | - | - | - | - |
|
| 890 |
| 1.9145 | 399000 | 0.1738 | - | - | - | - | - | - |
|
| 891 |
+
| 1.9193 | 400000 | 0.1738 | 0.1389 | 0.7360 | 0.4600 (-0.3400) | 0.2200 (-0.1200) | 0.4200 (+0.1800) | 0.3667 (-0.0933) |
|
| 892 |
| 1.9241 | 401000 | 0.1739 | - | - | - | - | - | - |
|
| 893 |
| 1.9289 | 402000 | 0.1738 | - | - | - | - | - | - |
|
| 894 |
| 1.9337 | 403000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 908 |
| 2.0008 | 417000 | 0.1737 | - | - | - | - | - | - |
|
| 909 |
| 2.0056 | 418000 | 0.1737 | - | - | - | - | - | - |
|
| 910 |
| 2.0104 | 419000 | 0.1738 | - | - | - | - | - | - |
|
| 911 |
+
| **2.0152** | **420000** | **0.1737** | **0.1384** | **0.7446** | **0.6100 (-0.1900)** | **0.2100 (-0.1300)** | **0.3800 (+0.1400)** | **0.4000 (-0.0600)** |
|
| 912 |
| 2.0200 | 421000 | 0.1738 | - | - | - | - | - | - |
|
| 913 |
| 2.0248 | 422000 | 0.1737 | - | - | - | - | - | - |
|
| 914 |
| 2.0296 | 423000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 928 |
| 2.0968 | 437000 | 0.1738 | - | - | - | - | - | - |
|
| 929 |
| 2.1016 | 438000 | 0.1738 | - | - | - | - | - | - |
|
| 930 |
| 2.1064 | 439000 | 0.1738 | - | - | - | - | - | - |
|
| 931 |
+
| 2.1112 | 440000 | 0.1738 | 0.1388 | 0.7355 | 0.4700 (-0.3300) | 0.2000 (-0.1400) | 0.3900 (+0.1500) | 0.3533 (-0.1067) |
|
| 932 |
| 2.1160 | 441000 | 0.1739 | - | - | - | - | - | - |
|
| 933 |
| 2.1208 | 442000 | 0.1738 | - | - | - | - | - | - |
|
| 934 |
| 2.1256 | 443000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 948 |
| 2.1928 | 457000 | 0.1738 | - | - | - | - | - | - |
|
| 949 |
| 2.1976 | 458000 | 0.1739 | - | - | - | - | - | - |
|
| 950 |
| 2.2024 | 459000 | 0.1737 | - | - | - | - | - | - |
|
| 951 |
+
| 2.2072 | 460000 | 0.1738 | 0.1390 | 0.7377 | 0.5000 (-0.3000) | 0.2000 (-0.1400) | 0.4000 (+0.1600) | 0.3667 (-0.0933) |
|
| 952 |
| 2.2120 | 461000 | 0.1738 | - | - | - | - | - | - |
|
| 953 |
| 2.2168 | 462000 | 0.1738 | - | - | - | - | - | - |
|
| 954 |
| 2.2216 | 463000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 968 |
| 2.2887 | 477000 | 0.1738 | - | - | - | - | - | - |
|
| 969 |
| 2.2935 | 478000 | 0.1738 | - | - | - | - | - | - |
|
| 970 |
| 2.2983 | 479000 | 0.1738 | - | - | - | - | - | - |
|
| 971 |
+
| 2.3031 | 480000 | 0.1739 | 0.1386 | 0.7417 | 0.5400 (-0.2600) | 0.1900 (-0.1500) | 0.4400 (+0.2000) | 0.3900 (-0.0700) |
|
| 972 |
| 2.3079 | 481000 | 0.1738 | - | - | - | - | - | - |
|
| 973 |
| 2.3127 | 482000 | 0.1738 | - | - | - | - | - | - |
|
| 974 |
| 2.3175 | 483000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 988 |
| 2.3847 | 497000 | 0.1738 | - | - | - | - | - | - |
|
| 989 |
| 2.3895 | 498000 | 0.1737 | - | - | - | - | - | - |
|
| 990 |
| 2.3943 | 499000 | 0.1738 | - | - | - | - | - | - |
|
| 991 |
+
| 2.3991 | 500000 | 0.1737 | 0.1385 | 0.7404 | 0.5200 (-0.2800) | 0.2000 (-0.1400) | 0.4100 (+0.1700) | 0.3767 (-0.0833) |
|
| 992 |
| 2.4039 | 501000 | 0.1737 | - | - | - | - | - | - |
|
| 993 |
| 2.4087 | 502000 | 0.1738 | - | - | - | - | - | - |
|
| 994 |
| 2.4135 | 503000 | 0.1737 | - | - | - | - | - | - |
|
|
|
|
| 1008 |
| 2.4807 | 517000 | 0.1738 | - | - | - | - | - | - |
|
| 1009 |
| 2.4854 | 518000 | 0.1738 | - | - | - | - | - | - |
|
| 1010 |
| 2.4902 | 519000 | 0.1737 | - | - | - | - | - | - |
|
| 1011 |
+
| 2.4950 | 520000 | 0.1738 | 0.1388 | 0.7382 | 0.5100 (-0.2900) | 0.2000 (-0.1400) | 0.4200 (+0.1800) | 0.3767 (-0.0833) |
|
| 1012 |
| 2.4998 | 521000 | 0.1737 | - | - | - | - | - | - |
|
| 1013 |
| 2.5046 | 522000 | 0.1738 | - | - | - | - | - | - |
|
| 1014 |
| 2.5094 | 523000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1028 |
| 2.5766 | 537000 | 0.1737 | - | - | - | - | - | - |
|
| 1029 |
| 2.5814 | 538000 | 0.1738 | - | - | - | - | - | - |
|
| 1030 |
| 2.5862 | 539000 | 0.1738 | - | - | - | - | - | - |
|
| 1031 |
+
| 2.5910 | 540000 | 0.1738 | 0.1388 | 0.7373 | 0.5200 (-0.2800) | 0.2100 (-0.1300) | 0.4100 (+0.1700) | 0.3800 (-0.0800) |
|
| 1032 |
| 2.5958 | 541000 | 0.1737 | - | - | - | - | - | - |
|
| 1033 |
| 2.6006 | 542000 | 0.1737 | - | - | - | - | - | - |
|
| 1034 |
| 2.6054 | 543000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1048 |
| 2.6726 | 557000 | 0.1738 | - | - | - | - | - | - |
|
| 1049 |
| 2.6774 | 558000 | 0.1738 | - | - | - | - | - | - |
|
| 1050 |
| 2.6822 | 559000 | 0.1738 | - | - | - | - | - | - |
|
| 1051 |
+
| 2.6870 | 560000 | 0.1737 | 0.1388 | 0.7335 | 0.4500 (-0.3500) | 0.1900 (-0.1500) | 0.3900 (+0.1500) | 0.3433 (-0.1167) |
|
| 1052 |
| 2.6918 | 561000 | 0.1737 | - | - | - | - | - | - |
|
| 1053 |
| 2.6966 | 562000 | 0.1738 | - | - | - | - | - | - |
|
| 1054 |
| 2.7014 | 563000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1068 |
| 2.7685 | 577000 | 0.1738 | - | - | - | - | - | - |
|
| 1069 |
| 2.7733 | 578000 | 0.1738 | - | - | - | - | - | - |
|
| 1070 |
| 2.7781 | 579000 | 0.1737 | - | - | - | - | - | - |
|
| 1071 |
+
| 2.7829 | 580000 | 0.1738 | 0.1387 | 0.7400 | 0.5200 (-0.2800) | 0.2100 (-0.1300) | 0.4000 (+0.1600) | 0.3767 (-0.0833) |
|
| 1072 |
| 2.7877 | 581000 | 0.1739 | - | - | - | - | - | - |
|
| 1073 |
| 2.7925 | 582000 | 0.1737 | - | - | - | - | - | - |
|
| 1074 |
| 2.7973 | 583000 | 0.1737 | - | - | - | - | - | - |
|
|
|
|
| 1088 |
| 2.8645 | 597000 | 0.1738 | - | - | - | - | - | - |
|
| 1089 |
| 2.8693 | 598000 | 0.1738 | - | - | - | - | - | - |
|
| 1090 |
| 2.8741 | 599000 | 0.1738 | - | - | - | - | - | - |
|
| 1091 |
+
| 2.8789 | 600000 | 0.1738 | 0.1388 | 0.7398 | 0.5200 (-0.2800) | 0.2000 (-0.1400) | 0.3900 (+0.1500) | 0.3700 (-0.0900) |
|
| 1092 |
| 2.8837 | 601000 | 0.1738 | - | - | - | - | - | - |
|
| 1093 |
| 2.8885 | 602000 | 0.1738 | - | - | - | - | - | - |
|
| 1094 |
| 2.8933 | 603000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1108 |
| 2.9605 | 617000 | 0.1737 | - | - | - | - | - | - |
|
| 1109 |
| 2.9653 | 618000 | 0.1738 | - | - | - | - | - | - |
|
| 1110 |
| 2.9701 | 619000 | 0.1739 | - | - | - | - | - | - |
|
| 1111 |
+
| 2.9749 | 620000 | 0.1738 | 0.1388 | 0.7415 | 0.5200 (-0.2800) | 0.2100 (-0.1300) | 0.4200 (+0.1800) | 0.3833 (-0.0767) |
|
| 1112 |
| 2.9797 | 621000 | 0.1737 | - | - | - | - | - | - |
|
| 1113 |
| 2.9845 | 622000 | 0.1738 | - | - | - | - | - | - |
|
| 1114 |
| 2.9893 | 623000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1128 |
| 3.0564 | 637000 | 0.1739 | - | - | - | - | - | - |
|
| 1129 |
| 3.0612 | 638000 | 0.1738 | - | - | - | - | - | - |
|
| 1130 |
| 3.0660 | 639000 | 0.1737 | - | - | - | - | - | - |
|
| 1131 |
+
| 3.0708 | 640000 | 0.1738 | 0.1388 | 0.7392 | 0.5200 (-0.2800) | 0.2000 (-0.1400) | 0.4100 (+0.1700) | 0.3767 (-0.0833) |
|
| 1132 |
| 3.0756 | 641000 | 0.1738 | - | - | - | - | - | - |
|
| 1133 |
| 3.0804 | 642000 | 0.1738 | - | - | - | - | - | - |
|
| 1134 |
| 3.0852 | 643000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1148 |
| 3.1524 | 657000 | 0.1738 | - | - | - | - | - | - |
|
| 1149 |
| 3.1572 | 658000 | 0.1738 | - | - | - | - | - | - |
|
| 1150 |
| 3.1620 | 659000 | 0.1738 | - | - | - | - | - | - |
|
| 1151 |
+
| 3.1668 | 660000 | 0.1738 | 0.1390 | 0.7394 | 0.5200 (-0.2800) | 0.2000 (-0.1400) | 0.4000 (+0.1600) | 0.3733 (-0.0867) |
|
| 1152 |
| 3.1716 | 661000 | 0.1738 | - | - | - | - | - | - |
|
| 1153 |
| 3.1764 | 662000 | 0.1738 | - | - | - | - | - | - |
|
| 1154 |
| 3.1812 | 663000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1168 |
| 3.2484 | 677000 | 0.1738 | - | - | - | - | - | - |
|
| 1169 |
| 3.2532 | 678000 | 0.1739 | - | - | - | - | - | - |
|
| 1170 |
| 3.2580 | 679000 | 0.1738 | - | - | - | - | - | - |
|
| 1171 |
+
| 3.2628 | 680000 | 0.1738 | 0.1390 | 0.7391 | 0.5400 (-0.2600) | 0.2000 (-0.1400) | 0.4200 (+0.1800) | 0.3867 (-0.0733) |
|
| 1172 |
| 3.2676 | 681000 | 0.1738 | - | - | - | - | - | - |
|
| 1173 |
| 3.2723 | 682000 | 0.1738 | - | - | - | - | - | - |
|
| 1174 |
| 3.2771 | 683000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1188 |
| 3.3443 | 697000 | 0.1737 | - | - | - | - | - | - |
|
| 1189 |
| 3.3491 | 698000 | 0.1739 | - | - | - | - | - | - |
|
| 1190 |
| 3.3539 | 699000 | 0.1738 | - | - | - | - | - | - |
|
| 1191 |
+
| 3.3587 | 700000 | 0.1738 | 0.1390 | 0.7394 | 0.5200 (-0.2800) | 0.2000 (-0.1400) | 0.4000 (+0.1600) | 0.3733 (-0.0867) |
|
| 1192 |
| 3.3635 | 701000 | 0.1739 | - | - | - | - | - | - |
|
| 1193 |
| 3.3683 | 702000 | 0.1738 | - | - | - | - | - | - |
|
| 1194 |
| 3.3731 | 703000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1208 |
| 3.4403 | 717000 | 0.1738 | - | - | - | - | - | - |
|
| 1209 |
| 3.4451 | 718000 | 0.1738 | - | - | - | - | - | - |
|
| 1210 |
| 3.4499 | 719000 | 0.1737 | - | - | - | - | - | - |
|
| 1211 |
+
| 3.4547 | 720000 | 0.1737 | 0.1389 | 0.7397 | 0.5200 (-0.2800) | 0.2000 (-0.1400) | 0.3900 (+0.1500) | 0.3700 (-0.0900) |
|
| 1212 |
| 3.4595 | 721000 | 0.1738 | - | - | - | - | - | - |
|
| 1213 |
| 3.4643 | 722000 | 0.1738 | - | - | - | - | - | - |
|
| 1214 |
| 3.4691 | 723000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1228 |
| 3.5362 | 737000 | 0.1737 | - | - | - | - | - | - |
|
| 1229 |
| 3.5410 | 738000 | 0.1738 | - | - | - | - | - | - |
|
| 1230 |
| 3.5458 | 739000 | 0.1738 | - | - | - | - | - | - |
|
| 1231 |
+
| 3.5506 | 740000 | 0.1738 | 0.1390 | 0.7397 | 0.5200 (-0.2800) | 0.2000 (-0.1400) | 0.4100 (+0.1700) | 0.3767 (-0.0833) |
|
| 1232 |
| 3.5554 | 741000 | 0.1738 | - | - | - | - | - | - |
|
| 1233 |
| 3.5602 | 742000 | 0.1737 | - | - | - | - | - | - |
|
| 1234 |
| 3.5650 | 743000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1248 |
| 3.6322 | 757000 | 0.1738 | - | - | - | - | - | - |
|
| 1249 |
| 3.6370 | 758000 | 0.1737 | - | - | - | - | - | - |
|
| 1250 |
| 3.6418 | 759000 | 0.1738 | - | - | - | - | - | - |
|
| 1251 |
+
| 3.6466 | 760000 | 0.1737 | 0.1390 | 0.7403 | 0.5200 (-0.2800) | 0.2000 (-0.1400) | 0.3700 (+0.1300) | 0.3633 (-0.0967) |
|
| 1252 |
| 3.6514 | 761000 | 0.1739 | - | - | - | - | - | - |
|
| 1253 |
| 3.6562 | 762000 | 0.1738 | - | - | - | - | - | - |
|
| 1254 |
| 3.6610 | 763000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1268 |
| 3.7282 | 777000 | 0.1738 | - | - | - | - | - | - |
|
| 1269 |
| 3.7330 | 778000 | 0.1738 | - | - | - | - | - | - |
|
| 1270 |
| 3.7378 | 779000 | 0.1738 | - | - | - | - | - | - |
|
| 1271 |
+
| 3.7426 | 780000 | 0.1738 | 0.1390 | 0.7393 | 0.5200 (-0.2800) | 0.2100 (-0.1300) | 0.4000 (+0.1600) | 0.3767 (-0.0833) |
|
| 1272 |
| 3.7474 | 781000 | 0.1737 | - | - | - | - | - | - |
|
| 1273 |
| 3.7522 | 782000 | 0.1738 | - | - | - | - | - | - |
|
| 1274 |
| 3.7570 | 783000 | 0.1739 | - | - | - | - | - | - |
|
|
|
|
| 1288 |
| 3.8241 | 797000 | 0.1738 | - | - | - | - | - | - |
|
| 1289 |
| 3.8289 | 798000 | 0.1738 | - | - | - | - | - | - |
|
| 1290 |
| 3.8337 | 799000 | 0.1738 | - | - | - | - | - | - |
|
| 1291 |
+
| 3.8385 | 800000 | 0.1739 | 0.1391 | 0.7387 | 0.5200 (-0.2800) | 0.2000 (-0.1400) | 0.3800 (+0.1400) | 0.3667 (-0.0933) |
|
| 1292 |
| 3.8433 | 801000 | 0.1739 | - | - | - | - | - | - |
|
| 1293 |
| 3.8481 | 802000 | 0.1738 | - | - | - | - | - | - |
|
| 1294 |
| 3.8529 | 803000 | 0.1739 | - | - | - | - | - | - |
|
|
|
|
| 1308 |
| 3.9201 | 817000 | 0.1738 | - | - | - | - | - | - |
|
| 1309 |
| 3.9249 | 818000 | 0.1739 | - | - | - | - | - | - |
|
| 1310 |
| 3.9297 | 819000 | 0.1738 | - | - | - | - | - | - |
|
| 1311 |
+
| 3.9345 | 820000 | 0.1738 | 0.1390 | 0.7392 | 0.5200 (-0.2800) | 0.2100 (-0.1300) | 0.3800 (+0.1400) | 0.3700 (-0.0900) |
|
| 1312 |
| 3.9393 | 821000 | 0.1738 | - | - | - | - | - | - |
|
| 1313 |
| 3.9441 | 822000 | 0.1738 | - | - | - | - | - | - |
|
| 1314 |
| 3.9489 | 823000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1328 |
| 4.0161 | 837000 | 0.1738 | - | - | - | - | - | - |
|
| 1329 |
| 4.0209 | 838000 | 0.1738 | - | - | - | - | - | - |
|
| 1330 |
| 4.0257 | 839000 | 0.1738 | - | - | - | - | - | - |
|
| 1331 |
+
| 4.0305 | 840000 | 0.1738 | 0.1391 | 0.7393 | 0.5100 (-0.2900) | 0.1900 (-0.1500) | 0.3800 (+0.1400) | 0.3600 (-0.1000) |
|
| 1332 |
| 4.0353 | 841000 | 0.1738 | - | - | - | - | - | - |
|
| 1333 |
| 4.0401 | 842000 | 0.1738 | - | - | - | - | - | - |
|
| 1334 |
| 4.0449 | 843000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1348 |
| 4.1120 | 857000 | 0.1738 | - | - | - | - | - | - |
|
| 1349 |
| 4.1168 | 858000 | 0.1739 | - | - | - | - | - | - |
|
| 1350 |
| 4.1216 | 859000 | 0.1739 | - | - | - | - | - | - |
|
| 1351 |
+
| 4.1264 | 860000 | 0.1739 | 0.1391 | 0.7392 | 0.5200 (-0.2800) | 0.2200 (-0.1200) | 0.4100 (+0.1700) | 0.3833 (-0.0767) |
|
| 1352 |
| 4.1312 | 861000 | 0.1739 | - | - | - | - | - | - |
|
| 1353 |
| 4.1360 | 862000 | 0.1739 | - | - | - | - | - | - |
|
| 1354 |
| 4.1408 | 863000 | 0.1739 | - | - | - | - | - | - |
|
|
|
|
| 1368 |
| 4.2080 | 877000 | 0.1738 | - | - | - | - | - | - |
|
| 1369 |
| 4.2128 | 878000 | 0.1738 | - | - | - | - | - | - |
|
| 1370 |
| 4.2176 | 879000 | 0.1738 | - | - | - | - | - | - |
|
| 1371 |
+
| 4.2224 | 880000 | 0.1739 | 0.1391 | 0.7389 | 0.5200 (-0.2800) | 0.2200 (-0.1200) | 0.4200 (+0.1800) | 0.3867 (-0.0733) |
|
| 1372 |
| 4.2272 | 881000 | 0.1738 | - | - | - | - | - | - |
|
| 1373 |
| 4.2320 | 882000 | 0.1738 | - | - | - | - | - | - |
|
| 1374 |
| 4.2368 | 883000 | 0.1739 | - | - | - | - | - | - |
|
|
|
|
| 1388 |
| 4.3040 | 897000 | 0.1739 | - | - | - | - | - | - |
|
| 1389 |
| 4.3088 | 898000 | 0.1738 | - | - | - | - | - | - |
|
| 1390 |
| 4.3136 | 899000 | 0.1739 | - | - | - | - | - | - |
|
| 1391 |
+
| 4.3183 | 900000 | 0.1738 | 0.1391 | 0.7393 | 0.5200 (-0.2800) | 0.2100 (-0.1300) | 0.4100 (+0.1700) | 0.3800 (-0.0800) |
|
| 1392 |
| 4.3231 | 901000 | 0.1739 | - | - | - | - | - | - |
|
| 1393 |
| 4.3279 | 902000 | 0.1738 | - | - | - | - | - | - |
|
| 1394 |
| 4.3327 | 903000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1408 |
| 4.3999 | 917000 | 0.1738 | - | - | - | - | - | - |
|
| 1409 |
| 4.4047 | 918000 | 0.1737 | - | - | - | - | - | - |
|
| 1410 |
| 4.4095 | 919000 | 0.1738 | - | - | - | - | - | - |
|
| 1411 |
+
| 4.4143 | 920000 | 0.1737 | 0.1391 | 0.7394 | 0.5000 (-0.3000) | 0.2000 (-0.1400) | 0.3900 (+0.1500) | 0.3633 (-0.0967) |
|
| 1412 |
| 4.4191 | 921000 | 0.1738 | - | - | - | - | - | - |
|
| 1413 |
| 4.4239 | 922000 | 0.1738 | - | - | - | - | - | - |
|
| 1414 |
| 4.4287 | 923000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1428 |
| 4.4959 | 937000 | 0.1738 | - | - | - | - | - | - |
|
| 1429 |
| 4.5007 | 938000 | 0.1738 | - | - | - | - | - | - |
|
| 1430 |
| 4.5055 | 939000 | 0.1738 | - | - | - | - | - | - |
|
| 1431 |
+
| 4.5103 | 940000 | 0.1738 | 0.1391 | 0.7391 | 0.5200 (-0.2800) | 0.2100 (-0.1300) | 0.4100 (+0.1700) | 0.3800 (-0.0800) |
|
| 1432 |
| 4.5151 | 941000 | 0.1738 | - | - | - | - | - | - |
|
| 1433 |
| 4.5199 | 942000 | 0.1738 | - | - | - | - | - | - |
|
| 1434 |
| 4.5247 | 943000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1448 |
| 4.5918 | 957000 | 0.1738 | - | - | - | - | - | - |
|
| 1449 |
| 4.5966 | 958000 | 0.1737 | - | - | - | - | - | - |
|
| 1450 |
| 4.6014 | 959000 | 0.1737 | - | - | - | - | - | - |
|
| 1451 |
+
| 4.6062 | 960000 | 0.1738 | 0.1391 | 0.7394 | 0.5200 (-0.2800) | 0.2100 (-0.1300) | 0.3900 (+0.1500) | 0.3733 (-0.0867) |
|
| 1452 |
| 4.6110 | 961000 | 0.1738 | - | - | - | - | - | - |
|
| 1453 |
| 4.6158 | 962000 | 0.1739 | - | - | - | - | - | - |
|
| 1454 |
| 4.6206 | 963000 | 0.1739 | - | - | - | - | - | - |
|
|
|
|
| 1468 |
| 4.6878 | 977000 | 0.1738 | - | - | - | - | - | - |
|
| 1469 |
| 4.6926 | 978000 | 0.1738 | - | - | - | - | - | - |
|
| 1470 |
| 4.6974 | 979000 | 0.1738 | - | - | - | - | - | - |
|
| 1471 |
+
| 4.7022 | 980000 | 0.1739 | 0.1391 | 0.7395 | 0.5200 (-0.2800) | 0.2000 (-0.1400) | 0.4100 (+0.1700) | 0.3767 (-0.0833) |
|
| 1472 |
| 4.7070 | 981000 | 0.1738 | - | - | - | - | - | - |
|
| 1473 |
| 4.7118 | 982000 | 0.1739 | - | - | - | - | - | - |
|
| 1474 |
| 4.7166 | 983000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1488 |
| 4.7838 | 997000 | 0.1738 | - | - | - | - | - | - |
|
| 1489 |
| 4.7886 | 998000 | 0.1738 | - | - | - | - | - | - |
|
| 1490 |
| 4.7934 | 999000 | 0.1738 | - | - | - | - | - | - |
|
| 1491 |
+
| 4.7982 | 1000000 | 0.1737 | 0.1391 | 0.7392 | 0.5400 (-0.2600) | 0.2000 (-0.1400) | 0.4000 (+0.1600) | 0.3800 (-0.0800) |
|
| 1492 |
| 4.8030 | 1001000 | 0.1738 | - | - | - | - | - | - |
|
| 1493 |
| 4.8078 | 1002000 | 0.1739 | - | - | - | - | - | - |
|
| 1494 |
| 4.8126 | 1003000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1508 |
| 4.8797 | 1017000 | 0.1738 | - | - | - | - | - | - |
|
| 1509 |
| 4.8845 | 1018000 | 0.1739 | - | - | - | - | - | - |
|
| 1510 |
| 4.8893 | 1019000 | 0.1738 | - | - | - | - | - | - |
|
| 1511 |
+
| 4.8941 | 1020000 | 0.1738 | 0.1391 | 0.7393 | 0.5300 (-0.2700) | 0.2000 (-0.1400) | 0.4000 (+0.1600) | 0.3767 (-0.0833) |
|
| 1512 |
| 4.8989 | 1021000 | 0.1739 | - | - | - | - | - | - |
|
| 1513 |
| 4.9037 | 1022000 | 0.1739 | - | - | - | - | - | - |
|
| 1514 |
| 4.9085 | 1023000 | 0.1738 | - | - | - | - | - | - |
|
|
|
|
| 1528 |
| 4.9757 | 1037000 | 0.1738 | - | - | - | - | - | - |
|
| 1529 |
| 4.9805 | 1038000 | 0.1738 | - | - | - | - | - | - |
|
| 1530 |
| 4.9853 | 1039000 | 0.1738 | - | - | - | - | - | - |
|
| 1531 |
+
| 4.9901 | 1040000 | 0.1738 | 0.1391 | 0.7395 | 0.5100 (-0.2900) | 0.2000 (-0.1400) | 0.4000 (+0.1600) | 0.3700 (-0.0900) |
|
| 1532 |
| 4.9949 | 1041000 | 0.1738 | - | - | - | - | - | - |
|
| 1533 |
| 4.9997 | 1042000 | 0.1738 | - | - | - | - | - | - |
|
| 1534 |
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 299225554
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f299367322ad35265cace4e6953fb70bb3e723e0b451cf3a856aa52c509db83
|
| 3 |
size 299225554
|