Update README.md
Browse files
README.md
CHANGED
|
@@ -1,36 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
library_name: transformers
|
| 5 |
+
pipeline_tag: text2text-generation
|
| 6 |
+
tags:
|
| 7 |
+
- text-generation
|
| 8 |
+
- formal-language
|
| 9 |
+
- grammar-correction
|
| 10 |
+
- t5
|
| 11 |
+
- english
|
| 12 |
+
- text-formalization
|
| 13 |
|
| 14 |
+
model-index:
|
| 15 |
+
- name: formal-lang-rxcx-model
|
| 16 |
+
results:
|
| 17 |
+
- task:
|
| 18 |
+
type: text2text-generation
|
| 19 |
+
name: formal language correction
|
| 20 |
+
metrics:
|
| 21 |
+
- type: loss
|
| 22 |
+
value: 2.1 # Replace with your actual training loss
|
| 23 |
+
name: training_loss
|
| 24 |
+
- type: rouge1
|
| 25 |
+
value: 0.85 # Replace with your actual ROUGE score
|
| 26 |
+
name: rouge1
|
| 27 |
+
- type: accuracy
|
| 28 |
+
value: 0.82 # Replace with your actual accuracy
|
| 29 |
+
name: accuracy
|
| 30 |
+
dataset:
|
| 31 |
+
name: grammarly/coedit
|
| 32 |
+
type: grammarly/coedit
|
| 33 |
+
split: train
|
| 34 |
+
|
| 35 |
+
datasets:
|
| 36 |
+
- grammarly/coedit
|
| 37 |
+
|
| 38 |
+
model-type: t5-base
|
| 39 |
+
inference: true
|
| 40 |
+
base_model: t5-base
|
| 41 |
+
|
| 42 |
+
widget:
|
| 43 |
+
- text: "make formal: hey whats up"
|
| 44 |
+
- text: "make formal: gonna be late for meeting"
|
| 45 |
+
- text: "make formal: this is kinda cool project"
|
| 46 |
+
|
| 47 |
+
extra_gated_prompt: This is a fine-tuned T5 model for converting informal text to formal language.
|
| 48 |
+
|
| 49 |
+
extra_gated_fields:
|
| 50 |
+
Company/Institution: text
|
| 51 |
+
Purpose: text
|
| 52 |
+
|
| 53 |
+
---
|
| 54 |
+
|
| 55 |
+
# Formal Language T5 Model
|
| 56 |
+
|
| 57 |
+
This model is fine-tuned from T5-base for formal language correction and text formalization.
|
| 58 |
+
|
| 59 |
+
## Model Description
|
| 60 |
+
|
| 61 |
+
- **Model Type:** T5-base fine-tuned
|
| 62 |
+
- **Language:** English
|
| 63 |
+
- **Task:** Text Formalization and Grammar Correction
|
| 64 |
+
- **License:** Apache 2.0
|
| 65 |
+
- **Base Model:** t5-base
|
| 66 |
+
|
| 67 |
+
## Intended Uses & Limitations
|
| 68 |
+
|
| 69 |
+
### Intended Uses
|
| 70 |
+
- Converting informal text to formal language
|
| 71 |
+
- Improving text professionalism
|
| 72 |
+
- Grammar correction
|
| 73 |
+
- Business communication enhancement
|
| 74 |
+
- Academic writing improvement
|
| 75 |
+
|
| 76 |
+
### Limitations
|
| 77 |
+
- Works best with English text
|
| 78 |
+
- Maximum input length: 128 tokens
|
| 79 |
+
- May not preserve specific domain terminology
|
| 80 |
+
- Best suited for business and academic contexts
|
| 81 |
+
|
| 82 |
+
## Usage
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
from transformers import AutoModelForSeq2SeqGeneration, AutoTokenizer
|
| 86 |
+
|
| 87 |
+
model = AutoModelForSeq2SeqGeneration.from_pretrained("renix-codex/formal-lang-rxcx-model")
|
| 88 |
+
tokenizer = AutoTokenizer.from_pretrained("renix-codex/formal-lang-rxcx-model")
|
| 89 |
+
|
| 90 |
+
# Example usage
|
| 91 |
+
text = "make formal: hey whats up"
|
| 92 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 93 |
+
outputs = model.generate(**inputs)
|
| 94 |
+
formal_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
## Example Inputs and Outputs
|
| 98 |
+
|
| 99 |
+
| Informal Input | Formal Output |
|
| 100 |
+
|----------------|---------------|
|
| 101 |
+
| "hey whats up" | "Hello, how are you?" |
|
| 102 |
+
| "gonna be late for meeting" | "I will be late for the meeting." |
|
| 103 |
+
| "this is kinda cool" | "This is quite impressive." |
|
| 104 |
+
|
| 105 |
+
## Training
|
| 106 |
+
|
| 107 |
+
The model was trained on the Grammarly/COEDIT dataset with the following specifications:
|
| 108 |
+
- Base Model: T5-base
|
| 109 |
+
- Training Hardware: A100 GPU
|
| 110 |
+
- Sequence Length: 128 tokens
|
| 111 |
+
- Input Format: "make formal: [informal text]"
|
| 112 |
+
|
| 113 |
+
## License
|
| 114 |
+
|
| 115 |
+
Apache License 2.0
|
| 116 |
+
|
| 117 |
+
## Citation
|
| 118 |
+
|
| 119 |
+
```bibtex
|
| 120 |
+
@misc{formal-lang-rxcx-model,
|
| 121 |
+
author = {renix-codex},
|
| 122 |
+
title = {Formal Language T5 Model},
|
| 123 |
+
year = {2024},
|
| 124 |
+
publisher = {HuggingFace},
|
| 125 |
+
journal = {HuggingFace Model Hub},
|
| 126 |
+
url = {https://huggingface.co/renix-codex/formal-lang-rxcx-model}
|
| 127 |
+
}
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
## Developer
|
| 131 |
+
|
| 132 |
+
Model developed by renix-codex
|
| 133 |
+
|
| 134 |
+
## Ethical Considerations
|
| 135 |
+
|
| 136 |
+
This model is intended to assist in formal writing while maintaining the original meaning of the text. Users should be aware that:
|
| 137 |
+
- The model may alter the tone of personal or culturally specific expressions
|
| 138 |
+
- It should be used as a writing aid rather than a replacement for human judgment
|
| 139 |
+
- The output should be reviewed for accuracy and appropriateness
|
| 140 |
+
|
| 141 |
+
## Updates and Versions
|
| 142 |
+
|
| 143 |
+
Initial Release - February 2024
|
| 144 |
+
- Base implementation with T5-base
|
| 145 |
+
- Trained on Grammarly/COEDIT dataset
|
| 146 |
+
- Optimized for formal language conversion
|