added code files
Browse files- code/data_preprocessing.py +198 -0
- code/file.pdf +3 -0
- code/gpt-finetune.py +904 -0
- code/gpt-run.py +85 -0
- code/myocr.py +82 -0
- code/outfile.png +0 -0
code/data_preprocessing.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re, glob, string
|
| 2 |
+
import math
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
from transformers import AutoTokenizer
|
| 5 |
+
import torch
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained('gpt2', bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>')
|
| 7 |
+
from nltk.tokenize import sent_tokenize
|
| 8 |
+
|
| 9 |
+
# ----------------------------- Cleaning process 1/2 -----------------------------
|
| 10 |
+
|
| 11 |
+
def sanitize(line):
|
| 12 |
+
# print('before', line)
|
| 13 |
+
line2 = re.sub(r'\[.+\]','',line)
|
| 14 |
+
# print('after',line2)
|
| 15 |
+
for a in ["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"]:
|
| 16 |
+
line2 = line2.replace(a,'')
|
| 17 |
+
line2 = re.sub(r'\b[A-Z]+\b','',line2.strip())
|
| 18 |
+
line2 = re.sub(r'\d','',line2)
|
| 19 |
+
line2 = line2.translate(str.maketrans('','',"‟“’❝❞‚‘‛❛❜❟â")) #just removed the quotes
|
| 20 |
+
line2 = line2.translate(str.maketrans('','',string.punctuation))
|
| 21 |
+
line2 = re.sub(r'\s+',' ',line2).strip()
|
| 22 |
+
return line2
|
| 23 |
+
|
| 24 |
+
def remove_footnotes_and_clean(sents):
|
| 25 |
+
sents = [x.replace("'",'').replace('*','').replace('’®','').replace('’','') for x in sents]
|
| 26 |
+
s = ''
|
| 27 |
+
for line in sents:
|
| 28 |
+
try:
|
| 29 |
+
if line.strip()[-1] != '-':
|
| 30 |
+
s = s + line.strip() + ' '
|
| 31 |
+
else:
|
| 32 |
+
s = s + line.strip()
|
| 33 |
+
except:
|
| 34 |
+
print(sents)
|
| 35 |
+
input()
|
| 36 |
+
s = re.sub(r'\s+',' ',s)
|
| 37 |
+
return s
|
| 38 |
+
|
| 39 |
+
path = 'text_files/'
|
| 40 |
+
ml = sorted(glob.glob(path+'*.txt'))
|
| 41 |
+
show = False
|
| 42 |
+
|
| 43 |
+
path = 'clean_text_files/'
|
| 44 |
+
for k,m in enumerate(tqdm(ml, total=len(ml), ncols=100)):
|
| 45 |
+
# m = ml[-1]
|
| 46 |
+
# if k < 67:
|
| 47 |
+
# continue
|
| 48 |
+
file = open(m,'r')
|
| 49 |
+
content = file.readlines()
|
| 50 |
+
file.close()
|
| 51 |
+
|
| 52 |
+
if show:
|
| 53 |
+
print(m)
|
| 54 |
+
|
| 55 |
+
paras = []
|
| 56 |
+
sents = []
|
| 57 |
+
|
| 58 |
+
mean_spaces = []
|
| 59 |
+
footnote_found = False
|
| 60 |
+
|
| 61 |
+
for line in content:
|
| 62 |
+
line2 = sanitize(line)
|
| 63 |
+
if re.search(r'^\W\s\w',line.strip()):
|
| 64 |
+
footnote_found = True
|
| 65 |
+
if re.search(r'^VOL.*\d\d\d\d.*\d$',line.strip()) or 'THE COLLECTED WORKS OF MAHATMA GANDHI' in line.strip():
|
| 66 |
+
# new page
|
| 67 |
+
footnote_found = False
|
| 68 |
+
|
| 69 |
+
if len(line2) > 5 and len(line2.split()) > 4 and footnote_found==False:
|
| 70 |
+
if show:
|
| 71 |
+
print(line.rstrip(),end='')
|
| 72 |
+
li_spaces = len(line) - len(line.strip())
|
| 73 |
+
if show:
|
| 74 |
+
print(li_spaces)
|
| 75 |
+
mean_spaces.append(li_spaces)
|
| 76 |
+
# input()
|
| 77 |
+
|
| 78 |
+
mean_spaces = math.floor(sum(mean_spaces)/len(mean_spaces))
|
| 79 |
+
if show:
|
| 80 |
+
print('ms',mean_spaces)
|
| 81 |
+
print(' '*mean_spaces+'^')
|
| 82 |
+
footnote_found = False
|
| 83 |
+
last_spaces = -1
|
| 84 |
+
i = 0
|
| 85 |
+
while i < len(content)-1:
|
| 86 |
+
# line2 = re.sub(r'[A-Z]','',line.strip())
|
| 87 |
+
# line2 = re.sub(r'\[\w+\]','',line2)
|
| 88 |
+
line = content[i]
|
| 89 |
+
li_spaces = len(line) - len(line.strip())
|
| 90 |
+
if re.search(r'^\W\s\w',line.strip()):
|
| 91 |
+
footnote_found = True
|
| 92 |
+
if re.search(r'^VOL.*\d\d\d\d.*\d$',line.strip()) or 'THE COLLECTED WORKS OF MAHATMA GANDHI' in line.strip():
|
| 93 |
+
# new page
|
| 94 |
+
footnote_found = False
|
| 95 |
+
i+=1
|
| 96 |
+
# print('--',line.rstrip())
|
| 97 |
+
continue
|
| 98 |
+
if footnote_found == False:
|
| 99 |
+
if not (li_spaces > mean_spaces):
|
| 100 |
+
# when the spaces in current line is equal or one tab shy from the mean spaces
|
| 101 |
+
line2 = sanitize(line)
|
| 102 |
+
if len(line2) > 5 and len(line2.split()) > 4:
|
| 103 |
+
if show:
|
| 104 |
+
print('++',line.rstrip())
|
| 105 |
+
sents.append(line)
|
| 106 |
+
last_spaces = li_spaces
|
| 107 |
+
elif last_spaces == li_spaces:
|
| 108 |
+
if show:
|
| 109 |
+
print('++',line.rstrip())
|
| 110 |
+
sents.append(line)
|
| 111 |
+
else:
|
| 112 |
+
last_spaces = -1
|
| 113 |
+
if show:
|
| 114 |
+
print('--',line.rstrip())
|
| 115 |
+
else:
|
| 116 |
+
# the current line has more or less spaces as compared to the mean
|
| 117 |
+
next_line = content[i+1]
|
| 118 |
+
lj_spaces = len(next_line) - len(next_line.strip())
|
| 119 |
+
if not (lj_spaces > mean_spaces):
|
| 120 |
+
# print('b4', line)
|
| 121 |
+
line1 = sanitize(content[i])
|
| 122 |
+
line2 = sanitize(next_line)
|
| 123 |
+
# print('now',line2)
|
| 124 |
+
if len(line1) > 5 and len(line1.split()) > 4 and len(line2) > 5 and len(line2.split()) > 4:
|
| 125 |
+
sent_text = remove_footnotes_and_clean(sents)
|
| 126 |
+
paras.append(sent_text)
|
| 127 |
+
if show:
|
| 128 |
+
print('++',line.rstrip(),'<------NEW PARA')
|
| 129 |
+
sents = [line]
|
| 130 |
+
# print('$$',paras[-1])
|
| 131 |
+
else:
|
| 132 |
+
last_spaces = -1
|
| 133 |
+
if show:
|
| 134 |
+
print('--',line.rstrip())
|
| 135 |
+
else:
|
| 136 |
+
last_spaces = -1
|
| 137 |
+
if show:
|
| 138 |
+
print('--',line.rstrip())
|
| 139 |
+
else:
|
| 140 |
+
last_spaces = -1
|
| 141 |
+
if show:
|
| 142 |
+
print('--',line.rstrip())
|
| 143 |
+
if show:
|
| 144 |
+
input('wait')
|
| 145 |
+
i+=1
|
| 146 |
+
|
| 147 |
+
file = open(path+m.split('/')[-1],'w')
|
| 148 |
+
file.write('\n'.join(paras[1:]))
|
| 149 |
+
file.close()
|
| 150 |
+
# input('here wait')
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
# ----------------------------- Cleaning process 2/2 -----------------------------
|
| 155 |
+
path = 'clean_text_files/'
|
| 156 |
+
ml = sorted(glob.glob(path+'*.txt'))
|
| 157 |
+
|
| 158 |
+
text = []
|
| 159 |
+
|
| 160 |
+
for m in tqdm(range(1,99)):
|
| 161 |
+
file = open(path+str(m)+'.txt','r')
|
| 162 |
+
text += file.readlines()
|
| 163 |
+
file.close()
|
| 164 |
+
|
| 165 |
+
file = open('all_paras.txt','w')
|
| 166 |
+
file.write(''.join(text))
|
| 167 |
+
file.close()
|
| 168 |
+
|
| 169 |
+
sents = []
|
| 170 |
+
tcsents = [] # transformer compatible sents
|
| 171 |
+
para_stack = []
|
| 172 |
+
for para in tqdm(text):
|
| 173 |
+
para = para.strip()
|
| 174 |
+
sents += sent_tokenize(para)
|
| 175 |
+
para_stack = [para] + para_stack
|
| 176 |
+
while len(para_stack)!=0:
|
| 177 |
+
top_para = para_stack.pop(0)
|
| 178 |
+
if len(tokenizer('<|startoftext|>'+ top_para + '<|endoftext|>')['input_ids']) > 200: # <-------------
|
| 179 |
+
ts = sent_tokenize(top_para)
|
| 180 |
+
if len(ts) > 1:
|
| 181 |
+
para_stack = [' '.join(ts[int(len(ts)/2):])] + para_stack # second half
|
| 182 |
+
para_stack = [' '.join(ts[:int(len(ts)/2)])] + para_stack # first half
|
| 183 |
+
else:
|
| 184 |
+
tcsents.append(top_para)
|
| 185 |
+
else:
|
| 186 |
+
tcsents.append(top_para)
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
file = open('all_sents.txt','w')
|
| 190 |
+
file.write('\n'.join(sents))
|
| 191 |
+
file.close()
|
| 192 |
+
|
| 193 |
+
file = open('all_tc_sents_200.txt','w')
|
| 194 |
+
file.write('\n'.join(tcsents))
|
| 195 |
+
file.close()
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
code/file.pdf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b2a57a58bc338df0a10eb28d73efe347d820bdd58a271b1f032562c8a857aa2
|
| 3 |
+
size 1112205
|
code/gpt-finetune.py
ADDED
|
@@ -0,0 +1,904 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import datetime
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import seaborn as sns
|
| 7 |
+
import numpy as np
|
| 8 |
+
import random
|
| 9 |
+
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, GPT2LMHeadModel
|
| 17 |
+
from transformers import AdamW, get_linear_schedule_with_warmup
|
| 18 |
+
|
| 19 |
+
import nltk
|
| 20 |
+
nltk.download('punkt')
|
| 21 |
+
|
| 22 |
+
import sys
|
| 23 |
+
|
| 24 |
+
import pytz
|
| 25 |
+
IST = pytz.timezone('Asia/Kolkata')
|
| 26 |
+
stamp = datetime.datetime.now(IST).strftime("%c")
|
| 27 |
+
|
| 28 |
+
print('\n')
|
| 29 |
+
print('='*100)
|
| 30 |
+
print('='*100)
|
| 31 |
+
print('\t\t=Experiment6=',stamp)
|
| 32 |
+
print('='*100)
|
| 33 |
+
print('='*100)
|
| 34 |
+
|
| 35 |
+
out_path = '/media/data_dump/Ritwik/ggpt/'
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# for i in range(10):
|
| 39 |
+
# print(i)
|
| 40 |
+
# time.sleep(1)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# exit()
|
| 44 |
+
|
| 45 |
+
hyper_params = {'rseed': 123}
|
| 46 |
+
|
| 47 |
+
import torch, numpy as np, random, transformers, psutil, time
|
| 48 |
+
os.environ['PYTHONHASHSEED'] = str(hyper_params['rseed'])
|
| 49 |
+
# Torch RNG
|
| 50 |
+
torch.manual_seed(hyper_params['rseed'])
|
| 51 |
+
torch.cuda.manual_seed(hyper_params['rseed'])
|
| 52 |
+
torch.cuda.manual_seed_all(hyper_params['rseed'])
|
| 53 |
+
# Python RNG
|
| 54 |
+
np.random.seed(hyper_params['rseed'])
|
| 55 |
+
random.seed(hyper_params['rseed'])
|
| 56 |
+
transformers.set_seed(hyper_params['rseed'])
|
| 57 |
+
|
| 58 |
+
# Load the GPT tokenizer.
|
| 59 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2', bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>') #gpt2-medium
|
| 60 |
+
|
| 61 |
+
sfile = '/media/nas_mount/Ritwik/Ai4Bharat_text_corpora/data/en/en_clean.txt'
|
| 62 |
+
print(sfile)
|
| 63 |
+
file = open(sfile,'r')
|
| 64 |
+
lines = file.readlines()
|
| 65 |
+
file.close()
|
| 66 |
+
lines = [[x.strip()] for x in lines]
|
| 67 |
+
|
| 68 |
+
df = pd.DataFrame(lines, columns=['bio_main'])
|
| 69 |
+
|
| 70 |
+
print('Dataframe created')
|
| 71 |
+
df.dropna(inplace=True) #remove NA values
|
| 72 |
+
bios = df.bio_main.copy()
|
| 73 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 74 |
+
|
| 75 |
+
# doc_lengths = []
|
| 76 |
+
# for bio in bios:
|
| 77 |
+
# # get rough token count distribution
|
| 78 |
+
# tokens = nltk.word_tokenize(bio)
|
| 79 |
+
# doc_lengths.append(len(tokens))
|
| 80 |
+
# doc_lengths = np.array(doc_lengths)
|
| 81 |
+
# a = sns.distplot(doc_lengths)
|
| 82 |
+
# a.get_figure().savefig(out_path+"out.png")
|
| 83 |
+
# print('len(doc_lengths[doc_lengths > 768])/len(doc_lengths)',len(doc_lengths[doc_lengths > 768])/len(doc_lengths))
|
| 84 |
+
# print('np.average(doc_lengths)',np.average(doc_lengths))
|
| 85 |
+
# print(datetime.datetime.now(IST).strftime("%c"))
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
print("The max model length is {} for this model, although the actual embedding size for GPT small is 768".format(tokenizer.model_max_length))
|
| 89 |
+
print("The beginning of sequence token {} token has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.bos_token_id), tokenizer.bos_token_id))
|
| 90 |
+
print("The end of sequence token {} has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.eos_token_id), tokenizer.eos_token_id))
|
| 91 |
+
print("The padding token {} has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.pad_token_id), tokenizer.pad_token_id))
|
| 92 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 93 |
+
|
| 94 |
+
batch_size = 8
|
| 95 |
+
|
| 96 |
+
class GPT2Dataset(Dataset):
|
| 97 |
+
|
| 98 |
+
def __init__(self, txt_list, tokenizer, gpt2_type="gpt2", max_length=768):
|
| 99 |
+
|
| 100 |
+
self.tokenizer = tokenizer
|
| 101 |
+
self.max_length = max_length
|
| 102 |
+
# self.input_ids = []
|
| 103 |
+
# self.attn_masks = []
|
| 104 |
+
self.sents = list(txt_list)
|
| 105 |
+
|
| 106 |
+
# for txt in txt_list:
|
| 107 |
+
# ###self.sents.append(txt)
|
| 108 |
+
|
| 109 |
+
# encodings_dict = tokenizer('<|startoftext|>'+ txt + '<|endoftext|>', truncation=True, max_length=max_length, padding="max_length")
|
| 110 |
+
|
| 111 |
+
# self.input_ids.append(torch.tensor(encodings_dict['input_ids']))
|
| 112 |
+
# self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))
|
| 113 |
+
|
| 114 |
+
def __len__(self):
|
| 115 |
+
# return len(self.input_ids)
|
| 116 |
+
return len(self.sents)
|
| 117 |
+
|
| 118 |
+
def __getitem__(self, idx):
|
| 119 |
+
# return self.input_ids[idx], self.attn_masks[idx]
|
| 120 |
+
txt = self.sents[idx]
|
| 121 |
+
encodings_dict = self.tokenizer('<|startoftext|>'+ txt + '<|endoftext|>', truncation=True, max_length=self.max_length, padding="max_length")
|
| 122 |
+
input_ids = torch.tensor(encodings_dict['input_ids'])
|
| 123 |
+
attn_masks = torch.tensor(encodings_dict['attention_mask'])
|
| 124 |
+
return input_ids, attn_masks
|
| 125 |
+
|
| 126 |
+
dataset = GPT2Dataset(bios, tokenizer, max_length=500)
|
| 127 |
+
|
| 128 |
+
# temp_dataloader = DataLoader(
|
| 129 |
+
# dataset, # The training samples.
|
| 130 |
+
# sampler = RandomSampler(dataset), # Select batches randomly
|
| 131 |
+
# batch_size = batch_size # Trains with this batch size.
|
| 132 |
+
# )
|
| 133 |
+
|
| 134 |
+
# for temp in temp_dataloader:
|
| 135 |
+
# print(temp)
|
| 136 |
+
# print(temp[0].shape)
|
| 137 |
+
# input()
|
| 138 |
+
|
| 139 |
+
# Split into training and validation sets
|
| 140 |
+
train_size = int(0.9 * len(dataset))
|
| 141 |
+
val_size = len(dataset) - train_size
|
| 142 |
+
|
| 143 |
+
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
| 144 |
+
|
| 145 |
+
print('{:>5,} training samples'.format(train_size))
|
| 146 |
+
print('{:>5,} validation samples'.format(val_size))
|
| 147 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 148 |
+
|
| 149 |
+
# Create the DataLoaders for our training and validation datasets.
|
| 150 |
+
# We'll take training samples in random order.
|
| 151 |
+
train_dataloader = DataLoader(
|
| 152 |
+
train_dataset, # The training samples.
|
| 153 |
+
sampler = RandomSampler(train_dataset), # Select batches randomly
|
| 154 |
+
batch_size = batch_size # Trains with this batch size.
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# For validation the order doesn't matter, so we'll just read them sequentially.
|
| 158 |
+
validation_dataloader = DataLoader(
|
| 159 |
+
val_dataset, # The validation samples.
|
| 160 |
+
sampler = SequentialSampler(val_dataset), # Pull out batches sequentially.
|
| 161 |
+
batch_size = batch_size # Evaluate with this batch size.
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
# I'm not really doing anything with the config buheret
|
| 166 |
+
configuration = GPT2Config.from_pretrained('gpt2', output_hidden_states=False)
|
| 167 |
+
|
| 168 |
+
# instantiate the model
|
| 169 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2", config=configuration)
|
| 170 |
+
|
| 171 |
+
# this step is necessary because I've added some tokens (bos_token, etc) to the embeddings
|
| 172 |
+
# otherwise the tokenizer and model tensors won't match up
|
| 173 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 174 |
+
|
| 175 |
+
# Tell pytorch to run this model on the GPU.
|
| 176 |
+
device = torch.device("cuda")
|
| 177 |
+
|
| 178 |
+
model = model.to(device)
|
| 179 |
+
|
| 180 |
+
print('Model loaded to GPU')
|
| 181 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 182 |
+
|
| 183 |
+
# checkpoint = torch.load(out_path+'model_save_768/final_checkpoint.pth.tar')
|
| 184 |
+
# print(model.load_state_dict(checkpoint['state_dict']))
|
| 185 |
+
# del checkpoint
|
| 186 |
+
# tokenizer = torch.load(out_path+'model_save_768/tokenizer_checkpoint.pth.tar') #.from_pretrained('/media/data_dump/Ritwik/ggpt/model_save_768/')
|
| 187 |
+
|
| 188 |
+
# some parameters I cooked up that work reasonably well
|
| 189 |
+
|
| 190 |
+
epochs = 1
|
| 191 |
+
learning_rate = 5e-4
|
| 192 |
+
warmup_steps = 1e2
|
| 193 |
+
epsilon = 1e-8
|
| 194 |
+
|
| 195 |
+
# this produces sample output every 100 steps
|
| 196 |
+
sample_every = 1000
|
| 197 |
+
|
| 198 |
+
# Note: AdamW is a class from the huggingface library (as opposed to pytorch)
|
| 199 |
+
optimizer = AdamW(model.parameters(),
|
| 200 |
+
lr = learning_rate,
|
| 201 |
+
eps = epsilon
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
# Total number of training steps is [number of batches] x [number of epochs].
|
| 205 |
+
# (Note that this is not the same as the number of training samples).
|
| 206 |
+
total_steps = len(train_dataloader) * epochs
|
| 207 |
+
|
| 208 |
+
# Create the learning rate scheduler.
|
| 209 |
+
# This changes the learning rate as the training loop progresses
|
| 210 |
+
scheduler = get_linear_schedule_with_warmup(optimizer,
|
| 211 |
+
num_warmup_steps = warmup_steps,
|
| 212 |
+
num_training_steps = total_steps)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def format_time(elapsed):
|
| 218 |
+
return str(datetime.timedelta(seconds=int(round((elapsed)))))
|
| 219 |
+
|
| 220 |
+
output_dir = '/media/data_dump/Ritwik/ggpt/model_save/'
|
| 221 |
+
|
| 222 |
+
# Create output directory if needed
|
| 223 |
+
if not os.path.exists(output_dir):
|
| 224 |
+
os.makedirs(output_dir)
|
| 225 |
+
|
| 226 |
+
total_t0 = time.time()
|
| 227 |
+
|
| 228 |
+
training_stats = []
|
| 229 |
+
|
| 230 |
+
last_epoch, last_step = -1, -1
|
| 231 |
+
try:
|
| 232 |
+
file = open(out_path+'model_save/checkpoint_state_pretraining.txt','r')
|
| 233 |
+
content = [x.split(':') for x in file.read().split('|')]
|
| 234 |
+
file.close()
|
| 235 |
+
except:
|
| 236 |
+
content = []
|
| 237 |
+
|
| 238 |
+
if len(content) == 2:
|
| 239 |
+
last_epoch = int(content[1][1])
|
| 240 |
+
last_step = int(content[0][1])
|
| 241 |
+
|
| 242 |
+
checkpoint = torch.load(out_path+'model_save/model_checkpoint_pretraining.pth.tar')
|
| 243 |
+
print(model.load_state_dict(checkpoint['state_dict']))
|
| 244 |
+
tokenizer = torch.load(out_path+'model_save/tokenizer_checkpoint_pretraining.pth.tar')
|
| 245 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 246 |
+
# else:
|
| 247 |
+
# print(content)
|
| 248 |
+
# input('wait')
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
for epoch_i in range(0, epochs):
|
| 252 |
+
|
| 253 |
+
# ========================================
|
| 254 |
+
# Training
|
| 255 |
+
# ========================================
|
| 256 |
+
|
| 257 |
+
print("")
|
| 258 |
+
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
|
| 259 |
+
print('Training...')
|
| 260 |
+
|
| 261 |
+
if last_epoch!=-1:
|
| 262 |
+
if epoch_i < last_epoch:
|
| 263 |
+
continue
|
| 264 |
+
|
| 265 |
+
t0 = time.time()
|
| 266 |
+
|
| 267 |
+
total_train_loss = 0
|
| 268 |
+
|
| 269 |
+
model.train()
|
| 270 |
+
|
| 271 |
+
for step, batch in enumerate(train_dataloader):
|
| 272 |
+
|
| 273 |
+
if last_step != -1:
|
| 274 |
+
if step <= last_step:
|
| 275 |
+
continue
|
| 276 |
+
|
| 277 |
+
b_input_ids = batch[0].to(device)
|
| 278 |
+
b_labels = batch[0].to(device)
|
| 279 |
+
b_masks = batch[1].to(device)
|
| 280 |
+
|
| 281 |
+
model.zero_grad()
|
| 282 |
+
|
| 283 |
+
outputs = model( b_input_ids,
|
| 284 |
+
labels=b_labels,
|
| 285 |
+
attention_mask = b_masks,
|
| 286 |
+
token_type_ids=None
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
loss = outputs[0]
|
| 290 |
+
|
| 291 |
+
batch_loss = loss.item()
|
| 292 |
+
total_train_loss += batch_loss
|
| 293 |
+
|
| 294 |
+
# Get sample every x batches. Ignoring the first step.
|
| 295 |
+
if step % sample_every == 0 and not step == 0:
|
| 296 |
+
|
| 297 |
+
elapsed = format_time(time.time() - t0)
|
| 298 |
+
print(' Batch {:>5,} of {:>5,}. Loss: {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), batch_loss, elapsed))
|
| 299 |
+
|
| 300 |
+
model.eval()
|
| 301 |
+
|
| 302 |
+
sample_outputs = model.generate(
|
| 303 |
+
bos_token_id=random.randint(1,30000),
|
| 304 |
+
do_sample=True,
|
| 305 |
+
top_k=50,
|
| 306 |
+
max_length = 200,
|
| 307 |
+
top_p=0.95,
|
| 308 |
+
num_return_sequences=1
|
| 309 |
+
)
|
| 310 |
+
for i, sample_output in enumerate(sample_outputs):
|
| 311 |
+
print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
|
| 312 |
+
|
| 313 |
+
model.train()
|
| 314 |
+
|
| 315 |
+
try:
|
| 316 |
+
torch.save({'state_dict': model.state_dict()}, out_path+'model_save/model_checkpoint_pretraining.pth.tar')
|
| 317 |
+
torch.save(tokenizer, out_path+'model_save/tokenizer_checkpoint_pretraining.pth.tar')
|
| 318 |
+
file = open(out_path+'model_save/checkpoint_state_pretraining.txt','w')
|
| 319 |
+
file.write('step:'+str(step)+'|epoch:'+str(epoch_i))
|
| 320 |
+
file.close()
|
| 321 |
+
except:
|
| 322 |
+
torch.save({'state_dict': model.state_dict()}, out_path+'model_save/model_checkpoint_pretraining.pth.tar')
|
| 323 |
+
torch.save(tokenizer, out_path+'model_save/tokenizer_checkpoint_pretraining.pth.tar')
|
| 324 |
+
file = open(out_path+'model_save/checkpoint_state_pretraining.txt','w')
|
| 325 |
+
file.write('step:'+str(step)+'|epoch:'+str(epoch_i))
|
| 326 |
+
file.close()
|
| 327 |
+
|
| 328 |
+
loss.backward()
|
| 329 |
+
|
| 330 |
+
optimizer.step()
|
| 331 |
+
|
| 332 |
+
scheduler.step()
|
| 333 |
+
|
| 334 |
+
last_epoch, last_step = -1, -1
|
| 335 |
+
# Calculate the average loss over all of the batches.
|
| 336 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
| 337 |
+
|
| 338 |
+
# Measure how long this epoch took.
|
| 339 |
+
training_time = format_time(time.time() - t0)
|
| 340 |
+
|
| 341 |
+
print("")
|
| 342 |
+
print(" Average training loss: {0:.2f}".format(avg_train_loss))
|
| 343 |
+
print(" Training epoch took: {:}".format(training_time))
|
| 344 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 345 |
+
|
| 346 |
+
# ========================================
|
| 347 |
+
# Validation
|
| 348 |
+
# ========================================
|
| 349 |
+
|
| 350 |
+
print("")
|
| 351 |
+
print("Running Validation...")
|
| 352 |
+
|
| 353 |
+
t0 = time.time()
|
| 354 |
+
|
| 355 |
+
model.eval()
|
| 356 |
+
|
| 357 |
+
total_eval_loss = 0
|
| 358 |
+
nb_eval_steps = 0
|
| 359 |
+
|
| 360 |
+
# Evaluate data for one epoch
|
| 361 |
+
for batch in validation_dataloader:
|
| 362 |
+
|
| 363 |
+
b_input_ids = batch[0].to(device)
|
| 364 |
+
b_labels = batch[0].to(device)
|
| 365 |
+
b_masks = batch[1].to(device)
|
| 366 |
+
|
| 367 |
+
with torch.no_grad():
|
| 368 |
+
|
| 369 |
+
outputs = model(b_input_ids,
|
| 370 |
+
# token_type_ids=None,
|
| 371 |
+
attention_mask = b_masks,
|
| 372 |
+
labels=b_labels)
|
| 373 |
+
|
| 374 |
+
loss = outputs[0]
|
| 375 |
+
|
| 376 |
+
batch_loss = loss.item()
|
| 377 |
+
total_eval_loss += batch_loss
|
| 378 |
+
|
| 379 |
+
avg_val_loss = total_eval_loss / len(validation_dataloader)
|
| 380 |
+
|
| 381 |
+
validation_time = format_time(time.time() - t0)
|
| 382 |
+
|
| 383 |
+
print(" Validation Loss: {0:.2f}".format(avg_val_loss))
|
| 384 |
+
print(" Validation took: {:}".format(validation_time))
|
| 385 |
+
|
| 386 |
+
# Record all statistics from this epoch.
|
| 387 |
+
training_stats.append(
|
| 388 |
+
{
|
| 389 |
+
'epoch': epoch_i + 1,
|
| 390 |
+
'Training Loss': avg_train_loss,
|
| 391 |
+
'Valid. Loss': avg_val_loss,
|
| 392 |
+
'Training Time': training_time,
|
| 393 |
+
'Validation Time': validation_time
|
| 394 |
+
}
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
print("")
|
| 398 |
+
print("Training complete!")
|
| 399 |
+
print("Total training took {:} (h:mm:ss)".format(format_time(time.time()-total_t0)))
|
| 400 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 401 |
+
|
| 402 |
+
try:
|
| 403 |
+
# Display floats with two decimal places.
|
| 404 |
+
pd.set_option('precision', 2)
|
| 405 |
+
|
| 406 |
+
# Create a DataFrame from our training statistics.
|
| 407 |
+
df_stats = pd.DataFrame(data=training_stats)
|
| 408 |
+
|
| 409 |
+
# Use the 'epoch' as the row index.
|
| 410 |
+
df_stats = df_stats.set_index('epoch')
|
| 411 |
+
|
| 412 |
+
# A hack to force the column headers to wrap.
|
| 413 |
+
# df = df.style.set_table_styles([dict(selector="th",props=[('max-width', '70px')])])
|
| 414 |
+
|
| 415 |
+
# Display the table.
|
| 416 |
+
print(df_stats)
|
| 417 |
+
|
| 418 |
+
# Use plot styling from seaborn.
|
| 419 |
+
sns.set(style='darkgrid')
|
| 420 |
+
|
| 421 |
+
# Increase the plot size and font size.
|
| 422 |
+
sns.set(font_scale=1.5)
|
| 423 |
+
plt.rcParams["figure.figsize"] = (12,6)
|
| 424 |
+
|
| 425 |
+
# Plot the learning curve.
|
| 426 |
+
plt.plot(df_stats['Training Loss'], 'b-o', label="Training")
|
| 427 |
+
plt.plot(df_stats['Valid. Loss'], 'g-o', label="Validation")
|
| 428 |
+
|
| 429 |
+
# Label the plot.
|
| 430 |
+
plt.title("Training & Validation Loss")
|
| 431 |
+
plt.xlabel("Epoch")
|
| 432 |
+
plt.ylabel("Loss")
|
| 433 |
+
plt.legend()
|
| 434 |
+
plt.xticks([1, 2, 3, 4])
|
| 435 |
+
|
| 436 |
+
# plt.show()
|
| 437 |
+
plt.savefig(out_path+"training.png")
|
| 438 |
+
|
| 439 |
+
# Get all of the model's parameters as a list of tuples.
|
| 440 |
+
params = list(model.named_parameters())
|
| 441 |
+
|
| 442 |
+
print('The GPT-2 model has {:} different named parameters.\n'.format(len(params)))
|
| 443 |
+
|
| 444 |
+
print('==== Embedding Layer ====\n')
|
| 445 |
+
|
| 446 |
+
for p in params[0:2]:
|
| 447 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
| 448 |
+
|
| 449 |
+
print('\n==== First Transformer ====\n')
|
| 450 |
+
|
| 451 |
+
for p in params[2:14]:
|
| 452 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
| 453 |
+
|
| 454 |
+
print('\n==== Output Layer ====\n')
|
| 455 |
+
|
| 456 |
+
for p in params[-2:]:
|
| 457 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
| 458 |
+
|
| 459 |
+
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
|
| 460 |
+
|
| 461 |
+
print("Saving model to %s" % output_dir)
|
| 462 |
+
|
| 463 |
+
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
|
| 464 |
+
# They can then be reloaded using `from_pretrained()`
|
| 465 |
+
# model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
|
| 466 |
+
# way 1
|
| 467 |
+
model.save_pretrained(output_dir)
|
| 468 |
+
tokenizer.save_pretrained(output_dir)
|
| 469 |
+
|
| 470 |
+
# way 2
|
| 471 |
+
# torch.save({'state_dict': model.state_dict()}, out_path+'model_save/final_checkpoint.pth.tar')
|
| 472 |
+
|
| 473 |
+
except Exception as e:
|
| 474 |
+
print(e)
|
| 475 |
+
print('Waiting for 10 seconds')
|
| 476 |
+
time.sleep(10)
|
| 477 |
+
|
| 478 |
+
# ========================= Gandhi Data =======================
|
| 479 |
+
|
| 480 |
+
sfile = 'all_tc_sents_768.txt'
|
| 481 |
+
print(sfile)
|
| 482 |
+
file = open(sfile,'r')
|
| 483 |
+
lines = file.readlines()
|
| 484 |
+
file.close()
|
| 485 |
+
lines = [[x.strip()] for x in lines]
|
| 486 |
+
|
| 487 |
+
df = pd.DataFrame(lines, columns=['bio_main'])
|
| 488 |
+
|
| 489 |
+
print('Dataframe created')
|
| 490 |
+
df.dropna(inplace=True) #remove NA values
|
| 491 |
+
bios = df.bio_main.copy()
|
| 492 |
+
|
| 493 |
+
doc_lengths = []
|
| 494 |
+
for bio in bios:
|
| 495 |
+
# get rough token count distribution
|
| 496 |
+
tokens = nltk.word_tokenize(bio)
|
| 497 |
+
doc_lengths.append(len(tokens))
|
| 498 |
+
doc_lengths = np.array(doc_lengths)
|
| 499 |
+
a = sns.distplot(doc_lengths)
|
| 500 |
+
a.get_figure().savefig(out_path+"out.png")
|
| 501 |
+
print('len(doc_lengths[doc_lengths > 768])/len(doc_lengths)',len(doc_lengths[doc_lengths > 768])/len(doc_lengths))
|
| 502 |
+
print('np.average(doc_lengths)',np.average(doc_lengths))
|
| 503 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
print("The max model length is {} for this model, although the actual embedding size for GPT small is 768".format(tokenizer.model_max_length))
|
| 507 |
+
print("The beginning of sequence token {} token has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.bos_token_id), tokenizer.bos_token_id))
|
| 508 |
+
print("The end of sequence token {} has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.eos_token_id), tokenizer.eos_token_id))
|
| 509 |
+
print("The padding token {} has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.pad_token_id), tokenizer.pad_token_id))
|
| 510 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 511 |
+
|
| 512 |
+
batch_size = 4
|
| 513 |
+
|
| 514 |
+
class GPT2Dataset(Dataset):
|
| 515 |
+
|
| 516 |
+
def __init__(self, txt_list, tokenizer, gpt2_type="gpt2", max_length=768):
|
| 517 |
+
|
| 518 |
+
self.tokenizer = tokenizer
|
| 519 |
+
self.input_ids = []
|
| 520 |
+
self.attn_masks = []
|
| 521 |
+
|
| 522 |
+
for txt in txt_list:
|
| 523 |
+
|
| 524 |
+
encodings_dict = tokenizer('<|startoftext|>'+ txt + '<|endoftext|>', truncation=True, max_length=max_length, padding="max_length")
|
| 525 |
+
|
| 526 |
+
self.input_ids.append(torch.tensor(encodings_dict['input_ids']))
|
| 527 |
+
self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))
|
| 528 |
+
|
| 529 |
+
def __len__(self):
|
| 530 |
+
return len(self.input_ids)
|
| 531 |
+
|
| 532 |
+
def __getitem__(self, idx):
|
| 533 |
+
return self.input_ids[idx], self.attn_masks[idx]
|
| 534 |
+
|
| 535 |
+
dataset = GPT2Dataset(bios, tokenizer, max_length=768)
|
| 536 |
+
|
| 537 |
+
# Split into training and validation sets
|
| 538 |
+
train_size = int(0.9 * len(dataset))
|
| 539 |
+
val_size = len(dataset) - train_size
|
| 540 |
+
|
| 541 |
+
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
| 542 |
+
|
| 543 |
+
print('{:>5,} training samples'.format(train_size))
|
| 544 |
+
print('{:>5,} validation samples'.format(val_size))
|
| 545 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 546 |
+
|
| 547 |
+
# Create the DataLoaders for our training and validation datasets.
|
| 548 |
+
# We'll take training samples in random order.
|
| 549 |
+
train_dataloader = DataLoader(
|
| 550 |
+
train_dataset, # The training samples.
|
| 551 |
+
sampler = RandomSampler(train_dataset), # Select batches randomly
|
| 552 |
+
batch_size = batch_size # Trains with this batch size.
|
| 553 |
+
)
|
| 554 |
+
|
| 555 |
+
# For validation the order doesn't matter, so we'll just read them sequentially.
|
| 556 |
+
validation_dataloader = DataLoader(
|
| 557 |
+
val_dataset, # The validation samples.
|
| 558 |
+
sampler = SequentialSampler(val_dataset), # Pull out batches sequentially.
|
| 559 |
+
batch_size = batch_size # Evaluate with this batch size.
|
| 560 |
+
)
|
| 561 |
+
|
| 562 |
+
# Turning this off
|
| 563 |
+
'''
|
| 564 |
+
# I'm not really doing anything with the config buheret
|
| 565 |
+
configuration = GPT2Config.from_pretrained('gpt2', output_hidden_states=False)
|
| 566 |
+
|
| 567 |
+
# instantiate the model
|
| 568 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2", config=configuration)
|
| 569 |
+
|
| 570 |
+
# this step is necessary because I've added some tokens (bos_token, etc) to the embeddings
|
| 571 |
+
# otherwise the tokenizer and model tensors won't match up
|
| 572 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 573 |
+
|
| 574 |
+
# Tell pytorch to run this model on the GPU.
|
| 575 |
+
device = torch.device("cuda")
|
| 576 |
+
|
| 577 |
+
model = model.to(device)
|
| 578 |
+
'''
|
| 579 |
+
|
| 580 |
+
print('Model loaded to GPU')
|
| 581 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 582 |
+
|
| 583 |
+
# checkpoint = torch.load(out_path+'model_save_768/final_checkpoint.pth.tar')
|
| 584 |
+
# print(model.load_state_dict(checkpoint['state_dict']))
|
| 585 |
+
# del checkpoint
|
| 586 |
+
# tokenizer = torch.load(out_path+'model_save_768/tokenizer_checkpoint.pth.tar') #.from_pretrained('/media/data_dump/Ritwik/ggpt/model_save_768/')
|
| 587 |
+
|
| 588 |
+
# some parameters I cooked up that work reasonably well
|
| 589 |
+
|
| 590 |
+
epochs = 3
|
| 591 |
+
learning_rate = 5e-4
|
| 592 |
+
warmup_steps = 1e2
|
| 593 |
+
epsilon = 1e-8
|
| 594 |
+
|
| 595 |
+
# this produces sample output every 100 steps
|
| 596 |
+
sample_every = 1000
|
| 597 |
+
|
| 598 |
+
# Note: AdamW is a class from the huggingface library (as opposed to pytorch)
|
| 599 |
+
optimizer = AdamW(model.parameters(),
|
| 600 |
+
lr = learning_rate,
|
| 601 |
+
eps = epsilon
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
# Total number of training steps is [number of batches] x [number of epochs].
|
| 605 |
+
# (Note that this is not the same as the number of training samples).
|
| 606 |
+
total_steps = len(train_dataloader) * epochs
|
| 607 |
+
|
| 608 |
+
# Create the learning rate scheduler.
|
| 609 |
+
# This changes the learning rate as the training loop progresses
|
| 610 |
+
scheduler = get_linear_schedule_with_warmup(optimizer,
|
| 611 |
+
num_warmup_steps = warmup_steps,
|
| 612 |
+
num_training_steps = total_steps)
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
def format_time(elapsed):
|
| 618 |
+
return str(datetime.timedelta(seconds=int(round((elapsed)))))
|
| 619 |
+
|
| 620 |
+
output_dir = '/media/data_dump/Ritwik/ggpt/model_save/'
|
| 621 |
+
|
| 622 |
+
# Create output directory if needed
|
| 623 |
+
if not os.path.exists(output_dir):
|
| 624 |
+
os.makedirs(output_dir)
|
| 625 |
+
|
| 626 |
+
total_t0 = time.time()
|
| 627 |
+
|
| 628 |
+
training_stats = []
|
| 629 |
+
|
| 630 |
+
last_epoch, last_step = -1, -1
|
| 631 |
+
try:
|
| 632 |
+
file = open(out_path+'model_save/checkpoint_state.txt','r')
|
| 633 |
+
content = [x.split(':') for x in file.read().split('|')]
|
| 634 |
+
file.close()
|
| 635 |
+
except:
|
| 636 |
+
content = []
|
| 637 |
+
|
| 638 |
+
if len(content) == 2:
|
| 639 |
+
last_epoch = int(content[1][1])
|
| 640 |
+
last_step = int(content[0][1])
|
| 641 |
+
|
| 642 |
+
checkpoint = torch.load(out_path+'model_save/model_checkpoint.pth.tar')
|
| 643 |
+
print(model.load_state_dict(checkpoint['state_dict']))
|
| 644 |
+
tokenizer = torch.load(out_path+'model_save/tokenizer_checkpoint.pth.tar')
|
| 645 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 646 |
+
# else:
|
| 647 |
+
# print(content)
|
| 648 |
+
# input('wait')
|
| 649 |
+
|
| 650 |
+
|
| 651 |
+
for epoch_i in range(0, epochs):
|
| 652 |
+
|
| 653 |
+
# ========================================
|
| 654 |
+
# Training
|
| 655 |
+
# ========================================
|
| 656 |
+
|
| 657 |
+
print("")
|
| 658 |
+
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
|
| 659 |
+
print('Training...')
|
| 660 |
+
|
| 661 |
+
if last_epoch!=-1:
|
| 662 |
+
if epoch_i < last_epoch:
|
| 663 |
+
continue
|
| 664 |
+
|
| 665 |
+
t0 = time.time()
|
| 666 |
+
|
| 667 |
+
total_train_loss = 0
|
| 668 |
+
|
| 669 |
+
model.train()
|
| 670 |
+
|
| 671 |
+
for step, batch in enumerate(train_dataloader):
|
| 672 |
+
|
| 673 |
+
if last_step != -1:
|
| 674 |
+
if step <= last_step:
|
| 675 |
+
continue
|
| 676 |
+
|
| 677 |
+
b_input_ids = batch[0].to(device)
|
| 678 |
+
b_labels = batch[0].to(device)
|
| 679 |
+
b_masks = batch[1].to(device)
|
| 680 |
+
|
| 681 |
+
model.zero_grad()
|
| 682 |
+
|
| 683 |
+
outputs = model( b_input_ids,
|
| 684 |
+
labels=b_labels,
|
| 685 |
+
attention_mask = b_masks,
|
| 686 |
+
token_type_ids=None
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
loss = outputs[0]
|
| 690 |
+
|
| 691 |
+
batch_loss = loss.item()
|
| 692 |
+
total_train_loss += batch_loss
|
| 693 |
+
|
| 694 |
+
# Get sample every x batches. Ignoring the first step.
|
| 695 |
+
if step % sample_every == 0 and not step == 0:
|
| 696 |
+
|
| 697 |
+
elapsed = format_time(time.time() - t0)
|
| 698 |
+
print(' Batch {:>5,} of {:>5,}. Loss: {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), batch_loss, elapsed))
|
| 699 |
+
|
| 700 |
+
model.eval()
|
| 701 |
+
|
| 702 |
+
sample_outputs = model.generate(
|
| 703 |
+
bos_token_id=random.randint(1,30000),
|
| 704 |
+
do_sample=True,
|
| 705 |
+
top_k=50,
|
| 706 |
+
max_length = 200,
|
| 707 |
+
top_p=0.95,
|
| 708 |
+
num_return_sequences=1
|
| 709 |
+
)
|
| 710 |
+
for i, sample_output in enumerate(sample_outputs):
|
| 711 |
+
print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
|
| 712 |
+
|
| 713 |
+
model.train()
|
| 714 |
+
|
| 715 |
+
torch.save({'state_dict': model.state_dict()}, out_path+'model_save/model_checkpoint.pth.tar')
|
| 716 |
+
torch.save(tokenizer, out_path+'model_save/tokenizer_checkpoint.pth.tar')
|
| 717 |
+
file = open(out_path+'model_save/checkpoint_state.txt','w')
|
| 718 |
+
file.write('step:'+str(step)+'|epoch:'+str(epoch_i))
|
| 719 |
+
file.close()
|
| 720 |
+
|
| 721 |
+
loss.backward()
|
| 722 |
+
|
| 723 |
+
optimizer.step()
|
| 724 |
+
|
| 725 |
+
scheduler.step()
|
| 726 |
+
|
| 727 |
+
last_epoch, last_step = -1, -1
|
| 728 |
+
# Calculate the average loss over all of the batches.
|
| 729 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
| 730 |
+
|
| 731 |
+
# Measure how long this epoch took.
|
| 732 |
+
training_time = format_time(time.time() - t0)
|
| 733 |
+
|
| 734 |
+
print("")
|
| 735 |
+
print(" Average training loss: {0:.2f}".format(avg_train_loss))
|
| 736 |
+
print(" Training epoch took: {:}".format(training_time))
|
| 737 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 738 |
+
|
| 739 |
+
# ========================================
|
| 740 |
+
# Validation
|
| 741 |
+
# ========================================
|
| 742 |
+
|
| 743 |
+
print("")
|
| 744 |
+
print("Running Validation...")
|
| 745 |
+
|
| 746 |
+
t0 = time.time()
|
| 747 |
+
|
| 748 |
+
model.eval()
|
| 749 |
+
|
| 750 |
+
total_eval_loss = 0
|
| 751 |
+
nb_eval_steps = 0
|
| 752 |
+
|
| 753 |
+
# Evaluate data for one epoch
|
| 754 |
+
for batch in validation_dataloader:
|
| 755 |
+
|
| 756 |
+
b_input_ids = batch[0].to(device)
|
| 757 |
+
b_labels = batch[0].to(device)
|
| 758 |
+
b_masks = batch[1].to(device)
|
| 759 |
+
|
| 760 |
+
with torch.no_grad():
|
| 761 |
+
|
| 762 |
+
outputs = model(b_input_ids,
|
| 763 |
+
# token_type_ids=None,
|
| 764 |
+
attention_mask = b_masks,
|
| 765 |
+
labels=b_labels)
|
| 766 |
+
|
| 767 |
+
loss = outputs[0]
|
| 768 |
+
|
| 769 |
+
batch_loss = loss.item()
|
| 770 |
+
total_eval_loss += batch_loss
|
| 771 |
+
|
| 772 |
+
avg_val_loss = total_eval_loss / len(validation_dataloader)
|
| 773 |
+
|
| 774 |
+
validation_time = format_time(time.time() - t0)
|
| 775 |
+
|
| 776 |
+
print(" Validation Loss: {0:.2f}".format(avg_val_loss))
|
| 777 |
+
print(" Validation took: {:}".format(validation_time))
|
| 778 |
+
|
| 779 |
+
# Record all statistics from this epoch.
|
| 780 |
+
training_stats.append(
|
| 781 |
+
{
|
| 782 |
+
'epoch': epoch_i + 1,
|
| 783 |
+
'Training Loss': avg_train_loss,
|
| 784 |
+
'Valid. Loss': avg_val_loss,
|
| 785 |
+
'Training Time': training_time,
|
| 786 |
+
'Validation Time': validation_time
|
| 787 |
+
}
|
| 788 |
+
)
|
| 789 |
+
|
| 790 |
+
print("")
|
| 791 |
+
print("Training complete!")
|
| 792 |
+
print("Total training took {:} (h:mm:ss)".format(format_time(time.time()-total_t0)))
|
| 793 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 794 |
+
|
| 795 |
+
# Display floats with two decimal places.
|
| 796 |
+
pd.set_option('precision', 2)
|
| 797 |
+
|
| 798 |
+
# Create a DataFrame from our training statistics.
|
| 799 |
+
df_stats = pd.DataFrame(data=training_stats)
|
| 800 |
+
|
| 801 |
+
# Use the 'epoch' as the row index.
|
| 802 |
+
df_stats = df_stats.set_index('epoch')
|
| 803 |
+
|
| 804 |
+
# A hack to force the column headers to wrap.
|
| 805 |
+
# df = df.style.set_table_styles([dict(selector="th",props=[('max-width', '70px')])])
|
| 806 |
+
|
| 807 |
+
# Display the table.
|
| 808 |
+
print(df_stats)
|
| 809 |
+
|
| 810 |
+
# Use plot styling from seaborn.
|
| 811 |
+
sns.set(style='darkgrid')
|
| 812 |
+
|
| 813 |
+
# Increase the plot size and font size.
|
| 814 |
+
sns.set(font_scale=1.5)
|
| 815 |
+
plt.rcParams["figure.figsize"] = (12,6)
|
| 816 |
+
|
| 817 |
+
# Plot the learning curve.
|
| 818 |
+
plt.plot(df_stats['Training Loss'], 'b-o', label="Training")
|
| 819 |
+
plt.plot(df_stats['Valid. Loss'], 'g-o', label="Validation")
|
| 820 |
+
|
| 821 |
+
# Label the plot.
|
| 822 |
+
plt.title("Training & Validation Loss")
|
| 823 |
+
plt.xlabel("Epoch")
|
| 824 |
+
plt.ylabel("Loss")
|
| 825 |
+
plt.legend()
|
| 826 |
+
plt.xticks([1, 2, 3, 4])
|
| 827 |
+
|
| 828 |
+
# plt.show()
|
| 829 |
+
plt.savefig(out_path+"training.png")
|
| 830 |
+
|
| 831 |
+
# Get all of the model's parameters as a list of tuples.
|
| 832 |
+
params = list(model.named_parameters())
|
| 833 |
+
|
| 834 |
+
print('The GPT-2 model has {:} different named parameters.\n'.format(len(params)))
|
| 835 |
+
|
| 836 |
+
print('==== Embedding Layer ====\n')
|
| 837 |
+
|
| 838 |
+
for p in params[0:2]:
|
| 839 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
| 840 |
+
|
| 841 |
+
print('\n==== First Transformer ====\n')
|
| 842 |
+
|
| 843 |
+
for p in params[2:14]:
|
| 844 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
| 845 |
+
|
| 846 |
+
print('\n==== Output Layer ====\n')
|
| 847 |
+
|
| 848 |
+
for p in params[-2:]:
|
| 849 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
| 850 |
+
|
| 851 |
+
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
|
| 852 |
+
|
| 853 |
+
print("Saving model to %s" % output_dir)
|
| 854 |
+
|
| 855 |
+
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
|
| 856 |
+
# They can then be reloaded using `from_pretrained()`
|
| 857 |
+
# model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
|
| 858 |
+
# way 1
|
| 859 |
+
model.save_pretrained(output_dir)
|
| 860 |
+
tokenizer.save_pretrained(output_dir)
|
| 861 |
+
|
| 862 |
+
# way 2
|
| 863 |
+
# torch.save({'state_dict': model.state_dict()}, out_path+'model_save/final_checkpoint.pth.tar')
|
| 864 |
+
|
| 865 |
+
|
| 866 |
+
# Loading
|
| 867 |
+
|
| 868 |
+
# way 1
|
| 869 |
+
# model = model.from_pretrained(output_dir).to(device)
|
| 870 |
+
# tokenizer = tokenizer.from_pretrained(output_dir)
|
| 871 |
+
|
| 872 |
+
# way 2
|
| 873 |
+
# checkpoint = torch.load(out_path+'model_save/final_checkpoint.pth.tar')
|
| 874 |
+
# print(model.load_state_dict(checkpoint['state_dict']))
|
| 875 |
+
# del checkpoint
|
| 876 |
+
# tokenizer = torch.load(out_path+'model_save/tokenizer_checkpoint.pth.tar')
|
| 877 |
+
|
| 878 |
+
|
| 879 |
+
print('Model and tokenizer loaded!')
|
| 880 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 881 |
+
|
| 882 |
+
model.eval()
|
| 883 |
+
|
| 884 |
+
prompt = "<|startoftext|> I wish to say that"
|
| 885 |
+
|
| 886 |
+
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
|
| 887 |
+
generated = generated.to(device)
|
| 888 |
+
|
| 889 |
+
print(generated)
|
| 890 |
+
|
| 891 |
+
sample_outputs = model.generate(
|
| 892 |
+
generated,
|
| 893 |
+
# bos_token_id=random.randint(1,30000),
|
| 894 |
+
do_sample=True,
|
| 895 |
+
top_k=50,
|
| 896 |
+
max_length = 500,
|
| 897 |
+
top_p=0.95,
|
| 898 |
+
num_return_sequences=3
|
| 899 |
+
)
|
| 900 |
+
|
| 901 |
+
for i, sample_output in enumerate(sample_outputs):
|
| 902 |
+
print("{}: {}\n\n".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
|
| 903 |
+
|
| 904 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
code/gpt-run.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import datetime
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import seaborn as sns
|
| 7 |
+
import numpy as np
|
| 8 |
+
import random
|
| 9 |
+
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, GPT2LMHeadModel
|
| 17 |
+
from transformers import AdamW, get_linear_schedule_with_warmup
|
| 18 |
+
|
| 19 |
+
import sys
|
| 20 |
+
|
| 21 |
+
import pytz
|
| 22 |
+
IST = pytz.timezone('Asia/Kolkata')
|
| 23 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 24 |
+
|
| 25 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2', bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>') #gpt2-medium
|
| 26 |
+
|
| 27 |
+
# I'm not really doing anything with the config buheret
|
| 28 |
+
configuration = GPT2Config.from_pretrained('gpt2', output_hidden_states=False)
|
| 29 |
+
|
| 30 |
+
# instantiate the model
|
| 31 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2", config=configuration)
|
| 32 |
+
|
| 33 |
+
# this step is necessary because I've added some tokens (bos_token, etc) to the embeddings
|
| 34 |
+
# otherwise the tokenizer and model tensors won't match up
|
| 35 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 36 |
+
|
| 37 |
+
# Tell pytorch to run this model on the GPU.
|
| 38 |
+
device = torch.device("cuda")
|
| 39 |
+
|
| 40 |
+
model = model.to(device)
|
| 41 |
+
|
| 42 |
+
print('Model loaded to GPU')
|
| 43 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 44 |
+
|
| 45 |
+
output_dir = '/media/data_dump/Ritwik/ggpt/model_save/pytorch_save_files/'
|
| 46 |
+
|
| 47 |
+
print('Loading fine-tuned weights')
|
| 48 |
+
model = model.from_pretrained(output_dir).to(device)
|
| 49 |
+
tokenizer = tokenizer.from_pretrained(output_dir)
|
| 50 |
+
|
| 51 |
+
print('Model and tokenizer loaded!')
|
| 52 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 53 |
+
|
| 54 |
+
model.eval()
|
| 55 |
+
|
| 56 |
+
# prompt_list = ['<|startoftext|> Regarding Kashmir I am very confident to say that','<|startoftext|> I wanted to save bhagat singh but','<|startoftext|> I wanted to save bhagat singh but fortunately','<|startoftext|> I wanted to save bhagat singh but unfortunately','<|startoftext|> Reporter: What is your biggest fear? Gandhi:','<|startoftext|> Question) What is your biggest fear?','<|startoftext|> Regarding Muslims and Islam I strongly believe that','<|startoftext|> I wish to say that','<|startoftext|> I chose Nehru over Patel for Prime Minister because','<|startoftext|> During my experiments with truth I observed that','<|startoftext|> My opinion on the negroes of Africa is that']
|
| 57 |
+
prompt_list = ['<|startoftext|> Regarding Kashmir I am very confident to say that']
|
| 58 |
+
|
| 59 |
+
for prompt in prompt_list:
|
| 60 |
+
|
| 61 |
+
# prompt = "<|startoftext|> Regarding Kashmir I am very confident to say that"
|
| 62 |
+
|
| 63 |
+
print(prompt)
|
| 64 |
+
|
| 65 |
+
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
|
| 66 |
+
generated = generated.to(device)
|
| 67 |
+
|
| 68 |
+
print(generated)
|
| 69 |
+
|
| 70 |
+
sample_outputs = model.generate(
|
| 71 |
+
generated,
|
| 72 |
+
# bos_token_id=random.randint(1,30000),
|
| 73 |
+
do_sample=True,
|
| 74 |
+
top_k=50,
|
| 75 |
+
max_length = 500,
|
| 76 |
+
top_p=0.95,
|
| 77 |
+
num_return_sequences=3
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
for i, sample_output in enumerate(sample_outputs):
|
| 81 |
+
print("{}: {}\n\n".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
|
| 82 |
+
|
| 83 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
| 84 |
+
print('\n')
|
| 85 |
+
|
code/myocr.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
this file is responsible for scraping the gandhi text
|
| 3 |
+
'''
|
| 4 |
+
|
| 5 |
+
import pytesseract
|
| 6 |
+
from pytesseract import Output
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import os.path
|
| 11 |
+
|
| 12 |
+
import fitz
|
| 13 |
+
|
| 14 |
+
import subprocess
|
| 15 |
+
|
| 16 |
+
def do_indent(df):
|
| 17 |
+
text = ""
|
| 18 |
+
# clean up blanks
|
| 19 |
+
df1 = df[(df.conf!='-1')&(df.text!=' ')&(df.text!='')]
|
| 20 |
+
# sort blocks vertically
|
| 21 |
+
sorted_blocks = df1.groupby('block_num').first().sort_values('top').index.tolist()
|
| 22 |
+
for block in sorted_blocks:
|
| 23 |
+
curr = df1[df1['block_num']==block]
|
| 24 |
+
sel = curr[curr.text.str.len()>3]
|
| 25 |
+
char_w = (sel.width/sel.text.str.len()).mean()
|
| 26 |
+
prev_par, prev_line, prev_left = 0, 0, 0
|
| 27 |
+
# text = ''
|
| 28 |
+
for ix, ln in curr.iterrows():
|
| 29 |
+
# add new line when necessary
|
| 30 |
+
if prev_par != ln['par_num']:
|
| 31 |
+
text += '\n'
|
| 32 |
+
prev_par = ln['par_num']
|
| 33 |
+
prev_line = ln['line_num']
|
| 34 |
+
prev_left = 0
|
| 35 |
+
elif prev_line != ln['line_num']:
|
| 36 |
+
text += '\n'
|
| 37 |
+
prev_line = ln['line_num']
|
| 38 |
+
prev_left = 0
|
| 39 |
+
|
| 40 |
+
added = 0 # num of spaces that should be added
|
| 41 |
+
if ln['left']/char_w > prev_left + 1:
|
| 42 |
+
added = int((ln['left'])/char_w) - prev_left
|
| 43 |
+
text += ' ' * added
|
| 44 |
+
text += ln['text'] + ' '
|
| 45 |
+
prev_left += len(ln['text']) + added + 1
|
| 46 |
+
text += '\n'
|
| 47 |
+
return text
|
| 48 |
+
|
| 49 |
+
text_file_path = 'text_files/'
|
| 50 |
+
start_page = 0
|
| 51 |
+
|
| 52 |
+
for h in range(1,99):
|
| 53 |
+
tfile = text_file_path+str(h)+'.txt'
|
| 54 |
+
url = "http://www.gandhiashramsevagram.org/gandhi-literature/mahatma-gandhi-collected-works-volume-"+str(h)+".pdf"
|
| 55 |
+
bashCommand = "wget "+url +" -O file.pdf"
|
| 56 |
+
process = subprocess.Popen(bashCommand.split())
|
| 57 |
+
output, error = process.communicate()
|
| 58 |
+
|
| 59 |
+
pdffile = "file.pdf"
|
| 60 |
+
doc = fitz.open(pdffile)
|
| 61 |
+
# https://stackoverflow.com/questions/46184239/extract-a-page-from-a-pdf-as-a-jpeg
|
| 62 |
+
file_text = ""
|
| 63 |
+
|
| 64 |
+
for i in tqdm(range(len(doc)), total=len(doc), desc=str(h)+'/98'):
|
| 65 |
+
if i < start_page:
|
| 66 |
+
continue
|
| 67 |
+
page = doc.load_page(i) # number of page
|
| 68 |
+
mat = fitz.Matrix(5, 5) # zoom factor
|
| 69 |
+
pix = page.get_pixmap(matrix=mat)
|
| 70 |
+
output = "outfile.png"
|
| 71 |
+
pix.save(output)
|
| 72 |
+
custom_config = r'-c preserve_interword_spaces=1 --oem 1 --psm 1 -l eng+ita'
|
| 73 |
+
d = pytesseract.image_to_data(Image.open(output), config=custom_config, output_type=Output.DICT)
|
| 74 |
+
df = pd.DataFrame(d)
|
| 75 |
+
file_text += do_indent(df)
|
| 76 |
+
|
| 77 |
+
f = open(tfile,'w')
|
| 78 |
+
f.write(file_text)
|
| 79 |
+
f.close()
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
code/outfile.png
ADDED
|