--- license: apache-2.0 language: - en base_model: - Qwen/Qwen2.5-VL-7B-Instruct pipeline_tag: robotics library_name: transformers tags: - RDT - rdt - RDT 2 - Vision-Language-Action - Bimanual - Manipulation - Zero-shot - UMI --- # RDT2-VQ: Vision-Language-Action with Residual VQ Action Tokens **RDT2-VQ** is an autoregressive Vision-Language-Action (VLA) model adapted from **[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** and trained on large-scale **UMI** bimanual manipulation data. It predicts a short-horizon **relative action chunk** (24 steps, 20 dims/step) from binocular wrist-camera RGB and a natural-language instruction. Actions are discretized with a lightweight **Residual VQ (RVQ)** tokenizer, enabling robust zero-shot transfer across **unseen embodiments** for simple, open-vocabulary skills (e.g., pick, place, shake, wipe). [**Home**](https://rdt-robotics.github.io/rdt2/) - [**Github**](https://github.com/thu-ml/RDT2/tree/main?tab=readme-ov-file) - [**Discord**](https://discord.gg/vsZS3zmf9A) --- ## Table of contents * [Highlights](#highlights) * [Model details](#model-details) * [Hardware & software requirements](#hardware--software-requirements) * [Quickstart (inference)](#quickstart-inference) * [Precision settings](#precision-settings) * [Intended uses & limitations](#intended-uses--limitations) * [Troubleshooting](#troubleshooting) * [Changelog](#changelog) * [Citation](#citation) * [Contact](#contact) --- ## Highlights * **Zero-shot cross-embodiment**: Demonstrated on Bimanual **UR5e** and **Franka Research 3** setups; designed to generalize further with correct hardware calibration. * **UMI scale**: Trained on **10k+ hours** from **100+ indoor scenes** of human manipulation with the UMI gripper. * **Residual VQ action tokenizer**: Compact, stable action codes; open-vocabulary instruction following via Qwen2.5-VL-7B backbone. --- ## Model details ### Architecture * **Backbone**: Qwen2.5-VL-7B-Instruct (vision-language). * **Observation**: Two wrist-camera RGB images (right/left), 384×384, JPEG-like statistics. * **Instruction**: Short imperative text, recommended format **“Verb + Object.”** (e.g., “Pick up the apple.”). ### Action representation (UMI bimanual, per 24-step chunk) * 20-D per step = right (10) + left (10): * pos (x,y,z): 3 * rot (6D rotation): 6 * gripper width: 1 * Output tensor shape: **(T=24, D=20)**, relative deltas, `float32`. * The RVQ tokenizer yields a fixed-length token sequence; see tokenizer card for exact code lengths. ### Tokenizer * **Tokenizer repo**: [`robotics-diffusion-transformer/RVQActionTokenizer`](https://huggingface.co/robotics-diffusion-transformer/RVQActionTokenizer) * Use **float32** for the VQ model. * Provide a **[LinearNormalizer](http://ml.cs.tsinghua.edu.cn/~lingxuan/rdt2/umi_normalizer_wo_downsample_indentity_rot.pt)** for action scaling (UMI convention). --- ## Hardware & software requirements Approximate **single-GPU** requirements (Qwen2.5-VL-7B-Instruct scale): | Mode | RAM | VRAM | Example GPU | | --------- | ------: | ------: | ----------------------- | | Inference | ≥ 32 GB | ≥ 16 GB | RTX 4090 | | LoRA FT | – | ≥ 32 GB | A100 40GB | | Full FT | – | ≥ 80 GB | A100 80GB / H100 / B200 | > For **deployment on real robots**, follow your platform’s **end-effector + camera** choices and perform **hardware setup & calibration** (camera stand/pose, flange, etc.) before running closed-loop policies. **Tested OS**: Ubuntu 24.04. --- ## Quickstart (inference) ```python # Run under repository: https://github.com/thu-ml/RDT2 import torch from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration from vqvae import MultiVQVAE from models.normalizer import LinearNormalizer from utils import batch_predict_action # assuming using gpu 0 device = "cuda:0" processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "robotics-diffusion-transformer/RDT2-VQ" torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map=device ).eval() vae = MultiVQVAE.from_pretrained("robotics-diffusion-transformer/RVQActionTokenizer").eval() vae = vae.to(device=device, dtype=torch.float32) valid_action_id_length = ( vae.pos_id_len + vae.rot_id_len + vae.grip_id_len ) # TODO: modify to your own downloaded normalizer path # download from http://ml.cs.tsinghua.edu.cn/~lingxuan/rdt2/umi_normalizer_wo_downsample_indentity_rot.pt normalizer = LinearNormalizer.from_pretrained("umi_normalizer_wo_downsample_indentity_rot.pt") # result = batch_predict_action( model, processor, vae, normalizer, examples=[ { "obs": { # NOTE: following the setting of UMI, camera0_rgb for right arm, camera1_rgb for left arm "camera0_rgb": ..., # RGB image in np.ndarray of shape (1, 384, 384, 3) with dtype=np.uint8 "camera1_rgb": ..., # RGB image in np.ndarray of shape (1, 384, 384, 3) with dtype=np.uint8 }, "meta": { "num_camera": 2 } }, ..., # we support batch inference, so you can pass a list of examples ], valid_action_id_length=valid_action_id_length, apply_jpeg_compression=True, # Since model is trained with mostly jpeg images, we suggest toggle this on for better formance instruction="Pick up the apple." # We suggest using Instruction in format "verb + object" with Capitalized First Letter and trailing period ) # get the predict action from example 0 action_chunk = result["action_pred"][0] # torch.FloatTensor of shape (24, 20) with dtype=torch.float32 # action_chunk (T, D) with T=24, D=20 # T=24: our action_chunk predicts the future 0.8s in fps=30, i.e. 24 frames # D=20: following the setting of UMI, we predict the action for both arms from right to left # - [0-2]: RIGHT ARM end effector position in x, y, z (unit: m) # - [3-8]: RIGHT ARM end effector rotation in 6D rotation representation # - [9]: RIGHT ARM gripper width (unit: m) # - [10-12]: LEFT ARM end effector position in x, y, z (unit: m) # - [13-18]: LEFT ARM end effector rotation in 6D rotation representation # - [19]: LEFT ARM gripper width (unit: m) # rescale gripper width from [0, 0.088] to [0, 0.1] for robot_idx in range(2): action_chunk[:, robot_idx * 10 + 9] = action_chunk[:, robot_idx * 10 + 9] / 0.088 * 0.1 ``` > For **installation and fine-tuning instructions**, please refer to the official [GitHub repository](https://github.com/thu-ml/RDT2). --- ## Intended uses & limitations **Intended uses** * Research in **robot manipulation** and **VLA modeling**. * Zero-shot or few-shot deployment on bimanual systems following the repo’s **[hardware calibration](https://github.com/thu-ml/RDT2/tree/main?tab=readme-ov-file#1-important-hard-ware-set-up-and-calibration)** steps. **Limitations** * Open-world robustness depends on **calibration quality**, camera placement, and gripper specifics. * Requires correct **normalization** and **RVQ code compatibility**. * Safety-critical deployment requires **supervision**, interlocks, and conservative velocity/force limits. **Safety & responsible use** * Always test in simulation or with **hardware limits** engaged (reduced speed, gravity compensation, E-stop within reach). --- ## Troubleshooting | Symptom | Likely cause | Suggested fix | | ---------------------------------- | -------------- | ------------------------------------------------------------------- | | Drifting / unstable gripper widths | Scale mismatch | Apply **LinearNormalizer**; rescale widths (\[0,0.088] → \[0,0.1]). | | Poor instruction following | Prompt format | Use “**Verb + Object.**” with capitalization + period. | | No improvement after FT | OOD actions | Check RVQ bounds & reconstruction error; verify normalization. | | Vision brittleness | JPEG gap | Enable `--image_corruption`; ensure 384×384 inputs. | --- ## Changelog * **2025-09**: Initial release of **RDT2-VQ** on Hugging Face. --- ## Citation ```bibtex @software{rdt2, title={RDT2: Enabling Zero-Shot Cross-Embodiment Generalization by Scaling Up UMI Data}, author={RDT Team}, url={https://github.com/thu-ml/RDT2}, month={September}, year={2025} } ``` --- ## Contact * Project page: [https://rdt-robotics.github.io/rdt2/](https://rdt-robotics.github.io/rdt2/) * Organization: [https://huggingface.co/robotics-diffusion-transformer](https://huggingface.co/robotics-diffusion-transformer) * Discord: [https://discord.gg/vsZS3zmf9A](https://discord.gg/vsZS3zmf9A)