Add ZipNN stuff
Browse files
README.md
CHANGED
|
@@ -12,8 +12,67 @@ widget:
|
|
| 12 |
- role: user
|
| 13 |
content: Can you provide ways to eat combinations of bananas and dragonfruits?
|
| 14 |
library_name: transformers
|
|
|
|
|
|
|
| 15 |
---
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
## Model Summary
|
| 18 |
|
| 19 |
Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.
|
|
@@ -141,16 +200,19 @@ After obtaining the Phi-3.5-mini-instruct model checkpoint, users can use this s
|
|
| 141 |
```python
|
| 142 |
import torch
|
| 143 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
torch.random.manual_seed(0)
|
| 146 |
|
| 147 |
model = AutoModelForCausalLM.from_pretrained(
|
| 148 |
-
"
|
| 149 |
device_map="cuda",
|
| 150 |
torch_dtype="auto",
|
| 151 |
trust_remote_code=True,
|
| 152 |
)
|
| 153 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 154 |
|
| 155 |
messages = [
|
| 156 |
{"role": "system", "content": "You are a helpful AI assistant."},
|
|
|
|
| 12 |
- role: user
|
| 13 |
content: Can you provide ways to eat combinations of bananas and dragonfruits?
|
| 14 |
library_name: transformers
|
| 15 |
+
base_model:
|
| 16 |
+
- microsoft/Phi-3.5-mini-instruct
|
| 17 |
---
|
| 18 |
|
| 19 |
+
# Disclaimer and Requirements
|
| 20 |
+
|
| 21 |
+
This model is a clone of [**microsoft/Phi-3.5-mini-instruct**](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) compressed using ZipNN. Compressed losslessly to 67% its original size, ZipNN saved ~3GB in storage and potentially ~1PB in data transfer **monthly**.
|
| 22 |
+
|
| 23 |
+
### Requirement
|
| 24 |
+
|
| 25 |
+
In order to use the model, ZipNN is necessary:
|
| 26 |
+
```bash
|
| 27 |
+
pip install zipnn
|
| 28 |
+
```
|
| 29 |
+
### Use This Model
|
| 30 |
+
```python
|
| 31 |
+
# Use a pipeline as a high-level helper
|
| 32 |
+
from transformers import pipeline
|
| 33 |
+
from zipnn import zipnn_hf
|
| 34 |
+
|
| 35 |
+
zipnn_hf()
|
| 36 |
+
|
| 37 |
+
messages = [
|
| 38 |
+
{"role": "user", "content": "Who are you?"},
|
| 39 |
+
]
|
| 40 |
+
pipe = pipeline("text-generation", model="royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed")
|
| 41 |
+
pipe(messages)
|
| 42 |
+
```
|
| 43 |
+
```python
|
| 44 |
+
# Load model directly
|
| 45 |
+
import torch
|
| 46 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 47 |
+
from zipnn import zipnn_hf
|
| 48 |
+
|
| 49 |
+
zipnn_hf()
|
| 50 |
+
|
| 51 |
+
torch.random.manual_seed(0)
|
| 52 |
+
|
| 53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 54 |
+
"royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed",
|
| 55 |
+
device_map="cuda",
|
| 56 |
+
torch_dtype="auto",
|
| 57 |
+
trust_remote_code=True,
|
| 58 |
+
)
|
| 59 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")
|
| 60 |
+
```
|
| 61 |
+
### ZipNN
|
| 62 |
+
ZipNN also allows you to seemlessly save local disk space in your cache after the model is downloaded.
|
| 63 |
+
|
| 64 |
+
To compress the cached model, simply run:
|
| 65 |
+
```bash
|
| 66 |
+
python zipnn_compress_path.py safetensors --model royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed --hf_cache
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
The model will be decompressed automatically and safely as long as `zipnn_hf()` is added at the top of the file like in the [example above](#use-this-model).
|
| 70 |
+
|
| 71 |
+
To decompress manualy, simply run:
|
| 72 |
+
```bash
|
| 73 |
+
python zipnn_decompress_path.py --model royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed --hf_cache
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
## Model Summary
|
| 77 |
|
| 78 |
Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.
|
|
|
|
| 200 |
```python
|
| 201 |
import torch
|
| 202 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 203 |
+
from zipnn import zipnn_hf
|
| 204 |
+
|
| 205 |
+
zipnn_hf()
|
| 206 |
|
| 207 |
torch.random.manual_seed(0)
|
| 208 |
|
| 209 |
model = AutoModelForCausalLM.from_pretrained(
|
| 210 |
+
"royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed",
|
| 211 |
device_map="cuda",
|
| 212 |
torch_dtype="auto",
|
| 213 |
trust_remote_code=True,
|
| 214 |
)
|
| 215 |
+
tokenizer = AutoTokenizer.from_pretrained("royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed")
|
| 216 |
|
| 217 |
messages = [
|
| 218 |
{"role": "system", "content": "You are a helpful AI assistant."},
|