End of training
Browse files- README.md +101 -0
- config.json +33 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
base_model: google/vit-base-patch16-224
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
datasets:
|
| 8 |
+
- imagefolder
|
| 9 |
+
metrics:
|
| 10 |
+
- accuracy
|
| 11 |
+
- f1
|
| 12 |
+
- precision
|
| 13 |
+
- recall
|
| 14 |
+
model-index:
|
| 15 |
+
- name: vit-pushup-form-classifier
|
| 16 |
+
results:
|
| 17 |
+
- task:
|
| 18 |
+
name: Image Classification
|
| 19 |
+
type: image-classification
|
| 20 |
+
dataset:
|
| 21 |
+
name: imagefolder
|
| 22 |
+
type: imagefolder
|
| 23 |
+
config: default
|
| 24 |
+
split: train
|
| 25 |
+
args: default
|
| 26 |
+
metrics:
|
| 27 |
+
- name: Accuracy
|
| 28 |
+
type: accuracy
|
| 29 |
+
value: 0.9733333333333334
|
| 30 |
+
- name: F1
|
| 31 |
+
type: f1
|
| 32 |
+
value: 0.9733475783475783
|
| 33 |
+
- name: Precision
|
| 34 |
+
type: precision
|
| 35 |
+
value: 0.9737081183656526
|
| 36 |
+
- name: Recall
|
| 37 |
+
type: recall
|
| 38 |
+
value: 0.9733333333333334
|
| 39 |
+
---
|
| 40 |
+
|
| 41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 42 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 43 |
+
|
| 44 |
+
# vit-pushup-form-classifier
|
| 45 |
+
|
| 46 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
| 47 |
+
It achieves the following results on the evaluation set:
|
| 48 |
+
- Loss: 0.0633
|
| 49 |
+
- Accuracy: 0.9733
|
| 50 |
+
- F1: 0.9733
|
| 51 |
+
- Precision: 0.9737
|
| 52 |
+
- Recall: 0.9733
|
| 53 |
+
|
| 54 |
+
## Model description
|
| 55 |
+
|
| 56 |
+
More information needed
|
| 57 |
+
|
| 58 |
+
## Intended uses & limitations
|
| 59 |
+
|
| 60 |
+
More information needed
|
| 61 |
+
|
| 62 |
+
## Training and evaluation data
|
| 63 |
+
|
| 64 |
+
More information needed
|
| 65 |
+
|
| 66 |
+
## Training procedure
|
| 67 |
+
|
| 68 |
+
### Training hyperparameters
|
| 69 |
+
|
| 70 |
+
The following hyperparameters were used during training:
|
| 71 |
+
- learning_rate: 2e-05
|
| 72 |
+
- train_batch_size: 16
|
| 73 |
+
- eval_batch_size: 16
|
| 74 |
+
- seed: 42
|
| 75 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 76 |
+
- lr_scheduler_type: linear
|
| 77 |
+
- num_epochs: 10
|
| 78 |
+
- mixed_precision_training: Native AMP
|
| 79 |
+
|
| 80 |
+
### Training results
|
| 81 |
+
|
| 82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
| 83 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 84 |
+
| 0.2205 | 1.0 | 44 | 0.2602 | 0.8533 | 0.8532 | 0.8534 | 0.8533 |
|
| 85 |
+
| 0.1148 | 2.0 | 88 | 0.2138 | 0.9 | 0.9000 | 0.9 | 0.9 |
|
| 86 |
+
| 0.0869 | 3.0 | 132 | 0.2535 | 0.8933 | 0.8931 | 0.8942 | 0.8933 |
|
| 87 |
+
| 0.0592 | 4.0 | 176 | 0.1646 | 0.9 | 0.8997 | 0.9014 | 0.9 |
|
| 88 |
+
| 0.0559 | 5.0 | 220 | 0.1587 | 0.9267 | 0.9265 | 0.9283 | 0.9267 |
|
| 89 |
+
| 0.034 | 6.0 | 264 | 0.2178 | 0.9133 | 0.9129 | 0.9166 | 0.9133 |
|
| 90 |
+
| 0.0171 | 7.0 | 308 | 0.1712 | 0.9267 | 0.9266 | 0.9272 | 0.9267 |
|
| 91 |
+
| 0.0107 | 8.0 | 352 | 0.1740 | 0.9267 | 0.9265 | 0.9283 | 0.9267 |
|
| 92 |
+
| 0.0139 | 9.0 | 396 | 0.1631 | 0.9333 | 0.9332 | 0.9344 | 0.9333 |
|
| 93 |
+
| 0.0046 | 10.0 | 440 | 0.1692 | 0.9333 | 0.9331 | 0.9359 | 0.9333 |
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
### Framework versions
|
| 97 |
+
|
| 98 |
+
- Transformers 4.57.1
|
| 99 |
+
- Pytorch 2.8.0+cu126
|
| 100 |
+
- Datasets 4.0.0
|
| 101 |
+
- Tokenizers 0.22.1
|
config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ViTForImageClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.0,
|
| 6 |
+
"dtype": "float32",
|
| 7 |
+
"encoder_stride": 16,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.0,
|
| 10 |
+
"hidden_size": 768,
|
| 11 |
+
"id2label": {
|
| 12 |
+
"0": "correct",
|
| 13 |
+
"1": "incorrect"
|
| 14 |
+
},
|
| 15 |
+
"image_size": 224,
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"intermediate_size": 3072,
|
| 18 |
+
"label2id": {
|
| 19 |
+
"correct": 0,
|
| 20 |
+
"incorrect": 1
|
| 21 |
+
},
|
| 22 |
+
"layer_norm_eps": 1e-12,
|
| 23 |
+
"model_type": "vit",
|
| 24 |
+
"num_attention_heads": 12,
|
| 25 |
+
"num_channels": 3,
|
| 26 |
+
"num_hidden_layers": 12,
|
| 27 |
+
"patch_size": 16,
|
| 28 |
+
"pooler_act": "tanh",
|
| 29 |
+
"pooler_output_size": 768,
|
| 30 |
+
"problem_type": "single_label_classification",
|
| 31 |
+
"qkv_bias": true,
|
| 32 |
+
"transformers_version": "4.57.1"
|
| 33 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a131bf4455179600773ef075ea4cacb6ae31f4f7b2812d304b6e509d84cb3da0
|
| 3 |
+
size 343223968
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87558b51019e01fa449f7d3db4a0125ad3ec31cb21f1eb55d2e6cb976ecc9332
|
| 3 |
+
size 5841
|