--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: vit-pushup-form-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9733333333333334 - name: F1 type: f1 value: 0.9733475783475783 - name: Precision type: precision value: 0.9737081183656526 - name: Recall type: recall value: 0.9733333333333334 --- # vit-pushup-form-classifier This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0633 - Accuracy: 0.9733 - F1: 0.9733 - Precision: 0.9737 - Recall: 0.9733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2205 | 1.0 | 44 | 0.2602 | 0.8533 | 0.8532 | 0.8534 | 0.8533 | | 0.1148 | 2.0 | 88 | 0.2138 | 0.9 | 0.9000 | 0.9 | 0.9 | | 0.0869 | 3.0 | 132 | 0.2535 | 0.8933 | 0.8931 | 0.8942 | 0.8933 | | 0.0592 | 4.0 | 176 | 0.1646 | 0.9 | 0.8997 | 0.9014 | 0.9 | | 0.0559 | 5.0 | 220 | 0.1587 | 0.9267 | 0.9265 | 0.9283 | 0.9267 | | 0.034 | 6.0 | 264 | 0.2178 | 0.9133 | 0.9129 | 0.9166 | 0.9133 | | 0.0171 | 7.0 | 308 | 0.1712 | 0.9267 | 0.9266 | 0.9272 | 0.9267 | | 0.0107 | 8.0 | 352 | 0.1740 | 0.9267 | 0.9265 | 0.9283 | 0.9267 | | 0.0139 | 9.0 | 396 | 0.1631 | 0.9333 | 0.9332 | 0.9344 | 0.9333 | | 0.0046 | 10.0 | 440 | 0.1692 | 0.9333 | 0.9331 | 0.9359 | 0.9333 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1