pm
commited on
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,70 +1,125 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: transformers
|
| 3 |
-
license: apache-2.0
|
| 4 |
-
base_model: distilbert/distilroberta-base
|
| 5 |
-
tags:
|
| 6 |
-
- generated_from_trainer
|
| 7 |
-
|
| 8 |
-
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
-
|
| 25 |
-
|
| 26 |
-
-
|
| 27 |
-
-
|
| 28 |
-
-
|
| 29 |
-
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
-
|
| 68 |
-
-
|
| 69 |
-
-
|
| 70 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
base_model: distilbert/distilroberta-base
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- sentiment_analysis
|
| 8 |
+
model-index:
|
| 9 |
+
- name: augmented-go-emotions-plus-other-datasets-fine-tuned-distilroberta-v2
|
| 10 |
+
results: []
|
| 11 |
+
datasets:
|
| 12 |
+
- google-research-datasets/go_emotions
|
| 13 |
+
language:
|
| 14 |
+
- en
|
| 15 |
+
metrics:
|
| 16 |
+
- f1
|
| 17 |
+
- precision
|
| 18 |
+
- recall
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 22 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 23 |
+
|
| 24 |
+
# augmented-go-emotions-plus-other-datasets-fine-tuned-distilroberta-v2
|
| 25 |
+
|
| 26 |
+
This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the these datasets:
|
| 27 |
+
- [GoEmotions](https://github.com/google-research/google-research/tree/master/goemotions)
|
| 28 |
+
- [sem_eval_2018_task_1 (English)](https://huggingface.co/datasets/SemEvalWorkshop/sem_eval_2018_task_1)
|
| 29 |
+
- [Emotion Detection from Text - Pashupati Gupta](https://www.kaggle.com/datasets/pashupatigupta/emotion-detection-from-text/data)
|
| 30 |
+
- [Emotions dataset for NLP - praveengovi](https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp/data)
|
| 31 |
+
It has also been data augmented using TextAttack.
|
| 32 |
+
On top of the (first version)[https://huggingface.co/paradoxmaske/augmented-go-emotions-plus-other-datasets-fine-tuned-distilroberta] of the model, V2 added more data augmentation (EasyDataAugmenter) on all labels except 'neutral'.
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
It achieves the following results on the evaluation set:
|
| 36 |
+
- Loss: 0.0792
|
| 37 |
+
- Micro Precision: 0.6922
|
| 38 |
+
- Micro Recall: 0.5854
|
| 39 |
+
- Micro F1: 0.6343
|
| 40 |
+
- Macro Precision: 0.5809
|
| 41 |
+
- Macro Recall: 0.4729
|
| 42 |
+
- Macro F1: 0.5136
|
| 43 |
+
- Weighted Precision: 0.6764
|
| 44 |
+
- Weighted Recall: 0.5854
|
| 45 |
+
- Weighted F1: 0.6238
|
| 46 |
+
- Hamming Loss: 0.0287
|
| 47 |
+
|
| 48 |
+
## Model description
|
| 49 |
+
|
| 50 |
+
More information needed
|
| 51 |
+
|
| 52 |
+
## Intended uses & limitations
|
| 53 |
+
|
| 54 |
+
More information needed
|
| 55 |
+
|
| 56 |
+
## Training and evaluation data
|
| 57 |
+
|
| 58 |
+
More information needed
|
| 59 |
+
|
| 60 |
+
## Training procedure
|
| 61 |
+
|
| 62 |
+
### Training hyperparameters
|
| 63 |
+
|
| 64 |
+
The following hyperparameters were used during training:
|
| 65 |
+
- learning_rate: 5e-05
|
| 66 |
+
- train_batch_size: 8
|
| 67 |
+
- eval_batch_size: 8
|
| 68 |
+
- seed: 42
|
| 69 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 70 |
+
- lr_scheduler_type: linear
|
| 71 |
+
- num_epochs: 3.0
|
| 72 |
+
|
| 73 |
+
### Training results
|
| 74 |
+
|
| 75 |
+
| Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 | Hamming Loss |
|
| 76 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|:------------:|
|
| 77 |
+
| No log | 1.0 | 18858 | 0.0745 | 0.7528 | 0.5169 | 0.6129 | 0.6155 | 0.3805 | 0.4336 | 0.7386 | 0.5169 | 0.5827 | 0.0278 |
|
| 78 |
+
| No log | 2.0 | 37716 | 0.0757 | 0.7102 | 0.5616 | 0.6272 | 0.5937 | 0.4658 | 0.5049 | 0.6978 | 0.5616 | 0.6105 | 0.0284 |
|
| 79 |
+
| No log | 3.0 | 56574 | 0.0792 | 0.6922 | 0.5854 | 0.6343 | 0.5809 | 0.4729 | 0.5136 | 0.6764 | 0.5854 | 0.6238 | 0.0287 |
|
| 80 |
+
|
| 81 |
+
### Test results
|
| 82 |
+
|
| 83 |
+
| Label | Precision | Recall | F1-Score | Support |
|
| 84 |
+
|-----------------|-----------|--------|----------|---------|
|
| 85 |
+
| admiration | 0.65 | 0.66 | 0.66 | 504 |
|
| 86 |
+
| amusement | 0.71 | 0.84 | 0.77 | 264 |
|
| 87 |
+
| anger | 0.80 | 0.70 | 0.74 | 1585 |
|
| 88 |
+
| annoyance | 0.44 | 0.25 | 0.32 | 320 |
|
| 89 |
+
| approval | 0.47 | 0.32 | 0.38 | 351 |
|
| 90 |
+
| caring | 0.37 | 0.31 | 0.34 | 135 |
|
| 91 |
+
| confusion | 0.41 | 0.42 | 0.42 | 153 |
|
| 92 |
+
| curiosity | 0.50 | 0.42 | 0.46 | 284 |
|
| 93 |
+
| desire | 0.47 | 0.35 | 0.40 | 83 |
|
| 94 |
+
| disappointment | 0.31 | 0.16 | 0.21 | 151 |
|
| 95 |
+
| disapproval | 0.42 | 0.29 | 0.35 | 267 |
|
| 96 |
+
| disgust | 0.72 | 0.63 | 0.67 | 1222 |
|
| 97 |
+
| embarrassment | 0.52 | 0.35 | 0.42 | 37 |
|
| 98 |
+
| excitement | 0.43 | 0.39 | 0.41 | 103 |
|
| 99 |
+
| fear | 0.79 | 0.76 | 0.78 | 787 |
|
| 100 |
+
| gratitude | 0.92 | 0.89 | 0.90 | 352 |
|
| 101 |
+
| grief | 0.00 | 0.00 | 0.00 | 6 |
|
| 102 |
+
| joy | 0.87 | 0.77 | 0.81 | 2298 |
|
| 103 |
+
| love | 0.69 | 0.61 | 0.65 | 1305 |
|
| 104 |
+
| nervousness | 0.43 | 0.26 | 0.32 | 23 |
|
| 105 |
+
| optimism | 0.72 | 0.57 | 0.64 | 1329 |
|
| 106 |
+
| pride | 0.62 | 0.31 | 0.42 | 16 |
|
| 107 |
+
| realization | 0.39 | 0.19 | 0.26 | 145 |
|
| 108 |
+
| relief | 0.26 | 0.24 | 0.25 | 160 |
|
| 109 |
+
| remorse | 0.56 | 0.75 | 0.64 | 56 |
|
| 110 |
+
| sadness | 0.75 | 0.69 | 0.72 | 2212 |
|
| 111 |
+
| surprise | 0.51 | 0.35 | 0.41 | 572 |
|
| 112 |
+
| neutral | 0.67 | 0.51 | 0.58 | 2668 |
|
| 113 |
+
| **Micro Avg** | 0.71 | 0.60 | 0.65 | 17388 |
|
| 114 |
+
| **Macro Avg** | 0.55 | 0.46 | 0.50 | 17388 |
|
| 115 |
+
| **Weighted Avg**| 0.70 | 0.60 | 0.64 | 17388 |
|
| 116 |
+
| **Samples Avg** | 0.64 | 0.61 | 0.61 | 17388 |
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
### Framework versions
|
| 121 |
+
|
| 122 |
+
- Transformers 4.47.0
|
| 123 |
+
- Pytorch 2.3.1+cu121
|
| 124 |
+
- Datasets 2.20.0
|
| 125 |
+
- Tokenizers 0.21.0
|