File size: 7,466 Bytes
f01b5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
---

library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- generated_from_trainer
datasets:
- shisa-ai/shisa-v2-best-of-n-athenev2-tulu70b-llama33-only-no-sysprompt
- shisa-ai/shisa-v2-roleplaying-sft
- shisa-ai/translation_set_april_6
- shisa-ai/rewild-set-deepseek-subset
- shisa-ai/magpie-ultra-set
- shisa-ai/magpie-advanced-questions-set
- shisa-ai/japan-magpie-set
- shisa-ai/shisa-v2-instruction-following-sft
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
model-index:
- name: outputs/ablation-191-finalsft2-shisa-v2-qwen2.5-7b
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.8.0.dev0`
```yaml

# train w/ shisa-ai/shisa-v1-athenev2-reannotated-filtered



base_model: Qwen/Qwen2.5-7B-Instruct



load_in_8bit: false

load_in_4bit: false

strict: false



# User Liger

plugins:

  - axolotl.integrations.liger.LigerPlugin

liger_rope: true

liger_rms_norm: true

liger_glu_activation: true

liger_fused_linear_cross_entropy: true



datasets:

  - path: shisa-ai/shisa-v2-best-of-n-athenev2-tulu70b-llama33-only-no-sysprompt

    type: chat_template

    field_messages: conversations

    message_field_role: from

    message_field_content: value

  - path: shisa-ai/shisa-v2-roleplaying-sft

    type: chat_template

    field_messages: conversations

    message_property_mappings:

      role: role

      content: content

    roles:

      system:

        - system

      assistant:

        - gpt

        - model

        - assistant

      user:

        - human

        - user

    roles_to_train: ["assistant"]

  - path: shisa-ai/translation_set_april_6

    split: train[:25%]

    type: chat_template

    field_messages: conversations

    message_property_mappings:

      role: role

      content: content

    roles:

      system:

        - system

      assistant:

        - gpt

        - model

        - assistant

      user:

        - human

        - user

    roles_to_train: ["assistant"]

  - path: shisa-ai/rewild-set-deepseek-subset

    split: train[:25%]

    type: chat_template

    field_messages: conversations

    message_property_mappings:

      role: role

      content: content

    roles:

      system:

        - system

      assistant:

        - gpt

        - model

        - assistant

      user:

        - human

        - user

    roles_to_train: ["assistant"]

  - path: shisa-ai/magpie-ultra-set

    split: train[:8%]

    type: chat_template

    field_messages: conversations

    message_property_mappings:

      role: role

      content: content

    roles:

      system:

        - system

      assistant:

        - gpt

        - model

        - assistant

      user:

        - human

        - user

    roles_to_train: ["assistant"]

  - path: shisa-ai/magpie-advanced-questions-set

    split: train[:8%]

    type: chat_template

    field_messages: conversations

    message_property_mappings:

      role: role

      content: content

    roles:

      system:

        - system

      assistant:

        - gpt

        - model

        - assistant

      user:

        - human

        - user

    roles_to_train: ["assistant"]

  - path: shisa-ai/japan-magpie-set

    split: train

    type: chat_template

    field_messages: conversations

    message_property_mappings:

      role: role

      content: content

    roles:

      system:

        - system

      assistant:

        - gpt

        - model

        - assistant

      user:

        - human

        - user

    roles_to_train: ["assistant"]

  - path: shisa-ai/shisa-v2-instruction-following-sft

    split: train[:50%]

    type: chat_template

    field_messages: conversations

    message_property_mappings:

      role: role

      content: content

    roles:

      system:

        - system

      assistant:

        - gpt

        - model

        - assistant

      user:

        - human

        - user

    roles_to_train: ["assistant"]

    

dataset_prepared_path: last_run_prepared

val_set_size: 0.05

output_dir: ./outputs/ablation-191-finalsft2-shisa-v2-qwen2.5-7b



sequence_len: 8192

sample_packing: true

pad_to_sequence_len: true



# marginal difference

neftune_noise_alpha: 5



use_wandb: true

wandb_project: shisa-v2

wandb_entity: augmxnt

wandb_name: ablation-191-finalsft2-shisa-v2-qwen2.5-7b



gradient_accumulation_steps: 1

micro_batch_size: 4

num_epochs: 3

optimizer: paged_adamw_8bit

lr_scheduler: linear

learning_rate: 1e-5



train_on_inputs: false

group_by_length: false

bf16: auto

fp16:

tf32: false



gradient_checkpointing: true

gradient_checkpointing_kwargs:

  use_reentrant: false

early_stopping_patience:

resume_from_checkpoint:

logging_steps: 1

xformers_attention:

flash_attention: true



warmup_steps: 100

evals_per_epoch: 2

eval_table_size:

saves_per_epoch: 0

save_total_limit: 1 # Only store a single checkpoint

debug:

deepspeed: zero3_bf16.json

weight_decay: 1e-4

fsdp:

fsdp_config:

special_tokens:



```

</details><br>

# outputs/ablation-191-finalsft2-shisa-v2-qwen2.5-7b

This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the shisa-ai/shisa-v2-best-of-n-athenev2-tulu70b-llama33-only-no-sysprompt, the shisa-ai/shisa-v2-roleplaying-sft, the shisa-ai/translation_set_april_6, the shisa-ai/rewild-set-deepseek-subset, the shisa-ai/magpie-ultra-set, the shisa-ai/magpie-advanced-questions-set, the shisa-ai/japan-magpie-set and the shisa-ai/shisa-v2-instruction-following-sft datasets.

It achieves the following results on the evaluation set:

- Loss: 0.7119



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU

- num_devices: 32
- total_train_batch_size: 128

- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0



### Training results



| Training Loss | Epoch  | Step | Validation Loss |

|:-------------:|:------:|:----:|:---------------:|

| 1.0667        | 0.0026 | 1    | 1.0905          |

| 0.7574        | 0.5    | 189  | 0.7749          |

| 0.7322        | 1.0    | 378  | 0.7368          |

| 0.6711        | 1.5    | 567  | 0.7233          |

| 0.6645        | 2.0    | 756  | 0.7122          |

| 0.6144        | 2.5    | 945  | 0.7146          |

| 0.6031        | 3.0    | 1134 | 0.7119          |





### Framework versions



- Transformers 4.50.0

- Pytorch 2.6.0+cu124

- Datasets 3.4.1

- Tokenizers 0.21.1