Upload AestheticsPredictorV1
Browse files- config.json +2 -2
- modeling_v1.py +9 -2
config.json
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "openai/clip-vit-base-patch16",
|
| 3 |
"architectures": [
|
| 4 |
"AestheticsPredictorV1"
|
| 5 |
],
|
| 6 |
"attention_dropout": 0.0,
|
| 7 |
"auto_map": {
|
|
|
|
| 8 |
"AutoModel": "modeling_v1.AestheticsPredictorV1"
|
| 9 |
},
|
| 10 |
"dropout": 0.0,
|
|
@@ -15,7 +15,7 @@
|
|
| 15 |
"initializer_range": 0.02,
|
| 16 |
"intermediate_size": 3072,
|
| 17 |
"layer_norm_eps": 1e-05,
|
| 18 |
-
"model_type": "
|
| 19 |
"num_attention_heads": 12,
|
| 20 |
"num_channels": 3,
|
| 21 |
"num_hidden_layers": 12,
|
|
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
"AestheticsPredictorV1"
|
| 4 |
],
|
| 5 |
"attention_dropout": 0.0,
|
| 6 |
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_predictor.AestheticsPredictorConfig",
|
| 8 |
"AutoModel": "modeling_v1.AestheticsPredictorV1"
|
| 9 |
},
|
| 10 |
"dropout": 0.0,
|
|
|
|
| 15 |
"initializer_range": 0.02,
|
| 16 |
"intermediate_size": 3072,
|
| 17 |
"layer_norm_eps": 1e-05,
|
| 18 |
+
"model_type": "aesthetics_predictor",
|
| 19 |
"num_attention_heads": 12,
|
| 20 |
"num_channels": 3,
|
| 21 |
"num_hidden_layers": 12,
|
modeling_v1.py
CHANGED
|
@@ -54,8 +54,15 @@ class AestheticsPredictorV1(CLIPVisionModelWithProjection):
|
|
| 54 |
)
|
| 55 |
|
| 56 |
|
| 57 |
-
def convert_from_openai_clip(
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
state_dict = torch.hub.load_state_dict_from_url(URLS[openai_model_name])
|
| 60 |
model.predictor.load_state_dict(state_dict)
|
| 61 |
model.eval()
|
|
|
|
| 54 |
)
|
| 55 |
|
| 56 |
|
| 57 |
+
def convert_from_openai_clip(
|
| 58 |
+
openai_model_name: str, config: Optional[AestheticsPredictorConfig] = None
|
| 59 |
+
) -> AestheticsPredictorV1:
|
| 60 |
+
config = config or AestheticsPredictorConfig.from_pretrained(openai_model_name)
|
| 61 |
+
model = AestheticsPredictorV1(config)
|
| 62 |
+
|
| 63 |
+
clip_model = CLIPVisionModelWithProjection.from_pretrained(openai_model_name)
|
| 64 |
+
model.load_state_dict(clip_model.state_dict(), strict=False)
|
| 65 |
+
|
| 66 |
state_dict = torch.hub.load_state_dict_from_url(URLS[openai_model_name])
|
| 67 |
model.predictor.load_state_dict(state_dict)
|
| 68 |
model.eval()
|