File size: 9,789 Bytes
2af8ba0 e52d03e 8fffb39 e52d03e e7795a7 e52d03e e7795a7 e52d03e e7795a7 e52d03e e7795a7 e52d03e e7795a7 e52d03e 2af8ba0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
---
license: mit
---
<div align="center">
# 🌟 InnoSpark 🌟
[](https://innospark.aiecnu.cn)
[](https://huggingface.co/sii-research)
[](https://github.com/Inno-Spark/elmes)
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 2px; border-radius: 10px; margin: 20px 0;">
<div style="background: white; padding: 20px; border-radius: 8px;">
<h3>🚀 Advanced Educational Large Language Model</h3>
</div>
</div>
**Language / 语言**: English | [中文](README_zh.md)
</div>
---
## 📖 Project Introduction
**InnoSpark** is an advanced educational large language model independently developed by Shanghai Innovation Institute and East China Normal University. It aims to explore the deep application of artificial intelligence technology in the field of education. Based on the domestic Qwen large language model with secondary pre-training, combined with subdomain fine-tuning and reinforcement learning for educational scenarios, we have launched InnoSpark-1.0.
## 🔗 Related Resources
### 📱 Main Products
- **Homepage**: [InnoSpark Official](https://innospark.aiecnu.cn/innospark/)
- **RM Model**: [InnoSpark-HPC-RM-32B](https://huggingface.co/sii-research/InnoSpark-HPC-RM-32B)
- **Educational Evaluation System**: [ELMES](https://github.com/Inno-Spark/elmes)
- **Data Cleaning Pipeline**: [COCLP](https://github.com/sii-research/COCLP.git)
### 🤖 Model Series
| Model Version | Parameters | Link |
|---------------|------------|------|
| **InnoSpark-min** | 0.5B | [🔗 Download](https://huggingface.co/sii-research/InnoSpark-0.5B-0717) |
| **InnoSpark-turbo** | 7B | [🔗 Download](https://huggingface.co/sii-research/InnoSpark-7B-0715) |
| **InnoSpark-plus** | 72B | [🔗 Standard](https://huggingface.co/sii-research/InnoSpark-72B-0710) / [🔗 Reasoning](https://huggingface.co/sii-research/InnoSpark-R-72B-0701) |
### 📊 Datasets
- **Model Scoring Dataset**: [HPC-LLM-8k](https://huggingface.co/datasets/ECNU-InnoSpark/HPC-LLM-8k)
- **Human Scoring Dataset**: [HPC-Human-8k](https://huggingface.co/datasets/ECNU-InnoSpark/HPC-Human-8k)
## 🚀 Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"sii-research/InnoSpark-72B-0710",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("sii-research/InnoSpark-72B-0710")
prompt = "Introduce yourself in detail."
messages = [
{"role": "system", "content": "You are InnoSpark(启创), created by Shanghai Innovation Institute (上海创智学院) and East China Normal University(华东师范大学). You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### VLLM
We recommend deploying our model using 4 A100 GPUs. You can run the vllm server-side with the following code in terminal:
```python
python -m vllm.entrypoints.openai.api_server --served-model-name InnoSpark --model path/to/InnoSpark --gpu-memory-utilization 0.98 --tensor-parallel-size 4 --port 6000
```
Then, you can use the following code to deploy client-side:
```python
import requests
import json
def Innospark_stream(inputs,history):
url = 'http://loaclhost:6000/v1/chat/completions'
history+=[{"role": "user", "content": inputs},]
headers = {"User-Agent": "vLLM Client"}
pload = {
"model": "InnoSpark",
"stream": True,
"messages": history
}
response = requests.post(url,
headers=headers,
json=pload,
stream=True)
for chunk in response.iter_lines(chunk_size=1,
decode_unicode=False,
delimiter=b"\n"):
if chunk:
string_data = chunk.decode("utf-8")
try:
json_data = json.loads(string_data[6:])
delta_content = json_data["choices"][0]["delta"]["content"]
assistant_reply+=delta_content
yield delta_content
except KeyError as e:
delta_content = json_data["choices"][0]["delta"]["role"]
except json.JSONDecodeError as e:
history+=[{
"role": "assistant",
"content": assistant_reply,
"tool_calls": []
},]
delta_content='[DONE]'
assert '[DONE]'==chunk.decode("utf-8")[6:]
inputs='hi'
history=[]
for response_text in Innospark_stream(inputs,history):
print(response_text,end='')
```
## 🌟 Core Features
### 🎯 Open Source Product Matrix
<div align="left">
**1. 📚 InnoSpark Model Series**
- 4 models with different parameter scales: min(0.5B), turbo(7B), plus(72B) and their corresponding inference model R versions
**2. 🔍 ELMES Evaluation System**
- Education Language Model Evaluation System
- Automated evaluation system for educational tasks
- Helps continuously optimize large model capabilities in teaching scenarios
**3. 🛠️ COCLP Data Cleaning Pipeline**
- Corpus Cleansing Pipeline
- Visual node-based framework based on ComfyUI
- Supports OCR, audio/video transcription, format conversion, PII removal, text filtering, and other functions
- **GitHub**: [COCLP](https://github.com/sii-research/COCLP.git)
**4. ⭐ HPC-RM Reward Model**
- Helpful, Personalization, and Creativity Reward Model
- Provides scoring in three educational dimensions: helpfulness, personalization, and creativity
- Includes corresponding model scoring and human scoring datasets
</div>
## 📚 Citation
If you find our work useful, please cite our papers:
```bibtex
@misc{song2025cultivatinghelpfulpersonalizedcreative,
title={Cultivating Helpful, Personalized, and Creative AI Tutors: A Framework for Pedagogical Alignment using Reinforcement Learning},
author={Siyu Song and Wentao Liu and Ye Lu and Ruohua Zhang and Tao Liu and Jinze Lv and Xinyun Wang and Aimin Zhou and Fei Tan and Bo Jiang and Hao Hao},
year={2025},
eprint={2507.20335},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2507.20335},
}
```
```bibtex
@misc{wei2025elmesautomatedframeworkevaluating,
title={ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios},
author={Shou'ang Wei and Xinyun Wang and Shuzhen Bi and Jian Chen and Ruijia Li and Bo Jiang and Xin Lin and Min Zhang and Yu Song and BingDong Li and Aimin Zhou and Hao Hao},
year={2025},
eprint={2507.22947},
archivePrefix={arXiv},
primaryClass={cs.CY},
url={https://arxiv.org/abs/2507.22947},
}
```
## 📈 Performance Results
We achieved optimal performance in 4 key educational scenarios:
### 🏆 Evaluation Results
| Scenario | Performance |
|----------|-------------|
| 📝 Knowledge Explanation |  |
| 🧭 Guided Problem Solving |  |
| 📚 Interdisciplinary Lesson Plans |  |
| 🎭 Contextual Question Generation |  |
### 📊 Detailed Evaluation Tables
| Scenario | Evaluation Table |
|----------|------------------|
| 📝 Knowledge Explanation |  |
| 🧭 Guided Problem Solving |  |
| 📚 Interdisciplinary Lesson Plans |  |
| 🎭 Contextual Question Generation |  |
### 🎨 Application Examples
| Scenario | Demo |
|----------|------|
| 📖 Knowledge Explanation |  |
| 🎯 Guided Problem Solving |  |
| 🌟 Interdisciplinary Lesson Plans |  |
| 🎪 Contextual Question Generation |  |
## 🏛️ Technical Support
This project is jointly developed by East China Normal University and Shanghai Innovation Institute. The reward model was trained using the SiiRL training framework provided by Shanghai Innovation Institute.
## 📄 License
Please refer to the relevant model pages for specific license information.
---
<div align="center">
## 🤝 Contact & Collaboration
**East China Normal University**
[](https://innospark.aiecnu.cn/innospark/)
[](mailto:[email protected])
---
<sub>🚀 Empowering Education with AI</sub>
</div> |