Safetensors
qwen2
File size: 9,789 Bytes
2af8ba0
 
 
e52d03e
 
 
 
8fffb39
e52d03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7795a7
e52d03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7795a7
e52d03e
 
 
e7795a7
e52d03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7795a7
e52d03e
 
 
 
 
 
 
 
e7795a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e52d03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2af8ba0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
---
license: mit
---
<div align="center">

# 🌟 InnoSpark 🌟

[![Official Website](https://img.shields.io/badge/🌐-Official%20Website-blue?style=for-the-badge)](https://innospark.aiecnu.cn)
[![Hugging Face](https://img.shields.io/badge/🤗-Hugging%20Face-yellow?style=for-the-badge)](https://huggingface.co/sii-research)
[![GitHub](https://img.shields.io/badge/💻-GitHub-black?style=for-the-badge)](https://github.com/Inno-Spark/elmes)

<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 2px; border-radius: 10px; margin: 20px 0;">
  <div style="background: white; padding: 20px; border-radius: 8px;">
    <h3>🚀 Advanced Educational Large Language Model</h3>
  </div>
</div>

**Language / 语言**: English | [中文](README_zh.md)

</div>

---

## 📖 Project Introduction

**InnoSpark** is an advanced educational large language model independently developed by Shanghai Innovation Institute and East China Normal University. It aims to explore the deep application of artificial intelligence technology in the field of education. Based on the domestic Qwen large language model with secondary pre-training, combined with subdomain fine-tuning and reinforcement learning for educational scenarios, we have launched InnoSpark-1.0.

## 🔗 Related Resources

### 📱 Main Products
- **Homepage**: [InnoSpark Official](https://innospark.aiecnu.cn/innospark/)
- **RM Model**: [InnoSpark-HPC-RM-32B](https://huggingface.co/sii-research/InnoSpark-HPC-RM-32B)
- **Educational Evaluation System**: [ELMES](https://github.com/Inno-Spark/elmes)
- **Data Cleaning Pipeline**: [COCLP](https://github.com/sii-research/COCLP.git)

### 🤖 Model Series

| Model Version | Parameters | Link |
|---------------|------------|------|
| **InnoSpark-min** | 0.5B | [🔗 Download](https://huggingface.co/sii-research/InnoSpark-0.5B-0717) |
| **InnoSpark-turbo** | 7B | [🔗 Download](https://huggingface.co/sii-research/InnoSpark-7B-0715) |
| **InnoSpark-plus** | 72B | [🔗 Standard](https://huggingface.co/sii-research/InnoSpark-72B-0710) / [🔗 Reasoning](https://huggingface.co/sii-research/InnoSpark-R-72B-0701) |

### 📊 Datasets
- **Model Scoring Dataset**: [HPC-LLM-8k](https://huggingface.co/datasets/ECNU-InnoSpark/HPC-LLM-8k)
- **Human Scoring Dataset**: [HPC-Human-8k](https://huggingface.co/datasets/ECNU-InnoSpark/HPC-Human-8k)

## 🚀 Quickstart

Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "sii-research/InnoSpark-72B-0710",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("sii-research/InnoSpark-72B-0710")

prompt = "Introduce yourself in detail."
messages = [
    {"role": "system", "content": "You are InnoSpark(启创), created by Shanghai Innovation Institute (上海创智学院) and East China Normal University(华东师范大学). You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

### VLLM

We recommend deploying our model using 4 A100 GPUs. You can run the vllm server-side with the following code in terminal:

```python
python -m vllm.entrypoints.openai.api_server --served-model-name InnoSpark --model path/to/InnoSpark --gpu-memory-utilization 0.98 --tensor-parallel-size 4 --port 6000
```

Then, you can use the following code to deploy client-side:

```python
import requests
import json

def Innospark_stream(inputs,history):
    url = 'http://loaclhost:6000/v1/chat/completions'

    history+=[{"role": "user", "content": inputs},]

    headers = {"User-Agent": "vLLM Client"}

    pload = {
        "model": "InnoSpark",
        "stream": True,
        "messages": history
    }
    response = requests.post(url,
                             headers=headers,
                             json=pload,
                             stream=True)

    for chunk in response.iter_lines(chunk_size=1,
                                     decode_unicode=False,
                                     delimiter=b"\n"):
        if chunk:
            string_data = chunk.decode("utf-8")
            try:
                json_data = json.loads(string_data[6:])
                delta_content = json_data["choices"][0]["delta"]["content"]
                assistant_reply+=delta_content
                yield delta_content
            except KeyError as e:
                delta_content = json_data["choices"][0]["delta"]["role"]
            except json.JSONDecodeError as e:
                history+=[{
                        "role": "assistant",
                        "content": assistant_reply,
                        "tool_calls": []
                    },]
                delta_content='[DONE]'
                assert '[DONE]'==chunk.decode("utf-8")[6:]

inputs='hi'
history=[]
for response_text in Innospark_stream(inputs,history):
    print(response_text,end='')
```

## 🌟 Core Features

### 🎯 Open Source Product Matrix

<div align="left">

**1. 📚 InnoSpark Model Series**
   - 4 models with different parameter scales: min(0.5B), turbo(7B), plus(72B) and their corresponding inference model R versions

**2. 🔍 ELMES Evaluation System**
   - Education Language Model Evaluation System
   - Automated evaluation system for educational tasks
   - Helps continuously optimize large model capabilities in teaching scenarios

**3. 🛠️ COCLP Data Cleaning Pipeline**
   - Corpus Cleansing Pipeline
   - Visual node-based framework based on ComfyUI
   - Supports OCR, audio/video transcription, format conversion, PII removal, text filtering, and other functions
   - **GitHub**: [COCLP](https://github.com/sii-research/COCLP.git)

**4. ⭐ HPC-RM Reward Model**
   - Helpful, Personalization, and Creativity Reward Model
   - Provides scoring in three educational dimensions: helpfulness, personalization, and creativity
   - Includes corresponding model scoring and human scoring datasets

</div>

## 📚 Citation

If you find our work useful, please cite our papers:

```bibtex
@misc{song2025cultivatinghelpfulpersonalizedcreative,
      title={Cultivating Helpful, Personalized, and Creative AI Tutors: A Framework for Pedagogical Alignment using Reinforcement Learning}, 
      author={Siyu Song and Wentao Liu and Ye Lu and Ruohua Zhang and Tao Liu and Jinze Lv and Xinyun Wang and Aimin Zhou and Fei Tan and Bo Jiang and Hao Hao},
      year={2025},
      eprint={2507.20335},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2507.20335}, 
}
```

```bibtex
@misc{wei2025elmesautomatedframeworkevaluating,
      title={ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios}, 
      author={Shou'ang Wei and Xinyun Wang and Shuzhen Bi and Jian Chen and Ruijia Li and Bo Jiang and Xin Lin and Min Zhang and Yu Song and BingDong Li and Aimin Zhou and Hao Hao},
      year={2025},
      eprint={2507.22947},
      archivePrefix={arXiv},
      primaryClass={cs.CY},
      url={https://arxiv.org/abs/2507.22947}, 
}
```

## 📈 Performance Results

We achieved optimal performance in 4 key educational scenarios:

### 🏆 Evaluation Results

| Scenario | Performance |
|----------|-------------|
| 📝 Knowledge Explanation | ![Knowledge Explanation](score/demo1.png) |
| 🧭 Guided Problem Solving | ![Guided Problem Solving](score/demo2.png) |
| 📚 Interdisciplinary Lesson Plans | ![Interdisciplinary Lesson Plans](score/demo3.png) |
| 🎭 Contextual Question Generation | ![Contextual Question Generation](score/demo4.png) |

### 📊 Detailed Evaluation Tables

| Scenario | Evaluation Table |
|----------|------------------|
| 📝 Knowledge Explanation | ![Knowledge Explanation Table](table/table1.png) |
| 🧭 Guided Problem Solving | ![Guided Problem Solving Table](table/table2.png) |
| 📚 Interdisciplinary Lesson Plans | ![Interdisciplinary Lesson Plans Table](table/table3.png) |
| 🎭 Contextual Question Generation | ![Contextual Question Generation Table](table/table4.png) |

### 🎨 Application Examples

| Scenario | Demo |
|----------|------|
| 📖 Knowledge Explanation | ![Knowledge Explanation Demo](demo/demo1.png) |
| 🎯 Guided Problem Solving | ![Guided Problem Solving Demo](demo/demo2.png) |
| 🌟 Interdisciplinary Lesson Plans | ![Interdisciplinary Lesson Plans Demo](demo/demo3.png) |
| 🎪 Contextual Question Generation | ![Contextual Question Generation Demo](demo/demo4.png) |

## 🏛️ Technical Support

This project is jointly developed by East China Normal University and Shanghai Innovation Institute. The reward model was trained using the SiiRL training framework provided by Shanghai Innovation Institute.

## 📄 License

Please refer to the relevant model pages for specific license information.

---

<div align="center">

## 🤝 Contact & Collaboration

**East China Normal University**

[![Website](https://img.shields.io/badge/🌐-Visit%20Our%20Website-brightgreen)](https://innospark.aiecnu.cn/innospark/)
[![Email](https://img.shields.io/badge/📧-Contact%20Us-red)](mailto:[email protected])

---

<sub>🚀 Empowering Education with AI</sub>

</div>