wjbmattingly commited on
Commit
e4af529
·
verified ·
1 Parent(s): 1c60626

Training in progress, step 1000

Browse files
README.md CHANGED
@@ -6,119 +6,39 @@ tags:
6
  - generated_from_trainer
7
  - sft
8
  - trl
9
- - hf_jobs
10
- - cultural-heritage
11
- - aat
12
- - materials-identification
13
- - glam
14
- - digital-humanities
15
- licence: mit
16
  ---
17
 
18
  # Model Card for Qwen3-0.6B-SFT-AAT-Materials
19
 
20
- This model is a fine-tuned version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) specialized for identifying materials in cultural heritage object descriptions according to Getty Art & Architecture Thesaurus (AAT) standards.
 
21
 
22
- It has been trained using [TRL](https://github.com/huggingface/trl) on synthetic data representing diverse cultural heritage objects from museums, galleries, libraries, archives, and museums (GLAM) collections.
23
-
24
- ## Model Description
25
-
26
- This model excels at:
27
-
28
- - **Materials Identification**: Extracting and categorizing materials from cultural heritage object descriptions
29
- - **AAT Standardization**: Converting material descriptions to Getty Art & Architecture Thesaurus format
30
- - **Multi-material Recognition**: Identifying compound materials (e.g., "oil on canvas" → ["Oil paint", "Canvas"])
31
- - **Domain-specific Understanding**: Processing technical terminology from art history, archaeology, and museum cataloging
32
-
33
- ## Use Cases
34
-
35
- ### Primary Applications
36
- - **Museum Cataloging**: Automated material extraction from object descriptions
37
- - **Digital Collections**: Standardizing material metadata across cultural heritage databases
38
- - **Research Tools**: Supporting art historians and archaeologists in material analysis
39
- - **Data Migration**: Converting legacy catalog records to AAT standards
40
-
41
- ### Object Types Supported
42
- - Paintings (oil, tempera, watercolor, acrylic)
43
- - Sculptures (bronze, marble, wood, clay)
44
- - Textiles (wool, linen, silk, cotton)
45
- - Ceramics and pottery
46
- - Metalwork and jewelry
47
- - Glassware
48
- - Manuscripts and prints
49
- - Furniture and decorative objects
50
-
51
- ## Quick Start
52
 
53
  ```python
54
- from transformers import AutoTokenizer, AutoModelForCausalLM
55
- import json
56
-
57
- # Load the model
58
- tokenizer = AutoTokenizer.from_pretrained("small-models-for-glam/Qwen3-0.6B-SFT-AAT-Materials")
59
- model = AutoModelForCausalLM.from_pretrained("small-models-for-glam/Qwen3-0.6B-SFT-AAT-Materials")
60
-
61
- # Example cultural heritage object description
62
- description = """A bronze sculpture from 1425, standing 150 cm tall. The figure is mounted on a marble base and features intricate details cast in the bronze medium. The sculpture shows traces of original gilding on selected areas."""
63
-
64
- # Format the prompt
65
- prompt = f"""Given this cultural heritage object description:
66
-
67
- {description}
68
-
69
- Identify the materials separate out materials as they would be found in Getty AAT"""
70
-
71
- # Generate materials identification
72
- inputs = tokenizer(prompt, return_tensors="pt")
73
- outputs = model.generate(inputs.input_ids, max_length=512, temperature=0.3)
74
- result = tokenizer.decode(outputs[0], skip_special_tokens=True)
75
-
76
- # Extract the materials output
77
- materials = result[len(prompt):].strip()
78
- print(json.loads(materials))
79
- # Expected output: [{"Bronze": ["bronze"]}, {"Marble": ["marble"]}, {"Gold leaf": ["gold", "leaf"]}]
80
- ```
81
-
82
- ## Expected Output Format
83
-
84
- The model outputs materials in JSON format where each material combination is mapped to its constituent AAT terms:
85
 
86
- ```json
87
- [
88
- {"oil on canvas": ["Oil paint", "Canvas"]},
89
- {"tempera on wood": ["tempera paint", "wood (plant material)"]},
90
- {"bronze": ["bronze"]}
91
- ]
92
  ```
93
 
94
- ## Training Procedure
95
 
96
- This model was trained using Supervised Fine-Tuning (SFT) on the `small-models-for-glam/synthetic-aat-materials` dataset, which contains thousands of synthetic cultural heritage object descriptions paired with their corresponding AAT material classifications.
97
 
98
- ### Training Details
99
- - **Base Model**: Qwen/Qwen3-0.6B
100
- - **Training Method**: Supervised Fine-Tuning (SFT) with TRL
101
- - **Dataset**: Synthetic AAT materials dataset
102
- - **Infrastructure**: Trained using Hugging Face Jobs
103
- - **Epochs**: 3
104
- - **Batch Size**: 4 (with gradient accumulation)
105
- - **Learning Rate**: 2e-5
106
- - **Context**: Cultural heritage object descriptions → AAT materials mapping
107
 
108
- ### Dataset Characteristics
109
- The training dataset includes diverse object types:
110
- - Historical artifacts from various time periods
111
- - Multiple material combinations per object
112
- - Professional museum cataloging terminology
113
- - AAT-compliant material classifications
114
 
115
  ### Framework versions
116
 
117
- - TRL: 0.23.0
118
- - Transformers: 4.56.1
119
- - Pytorch: 2.8.0
120
- - Datasets: 4.1.0
121
- - Tokenizers: 0.22.0
122
 
123
  ## Citations
124
 
 
6
  - generated_from_trainer
7
  - sft
8
  - trl
9
+ licence: license
 
 
 
 
 
 
10
  ---
11
 
12
  # Model Card for Qwen3-0.6B-SFT-AAT-Materials
13
 
14
+ This model is a fine-tuned version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
+ ## Quick start
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  ```python
20
+ from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="small-models-for-glam/Qwen3-0.6B-SFT-AAT-Materials", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
 
 
26
  ```
27
 
28
+ ## Training procedure
29
 
30
+
31
 
 
 
 
 
 
 
 
 
 
32
 
33
+ This model was trained with SFT.
 
 
 
 
 
34
 
35
  ### Framework versions
36
 
37
+ - TRL: 0.21.0
38
+ - Transformers: 4.55.0
39
+ - Pytorch: 2.7.1
40
+ - Datasets: 4.0.0
41
+ - Tokenizers: 0.21.2
42
 
43
  ## Citations
44
 
adapter_config.json CHANGED
@@ -28,13 +28,13 @@
28
  "rank_pattern": {},
29
  "revision": null,
30
  "target_modules": [
31
- "o_proj",
32
- "q_proj",
33
- "gate_proj",
34
  "k_proj",
35
- "up_proj",
36
  "v_proj",
37
- "down_proj"
 
 
 
38
  ],
39
  "target_parameters": null,
40
  "task_type": "CAUSAL_LM",
 
28
  "rank_pattern": {},
29
  "revision": null,
30
  "target_modules": [
 
 
 
31
  "k_proj",
32
+ "q_proj",
33
  "v_proj",
34
+ "down_proj",
35
+ "o_proj",
36
+ "up_proj",
37
+ "gate_proj"
38
  ],
39
  "target_parameters": null,
40
  "task_type": "CAUSAL_LM",
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f3d12c9d61024ea197eff7df64e9aac0c9c535b9d111120ddedc4a041b89c09a
3
  size 1285083888
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8caddcf6d3776a2283637284b7dc9157fe757810e8b76712e2fd4293201a720e
3
  size 1285083888
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8eec86e0833411f22a088dec2eab5df0b2acdf8c64a256949d6efa3af0bfe114
3
- size 6289
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6e67f8d02de1f971927f1e9ad930f7f68bf25b68878773f120c5add816f4001
3
+ size 6225