Update README.md
Browse files
README.md
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
---
|
| 2 |
-
base_model: Qwen/Qwen3-VL-
|
| 3 |
library_name: transformers
|
| 4 |
-
model_name: Qwen3-VL-
|
| 5 |
tags:
|
| 6 |
- generated_from_trainer
|
| 7 |
- sft
|
|
@@ -15,9 +15,9 @@ tags:
|
|
| 15 |
licence: license
|
| 16 |
---
|
| 17 |
|
| 18 |
-
# Model Card for Qwen3-VL-
|
| 19 |
|
| 20 |
-
This model is a fine-tuned version of [Qwen/Qwen3-VL-
|
| 21 |
It has been trained using [TRL](https://github.com/huggingface/trl) on the [CATMuS/medieval](https://huggingface.co/datasets/CATMuS/medieval) dataset.
|
| 22 |
|
| 23 |
## Model Description
|
|
@@ -32,8 +32,8 @@ The model was evaluated on 100 examples from the [CATMuS/medieval](https://huggi
|
|
| 32 |
|
| 33 |
| Metric | Base Model | Fine-tuned Model | Improvement |
|
| 34 |
|--------|-----------|------------------|-------------|
|
| 35 |
-
| **Character Error Rate (CER)** |
|
| 36 |
-
| **Word Error Rate (WER)** | 1.
|
| 37 |
|
| 38 |
### Sample Predictions
|
| 39 |
|
|
@@ -42,28 +42,28 @@ Here are some example transcriptions comparing the base model and fine-tuned mod
|
|
| 42 |
|
| 43 |
**Example 1:**
|
| 44 |
- **Reference:** paulꝯ ad thessalonicenses .iii.
|
| 45 |
-
- **Base Model:**
|
| 46 |
-
- **Fine-tuned Model:** Paulꝰ ad
|
| 47 |
|
| 48 |
**Example 2:**
|
| 49 |
- **Reference:** acceptad mi humilde seruicio. e dissipad. e plantad en el
|
| 50 |
-
- **Base Model:**
|
| 51 |
-
- **Fine-tuned Model:** acceptad mi humilde seruicio
|
| 52 |
|
| 53 |
**Example 3:**
|
| 54 |
- **Reference:** ꝙ mattheus illam dictionem ponat
|
| 55 |
-
- **Base Model:**
|
| 56 |
-
- **Fine-tuned Model:**
|
| 57 |
|
| 58 |
**Example 4:**
|
| 59 |
- **Reference:** Elige ꝗd uoueas. eadẽ ħ ꝗꝗ sama ferebat.
|
| 60 |
-
- **Base Model:** f.
|
| 61 |
-
- **Fine-tuned Model:**
|
| 62 |
|
| 63 |
**Example 5:**
|
| 64 |
- **Reference:** a prima coniugatione ue
|
| 65 |
-
- **Base Model:**
|
| 66 |
-
- **Fine-tuned Model:** a
|
| 67 |
|
| 68 |
|
| 69 |
## Quick start
|
|
@@ -74,8 +74,8 @@ from peft import PeftModel
|
|
| 74 |
from PIL import Image
|
| 75 |
|
| 76 |
# Load model and processor
|
| 77 |
-
base_model = "Qwen/Qwen3-VL-
|
| 78 |
-
adapter_model = "wjbmattingly/Qwen3-VL-
|
| 79 |
|
| 80 |
model = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 81 |
base_model,
|
|
@@ -129,7 +129,7 @@ This model is designed for:
|
|
| 129 |
|
| 130 |
## Training procedure
|
| 131 |
|
| 132 |
-
This model was fine-tuned using Supervised Fine-Tuning (SFT) with LoRA adapters on the Qwen3-VL-
|
| 133 |
|
| 134 |
### Training Data
|
| 135 |
|
|
@@ -138,7 +138,7 @@ a dataset containing images of line-level medieval manuscripts with correspondin
|
|
| 138 |
|
| 139 |
### Training Configuration
|
| 140 |
|
| 141 |
-
- **Base Model**: Qwen/Qwen3-VL-
|
| 142 |
- **Training Method**: Supervised Fine-Tuning (SFT) with LoRA
|
| 143 |
- **LoRA Configuration**:
|
| 144 |
- Rank (r): 16
|
|
@@ -197,4 +197,4 @@ If you use this model, please cite the base model and training framework:
|
|
| 197 |
|
| 198 |
---
|
| 199 |
|
| 200 |
-
*README generated automatically on 2025-10-24 10:
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model: Qwen/Qwen3-VL-2B-Instruct
|
| 3 |
library_name: transformers
|
| 4 |
+
model_name: Qwen3-VL-2B-catmus-medieval
|
| 5 |
tags:
|
| 6 |
- generated_from_trainer
|
| 7 |
- sft
|
|
|
|
| 15 |
licence: license
|
| 16 |
---
|
| 17 |
|
| 18 |
+
# Model Card for Qwen3-VL-2B-catmus-medieval
|
| 19 |
|
| 20 |
+
This model is a fine-tuned version of [Qwen/Qwen3-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-2B-Instruct) for transcribing line-level medieval manuscripts from images.
|
| 21 |
It has been trained using [TRL](https://github.com/huggingface/trl) on the [CATMuS/medieval](https://huggingface.co/datasets/CATMuS/medieval) dataset.
|
| 22 |
|
| 23 |
## Model Description
|
|
|
|
| 32 |
|
| 33 |
| Metric | Base Model | Fine-tuned Model | Improvement |
|
| 34 |
|--------|-----------|------------------|-------------|
|
| 35 |
+
| **Character Error Rate (CER)** | 1.0815 (108.15%) | 0.2779 (27.79%) | **+74.30%** |
|
| 36 |
+
| **Word Error Rate (WER)** | 1.7386 (173.86%) | 0.7043 (70.43%) | **+59.49%** |
|
| 37 |
|
| 38 |
### Sample Predictions
|
| 39 |
|
|
|
|
| 42 |
|
| 43 |
**Example 1:**
|
| 44 |
- **Reference:** paulꝯ ad thessalonicenses .iii.
|
| 45 |
+
- **Base Model:** Paulus ad the Malomancis · iii.
|
| 46 |
+
- **Fine-tuned Model:** Paulꝰ ad thessalonensis .iii.
|
| 47 |
|
| 48 |
**Example 2:**
|
| 49 |
- **Reference:** acceptad mi humilde seruicio. e dissipad. e plantad en el
|
| 50 |
+
- **Base Model:** acceptad mi humilde servicio, e dissipad, e plantad en el
|
| 51 |
+
- **Fine-tuned Model:** acceptad mi humilde seruicio, e dissipad, e plantad en el
|
| 52 |
|
| 53 |
**Example 3:**
|
| 54 |
- **Reference:** ꝙ mattheus illam dictionem ponat
|
| 55 |
+
- **Base Model:** p mattheus illam dictoneum proa
|
| 56 |
+
- **Fine-tuned Model:** ꝑ mattheus illam dictione in ponat
|
| 57 |
|
| 58 |
**Example 4:**
|
| 59 |
- **Reference:** Elige ꝗd uoueas. eadẽ ħ ꝗꝗ sama ferebat.
|
| 60 |
+
- **Base Model:** f. ligeq d uonear. eade h q q fama ferebat.
|
| 61 |
+
- **Fine-tuned Model:** f liges ꝗd uonear. eadẽ li ꝗq tanta ferebat᷑.
|
| 62 |
|
| 63 |
**Example 5:**
|
| 64 |
- **Reference:** a prima coniugatione ue
|
| 65 |
+
- **Base Model:** Grigimacopissagazione-ve
|
| 66 |
+
- **Fine-tuned Model:** a ꝑrũt̾tacõnueꝰatione. ne
|
| 67 |
|
| 68 |
|
| 69 |
## Quick start
|
|
|
|
| 74 |
from PIL import Image
|
| 75 |
|
| 76 |
# Load model and processor
|
| 77 |
+
base_model = "Qwen/Qwen3-VL-2B-Instruct"
|
| 78 |
+
adapter_model = "wjbmattingly/Qwen3-VL-2B-catmus-medieval"
|
| 79 |
|
| 80 |
model = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 81 |
base_model,
|
|
|
|
| 129 |
|
| 130 |
## Training procedure
|
| 131 |
|
| 132 |
+
This model was fine-tuned using Supervised Fine-Tuning (SFT) with LoRA adapters on the Qwen3-VL-2B-Instruct base model.
|
| 133 |
|
| 134 |
### Training Data
|
| 135 |
|
|
|
|
| 138 |
|
| 139 |
### Training Configuration
|
| 140 |
|
| 141 |
+
- **Base Model**: Qwen/Qwen3-VL-2B-Instruct
|
| 142 |
- **Training Method**: Supervised Fine-Tuning (SFT) with LoRA
|
| 143 |
- **LoRA Configuration**:
|
| 144 |
- Rank (r): 16
|
|
|
|
| 197 |
|
| 198 |
---
|
| 199 |
|
| 200 |
+
*README generated automatically on 2025-10-24 10:49:05*
|