Spaces:
Runtime error
Runtime error
bonk
Browse files- app.py +294 -0
- requirements.txt +21 -0
app.py
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import random
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
import PIL.Image
|
| 9 |
+
import torch
|
| 10 |
+
import torchvision.transforms.functional as TF
|
| 11 |
+
from diffusers import (
|
| 12 |
+
AutoencoderKL,
|
| 13 |
+
EulerAncestralDiscreteScheduler,
|
| 14 |
+
StableDiffusionXLAdapterPipeline,
|
| 15 |
+
T2IAdapter,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
from modelscope.pipelines import pipeline
|
| 19 |
+
from modelscope.outputs import OutputKeys
|
| 20 |
+
|
| 21 |
+
DESCRIPTION = '''# doodle2vid
|
| 22 |
+
Combining T2I-Adapter-SDXL with MS-Image2Video to create a doodle to video pipeline.
|
| 23 |
+
Shout-out to [fffiloni](https://huggingface.co/fffiloni) & [ARC Lab, Tencent PCG](https://huggingface.co/TencentARC) 🗣️
|
| 24 |
+
|
| 25 |
+
How to use: Draw a doodle in the canvas, and click "Run" to generate a video.
|
| 26 |
+
You can also provide a prompt with more details and choose a style.
|
| 27 |
+
'''
|
| 28 |
+
|
| 29 |
+
if not torch.cuda.is_available():
|
| 30 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 31 |
+
|
| 32 |
+
style_list = [
|
| 33 |
+
{
|
| 34 |
+
"name": "(No style)",
|
| 35 |
+
"prompt": "{prompt}",
|
| 36 |
+
"negative_prompt": "",
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"name": "Cinematic",
|
| 40 |
+
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
| 41 |
+
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"name": "3D Model",
|
| 45 |
+
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
|
| 46 |
+
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"name": "Anime",
|
| 50 |
+
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
|
| 51 |
+
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"name": "Digital Art",
|
| 55 |
+
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
|
| 56 |
+
"negative_prompt": "photo, photorealistic, realism, ugly",
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"name": "Photographic",
|
| 60 |
+
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
|
| 61 |
+
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"name": "Pixel art",
|
| 65 |
+
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
|
| 66 |
+
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"name": "Fantasy art",
|
| 70 |
+
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
| 71 |
+
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"name": "Neonpunk",
|
| 75 |
+
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
|
| 76 |
+
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"name": "Manga",
|
| 80 |
+
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
|
| 81 |
+
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
|
| 82 |
+
},
|
| 83 |
+
]
|
| 84 |
+
|
| 85 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
| 86 |
+
STYLE_NAMES = list(styles.keys())
|
| 87 |
+
DEFAULT_STYLE_NAME = "(No style)"
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
|
| 91 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
| 92 |
+
return p.replace("{prompt}", positive), n + negative
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 96 |
+
if torch.cuda.is_available():
|
| 97 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 98 |
+
adapter = T2IAdapter.from_pretrained(
|
| 99 |
+
"TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16"
|
| 100 |
+
)
|
| 101 |
+
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 102 |
+
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
| 103 |
+
model_id,
|
| 104 |
+
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16),
|
| 105 |
+
adapter=adapter,
|
| 106 |
+
scheduler=scheduler,
|
| 107 |
+
torch_dtype=torch.float16,
|
| 108 |
+
variant="fp16",
|
| 109 |
+
)
|
| 110 |
+
pipe.to(device)
|
| 111 |
+
else:
|
| 112 |
+
pipe = None
|
| 113 |
+
|
| 114 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 115 |
+
video_pipe = pipeline(task='image-to-video', model='damo/Image-to-Video', model_revision='v1.1.0')
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 119 |
+
if randomize_seed:
|
| 120 |
+
seed = random.randint(0, MAX_SEED)
|
| 121 |
+
return seed
|
| 122 |
+
|
| 123 |
+
def inferVideo(image: PIL.Image.Image) -> str:
|
| 124 |
+
# Save the passed image to a temp file
|
| 125 |
+
temp_path = "temp_input_image.png"
|
| 126 |
+
image.save(temp_path)
|
| 127 |
+
|
| 128 |
+
output_video_path = video_pipe(temp_path, output_video='output.mp4')[OutputKeys.OUTPUT_VIDEO]
|
| 129 |
+
print(output_video_path)
|
| 130 |
+
return output_video_path
|
| 131 |
+
|
| 132 |
+
def inferImage(
|
| 133 |
+
image: PIL.Image.Image,
|
| 134 |
+
prompt: str,
|
| 135 |
+
negative_prompt: str,
|
| 136 |
+
style_name: str = DEFAULT_STYLE_NAME,
|
| 137 |
+
num_steps: int = 25,
|
| 138 |
+
guidance_scale: float = 5,
|
| 139 |
+
adapter_conditioning_scale: float = 0.8,
|
| 140 |
+
adapter_conditioning_factor: float = 0.8,
|
| 141 |
+
seed: int = 0,
|
| 142 |
+
progress=gr.Progress(track_tqdm=True),
|
| 143 |
+
) -> PIL.Image.Image:
|
| 144 |
+
image = image.convert("RGB")
|
| 145 |
+
image = TF.to_tensor(image) > 0.5
|
| 146 |
+
image = TF.to_pil_image(image.to(torch.float32))
|
| 147 |
+
|
| 148 |
+
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
| 149 |
+
|
| 150 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 151 |
+
out = pipe(
|
| 152 |
+
prompt=prompt,
|
| 153 |
+
negative_prompt=negative_prompt,
|
| 154 |
+
image=image,
|
| 155 |
+
num_inference_steps=num_steps,
|
| 156 |
+
generator=generator,
|
| 157 |
+
guidance_scale=guidance_scale,
|
| 158 |
+
adapter_conditioning_scale=adapter_conditioning_scale,
|
| 159 |
+
adapter_conditioning_factor=adapter_conditioning_factor,
|
| 160 |
+
).images[0]
|
| 161 |
+
|
| 162 |
+
return out
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
with gr.Blocks(css="style.css") as demo:
|
| 166 |
+
gr.Markdown(DESCRIPTION, elem_id="description")
|
| 167 |
+
|
| 168 |
+
with gr.Row():
|
| 169 |
+
with gr.Column():
|
| 170 |
+
with gr.Group():
|
| 171 |
+
image = gr.Image(
|
| 172 |
+
source="canvas",
|
| 173 |
+
tool="sketch",
|
| 174 |
+
type="pil",
|
| 175 |
+
image_mode="L",
|
| 176 |
+
invert_colors=True,
|
| 177 |
+
shape=(1024, 1024),
|
| 178 |
+
brush_radius=4,
|
| 179 |
+
height=440,
|
| 180 |
+
)
|
| 181 |
+
prompt = gr.Textbox(label="Prompt")
|
| 182 |
+
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
| 183 |
+
run_button = gr.Button("Run")
|
| 184 |
+
with gr.Accordion("Advanced options", open=False):
|
| 185 |
+
negative_prompt = gr.Textbox(
|
| 186 |
+
label="Negative prompt",
|
| 187 |
+
value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
|
| 188 |
+
)
|
| 189 |
+
num_steps = gr.Slider(
|
| 190 |
+
label="Number of steps",
|
| 191 |
+
minimum=1,
|
| 192 |
+
maximum=50,
|
| 193 |
+
step=1,
|
| 194 |
+
value=25,
|
| 195 |
+
)
|
| 196 |
+
guidance_scale = gr.Slider(
|
| 197 |
+
label="Guidance scale",
|
| 198 |
+
minimum=0.1,
|
| 199 |
+
maximum=10.0,
|
| 200 |
+
step=0.1,
|
| 201 |
+
value=5,
|
| 202 |
+
)
|
| 203 |
+
adapter_conditioning_scale = gr.Slider(
|
| 204 |
+
label="Adapter conditioning scale",
|
| 205 |
+
minimum=0.5,
|
| 206 |
+
maximum=1,
|
| 207 |
+
step=0.1,
|
| 208 |
+
value=0.8,
|
| 209 |
+
)
|
| 210 |
+
adapter_conditioning_factor = gr.Slider(
|
| 211 |
+
label="Adapter conditioning factor",
|
| 212 |
+
info="Fraction of timesteps for which adapter should be applied",
|
| 213 |
+
minimum=0.5,
|
| 214 |
+
maximum=1,
|
| 215 |
+
step=0.1,
|
| 216 |
+
value=0.8,
|
| 217 |
+
)
|
| 218 |
+
seed = gr.Slider(
|
| 219 |
+
label="Seed",
|
| 220 |
+
minimum=0,
|
| 221 |
+
maximum=MAX_SEED,
|
| 222 |
+
step=1,
|
| 223 |
+
value=0,
|
| 224 |
+
)
|
| 225 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 226 |
+
with gr.Column():
|
| 227 |
+
result_image = gr.Image(label="Intermediate Image Output", height=400)
|
| 228 |
+
result_video = gr.Video(label="Final Video Output", height=400)
|
| 229 |
+
|
| 230 |
+
inputs = [
|
| 231 |
+
image,
|
| 232 |
+
prompt,
|
| 233 |
+
negative_prompt,
|
| 234 |
+
style,
|
| 235 |
+
num_steps,
|
| 236 |
+
guidance_scale,
|
| 237 |
+
adapter_conditioning_scale,
|
| 238 |
+
adapter_conditioning_factor,
|
| 239 |
+
seed,
|
| 240 |
+
]
|
| 241 |
+
prompt.submit(
|
| 242 |
+
fn=randomize_seed_fn,
|
| 243 |
+
inputs=[seed, randomize_seed],
|
| 244 |
+
outputs=seed,
|
| 245 |
+
queue=False,
|
| 246 |
+
api_name=False,
|
| 247 |
+
).then(
|
| 248 |
+
fn=inferImage,
|
| 249 |
+
inputs=inputs,
|
| 250 |
+
outputs=result_image,
|
| 251 |
+
api_name=False,
|
| 252 |
+
).then(
|
| 253 |
+
fn=inferVideo,
|
| 254 |
+
inputs=result_image,
|
| 255 |
+
outputs=result_video,
|
| 256 |
+
api_name=False,
|
| 257 |
+
)
|
| 258 |
+
negative_prompt.submit(
|
| 259 |
+
fn=randomize_seed_fn,
|
| 260 |
+
inputs=[seed, randomize_seed],
|
| 261 |
+
outputs=seed,
|
| 262 |
+
queue=False,
|
| 263 |
+
api_name=False,
|
| 264 |
+
).then(
|
| 265 |
+
fn=inferImage,
|
| 266 |
+
inputs=inputs,
|
| 267 |
+
outputs=result_image,
|
| 268 |
+
api_name=False,
|
| 269 |
+
).then(
|
| 270 |
+
fn=inferVideo,
|
| 271 |
+
inputs=result_image,
|
| 272 |
+
outputs=result_video,
|
| 273 |
+
api_name=False,
|
| 274 |
+
)
|
| 275 |
+
run_button.click(
|
| 276 |
+
fn=randomize_seed_fn,
|
| 277 |
+
inputs=[seed, randomize_seed],
|
| 278 |
+
outputs=seed,
|
| 279 |
+
queue=False,
|
| 280 |
+
api_name=False,
|
| 281 |
+
).then(
|
| 282 |
+
fn=inferImage,
|
| 283 |
+
inputs=inputs,
|
| 284 |
+
outputs=result_image,
|
| 285 |
+
api_name=False,
|
| 286 |
+
).then(
|
| 287 |
+
fn=inferVideo,
|
| 288 |
+
inputs=result_image,
|
| 289 |
+
outputs=result_video,
|
| 290 |
+
api_name=False,
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
if __name__ == "__main__":
|
| 294 |
+
demo.queue(max_size=20).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate==0.22.0
|
| 2 |
+
git+https://github.com/huggingface/diffusers@t2i-adapter-load-lora
|
| 3 |
+
gradio==3.43.1
|
| 4 |
+
Pillow==10.0.0
|
| 5 |
+
safetensors==0.3.3
|
| 6 |
+
torch==2.0.1
|
| 7 |
+
torchvision==0.15.2
|
| 8 |
+
transformers==4.33.1
|
| 9 |
+
xformers==0.0.20
|
| 10 |
+
modelscope==1.8.4
|
| 11 |
+
open_clip_torch>=2.0.2
|
| 12 |
+
opencv-python-headless
|
| 13 |
+
opencv-python
|
| 14 |
+
einops>=0.4
|
| 15 |
+
rotary-embedding-torch
|
| 16 |
+
fairscale
|
| 17 |
+
scipy
|
| 18 |
+
imageio
|
| 19 |
+
pytorch-lightning
|
| 20 |
+
torchsde
|
| 21 |
+
easydict
|