Spaces:
Running
Running
Update run.py
Browse files
run.py
CHANGED
|
@@ -5,18 +5,25 @@
|
|
| 5 |
# Last update: October 15th, 2024
|
| 6 |
#############################################################################
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
dbPath="/home/af/Schreibtisch/Code/gradio/BERUFENET/db"
|
| 9 |
if(os.path.exists(dbPath)==False): dbPath="/home/user/app/db"
|
| 10 |
|
| 11 |
print(dbPath)
|
| 12 |
|
|
|
|
| 13 |
# Chroma-DB
|
| 14 |
#-----------
|
| 15 |
|
| 16 |
-
import chromadb
|
| 17 |
-
from chromadb import Documents, EmbeddingFunction, Embeddings
|
| 18 |
-
import torch # chromaDB
|
| 19 |
-
from transformers import AutoTokenizer, AutoModel # chromaDB
|
| 20 |
jina = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
| 21 |
#jira.save_pretrained("jinaai_jina-embeddings-v2-base-de")
|
| 22 |
device='cuda:0' if torch.cuda.is_available() else 'cpu'
|
|
@@ -33,14 +40,12 @@ client = chromadb.PersistentClient(path=path)
|
|
| 33 |
print(client.heartbeat())
|
| 34 |
print(client.get_version())
|
| 35 |
print(client.list_collections())
|
| 36 |
-
from chromadb.utils import embedding_functions
|
| 37 |
#default_ef = embedding_functions.DefaultEmbeddingFunction()
|
| 38 |
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
|
| 39 |
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
|
| 40 |
jina_ef=JinaEmbeddingFunction()
|
| 41 |
embeddingFunction=jina_ef
|
| 42 |
print(str(client.list_collections()))
|
| 43 |
-
|
| 44 |
|
| 45 |
global collection
|
| 46 |
if("name=BerufenetDB1" in str(client.list_collections())):
|
|
@@ -54,10 +59,6 @@ print(collection.count())
|
|
| 54 |
# Gradio-GUI
|
| 55 |
#------------
|
| 56 |
|
| 57 |
-
from huggingface_hub import InferenceClient
|
| 58 |
-
import gradio as gr
|
| 59 |
-
import json
|
| 60 |
-
|
| 61 |
myModel="mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 62 |
|
| 63 |
def format_prompt(message, history):
|
|
|
|
| 5 |
# Last update: October 15th, 2024
|
| 6 |
#############################################################################
|
| 7 |
|
| 8 |
+
import os
|
| 9 |
+
import chromadb
|
| 10 |
+
from chromadb import Documents, EmbeddingFunction, Embeddings
|
| 11 |
+
from chromadb.utils import embedding_functions
|
| 12 |
+
import torch # chromaDB
|
| 13 |
+
from transformers import AutoTokenizer, AutoModel # chromaDB
|
| 14 |
+
from huggingface_hub import InferenceClient # Gradio-Interface
|
| 15 |
+
import gradio as gr # Gradio-Interface
|
| 16 |
+
import json # Gradio-Interface
|
| 17 |
+
|
| 18 |
dbPath="/home/af/Schreibtisch/Code/gradio/BERUFENET/db"
|
| 19 |
if(os.path.exists(dbPath)==False): dbPath="/home/user/app/db"
|
| 20 |
|
| 21 |
print(dbPath)
|
| 22 |
|
| 23 |
+
|
| 24 |
# Chroma-DB
|
| 25 |
#-----------
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
jina = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
| 28 |
#jira.save_pretrained("jinaai_jina-embeddings-v2-base-de")
|
| 29 |
device='cuda:0' if torch.cuda.is_available() else 'cpu'
|
|
|
|
| 40 |
print(client.heartbeat())
|
| 41 |
print(client.get_version())
|
| 42 |
print(client.list_collections())
|
|
|
|
| 43 |
#default_ef = embedding_functions.DefaultEmbeddingFunction()
|
| 44 |
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
|
| 45 |
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
|
| 46 |
jina_ef=JinaEmbeddingFunction()
|
| 47 |
embeddingFunction=jina_ef
|
| 48 |
print(str(client.list_collections()))
|
|
|
|
| 49 |
|
| 50 |
global collection
|
| 51 |
if("name=BerufenetDB1" in str(client.list_collections())):
|
|
|
|
| 59 |
# Gradio-GUI
|
| 60 |
#------------
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
myModel="mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 63 |
|
| 64 |
def format_prompt(message, history):
|