Spaces:
Sleeping
Sleeping
| import os | |
| os.environ['HF_HOME'] = '/tmp' | |
| import time | |
| import streamlit as st | |
| import pandas as pd | |
| import io | |
| import plotly.express as px | |
| import zipfile | |
| from streamlit_extras.stylable_container import stylable_container | |
| from transformers import pipeline | |
| from comet_ml import Experiment | |
| # --- App Configuration and Styling --- | |
| st.set_page_config( | |
| layout="wide", | |
| page_title="English Keyphrase") | |
| st.markdown( | |
| """ | |
| <style> | |
| .stApp { | |
| background-color: #f0f8ff; /* A single, solid color */ | |
| color: #000000; | |
| font-family: 'Inter', sans-serif; | |
| } | |
| .stButton > button { | |
| background-color: #FF69B4; | |
| color: #FFFFFF; | |
| font-weight: bold; | |
| border-radius: 12px; | |
| transition: all 0.2s ease-in-out; | |
| box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
| } | |
| .stButton > button:hover { | |
| background-color: #FFB6C1; | |
| box-shadow: 0 6px 8px rgba(0, 0, 0, 0.15); | |
| transform: translateY(-2px); | |
| } | |
| /* Text Area background and text color */ | |
| .stTextArea textarea { | |
| background-color: #FFC0CB; /* A nice pink color */ | |
| color: #000000; | |
| border: 1px solid #FF69B4; /* A pink border to match the button */ | |
| } | |
| </style> | |
| """, | |
| unsafe_allow_html=True) | |
| # --- Comet ML Setup --- | |
| COMET_API_KEY = os.environ.get("COMET_API_KEY") | |
| COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE") | |
| COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME") | |
| comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME) | |
| if not comet_initialized: | |
| st.warning("Comet ML not initialized. Check environment variables.") | |
| # --- UI Header and Notes --- | |
| st.subheader("AcademiaMiner", divider="rainbow") | |
| st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary") | |
| expander = st.expander("**Important notes**") | |
| expander.write('''**Entities:** This AcademiaMiner extracts keyphrases from English academic and scientific papers. | |
| Results are presented in easy-to-read tables, visualized in an interactive tree map and a bar chart, and are available for download along with a Glossary of tags. | |
| **How to Use:** | |
| Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data. | |
| **Usage Limits:** You can request results unlimited times for one (1) month. | |
| **Supported Languages:** English | |
| **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. | |
| For any errors or inquiries, please contact us at [email protected]''') | |
| with st.sidebar: | |
| st.write("Use the following code to embed the AcademiaMiner web app on your website. Feel free to adjust the width and height values to fit your page.") | |
| code = ''' | |
| <iframe | |
| src="https://aiecosystem-academiaminer.hf.space" | |
| frameborder="0" | |
| width="850" | |
| height="450" | |
| ></iframe> | |
| ''' | |
| st.code(code, language="html") | |
| st.text("") | |
| st.text("") | |
| st.divider() | |
| st.subheader("π Ready to build your own AI Web App?", divider="rainbow") | |
| st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary") | |
| # --- Model Loading --- | |
| def load_ner_model(): | |
| """Loads the keyphrase extraction model and caches it.""" | |
| try: | |
| return pipeline( | |
| "token-classification", | |
| model="ml6team/keyphrase-extraction-kbir-inspec", | |
| aggregation_strategy="max", stride=128, ignore_labels=["O"] | |
| ) | |
| except Exception as e: | |
| st.error(f"Failed to load NER model: {e}") | |
| st.stop() | |
| model = load_ner_model() | |
| # --- Main App Logic --- | |
| # Define the word limit | |
| word_limit = 200 | |
| # Update text area with the word limit | |
| text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area') | |
| # Calculate and display the word count | |
| word_count = len(text.split()) | |
| st.markdown(f"**Word count:** {word_count}/{word_limit}") | |
| def clear_text(): | |
| """Clears the text area.""" | |
| st.session_state['my_text_area'] = "" | |
| st.session_state.text_processed = False | |
| st.button("Clear text", on_click=clear_text) | |
| if st.button("Results"): | |
| # Check for word limit and empty text first | |
| if not text.strip(): | |
| st.warning("Please enter some text to extract keyphrases.") | |
| elif word_count > word_limit: | |
| st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.") | |
| else: | |
| start_time_overall = time.time() | |
| # Initialize Comet ML experiment at the start | |
| experiment = None | |
| if comet_initialized: | |
| try: | |
| experiment = Experiment( | |
| api_key=COMET_API_KEY, | |
| workspace=COMET_WORKSPACE, | |
| project_name=COMET_PROJECT_NAME, | |
| ) | |
| except Exception as e: | |
| st.warning(f"Could not initialize Comet ML experiment: {e}") | |
| experiment = None | |
| try: | |
| with st.spinner("Analyzing text...", ): | |
| # The pipeline model returns a list of dictionaries. | |
| entities = model(text) | |
| data = [] | |
| for entity in entities: | |
| # 'ml6team/keyphrase-extraction-kbir-inspec' model doesn't have 'entity_group' | |
| # It just uses 'label' | |
| data.append({ | |
| 'word': entity['word'], | |
| 'label': entity['entity_group'], # This is the correct key | |
| 'score': entity['score'], | |
| 'start': entity['start'], | |
| 'end': entity['end'] | |
| }) | |
| if not data: | |
| st.warning("No keyphrases found in the text.") | |
| st.stop() | |
| df = pd.DataFrame(data) | |
| # --- Data Cleaning and Processing --- | |
| pattern = r'[^\w\s]' | |
| df['word'] = df['word'].replace(pattern, '', regex=True) | |
| df = df.replace('', 'Unknown') | |
| # --- All Extracted Keyphrases --- | |
| st.subheader("All Extracted Keyphrases", divider="rainbow") | |
| st.dataframe(df, use_container_width=True) | |
| with st.expander("See Glossary of tags"): | |
| st.write(''' | |
| - **text**: ['entity extracted from your text data'] | |
| - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity'] | |
| - **label**: ['label (tag) assigned to a given extracted entity'] | |
| - **start**: ['index of the start of the corresponding entity'] | |
| - **end**: ['index of the end of the corresponding entity'] | |
| ''') | |
| # --- Most Frequent Keyphrases --- | |
| st.subheader("Most Frequent Keyphrases", divider="rainbow") | |
| word_counts = df['word'].value_counts().reset_index() | |
| word_counts.columns = ['word', 'count'] | |
| df_frequent = word_counts.sort_values(by='count', ascending=False).head(15) | |
| if not df_frequent.empty: | |
| tab1, tab2 = st.tabs(["Table", "Chart"]) | |
| with tab1: | |
| st.dataframe(df_frequent, use_container_width=True) | |
| with tab2: | |
| fig_frequent_bar = px.bar( | |
| df_frequent, | |
| x='count', | |
| y='word', | |
| orientation='h', | |
| title='Top Frequent Keyphrases by Count', | |
| color='count', | |
| color_continuous_scale=px.colors.sequential.Viridis | |
| ) | |
| fig_frequent_bar.update_layout( | |
| yaxis={'categoryorder': 'total ascending'}, | |
| paper_bgcolor='#f0f8ff', # Sets the background color of the entire figure | |
| plot_bgcolor='#f0f8ff' # Sets the background color of the plotting area | |
| ) | |
| st.plotly_chart(fig_frequent_bar, use_container_width=True) | |
| if experiment: | |
| experiment.log_figure(figure=fig_frequent_bar, figure_name="frequent_keyphrases_bar_chart") | |
| else: | |
| st.info("No keyphrases found with more than one occurrence.") | |
| # --- Treemap of All Keyphrases --- | |
| st.subheader("Treemap of All Keyphrases", divider="rainbow") | |
| # Use 'label' instead of 'entity_group' | |
| fig_treemap = px.treemap( | |
| df, | |
| path=[px.Constant("all"), 'label', 'word'], | |
| values='score', | |
| color='word', | |
| color_continuous_scale=px.colors.sequential.Plasma | |
| ) | |
| fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#f0f8ff', plot_bgcolor='#f0f8ff') | |
| st.plotly_chart(fig_treemap, use_container_width=True) | |
| if experiment: | |
| experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap") | |
| # --- Download Section --- | |
| dfa = pd.DataFrame( | |
| data={ | |
| 'Column Name': ['word', 'label', 'score', 'start', 'end'], | |
| 'Description': [ | |
| 'keyphrase extracted from your text data', | |
| 'label (tag) assigned to a given keyphrase', | |
| 'accuracy score; how accurately a tag has been assigned', | |
| 'index of the start of the corresponding entity', | |
| 'index of the end of the corresponding entity' | |
| ] | |
| } | |
| ) | |
| buf = io.BytesIO() | |
| with zipfile.ZipFile(buf, "w") as myzip: | |
| myzip.writestr("Summary_of_results.csv", df.to_csv(index=False)) | |
| myzip.writestr("Most_frequent_keyphrases.csv", df_frequent.to_csv(index=False)) | |
| myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False)) | |
| with stylable_container( | |
| key="download_button", | |
| css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""", | |
| ): | |
| st.download_button( | |
| label="Download zip file", | |
| data=buf.getvalue(), | |
| file_name="nlpblogs_ner_results.zip", | |
| mime="application/zip", | |
| ) | |
| st.divider() | |
| except Exception as e: | |
| st.error(f"An unexpected error occurred during processing: {e}") | |
| finally: | |
| if experiment: | |
| try: | |
| # Log parameters and tables before ending the experiment | |
| experiment.log_parameter("input_source_type", "text_area") | |
| experiment.log_parameter("input_content_length", len(text)) | |
| experiment.log_table("predicted_entities", df) | |
| experiment.end() | |
| except Exception as comet_e: | |
| st.warning(f"Comet ML experiment.end() failed: {comet_e}") | |
| # Show elapsed time | |
| end_time_overall = time.time() | |
| elapsed_time_overall = end_time_overall - start_time_overall | |
| st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.") |