Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
fix: fix the ranking resetting issue
Browse files- app.py +60 -12
- src/utils.py +31 -13
app.py
CHANGED
|
@@ -21,14 +21,14 @@ def restart_space():
|
|
| 21 |
API.restart_space(repo_id=REPO_ID)
|
| 22 |
|
| 23 |
|
| 24 |
-
try:
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
except Exception as e:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
raw_data = get_raw_eval_results(f"{EVAL_RESULTS_PATH}/AIR-Bench_24.04")
|
| 34 |
|
|
@@ -74,6 +74,28 @@ def update_metric_long_doc(
|
|
| 74 |
return update_metric(raw_data, "long-doc", metric, domains, langs, reranking_model, query, show_anonymous)
|
| 75 |
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
demo = gr.Blocks(css=custom_css)
|
| 78 |
with demo:
|
| 79 |
gr.HTML(TITLE)
|
|
@@ -153,7 +175,20 @@ with demo:
|
|
| 153 |
|
| 154 |
# Set search_bar listener
|
| 155 |
search_bar.submit(
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
[
|
| 158 |
hidden_leaderboard_table_for_search,
|
| 159 |
selected_domains,
|
|
@@ -167,7 +202,7 @@ with demo:
|
|
| 167 |
|
| 168 |
# Set column-wise listener
|
| 169 |
for selector in [
|
| 170 |
-
selected_domains, selected_langs,
|
| 171 |
]:
|
| 172 |
selector.change(
|
| 173 |
update_table,
|
|
@@ -271,7 +306,20 @@ with demo:
|
|
| 271 |
|
| 272 |
# Set search_bar listener
|
| 273 |
search_bar.submit(
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
[
|
| 276 |
hidden_leaderboard_table_for_search,
|
| 277 |
selected_domains,
|
|
@@ -285,7 +333,7 @@ with demo:
|
|
| 285 |
|
| 286 |
# Set column-wise listener
|
| 287 |
for selector in [
|
| 288 |
-
selected_domains, selected_langs,
|
| 289 |
]:
|
| 290 |
selector.change(
|
| 291 |
update_table_long_doc,
|
|
|
|
| 21 |
API.restart_space(repo_id=REPO_ID)
|
| 22 |
|
| 23 |
|
| 24 |
+
# try:
|
| 25 |
+
# snapshot_download(
|
| 26 |
+
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
| 27 |
+
# token=TOKEN
|
| 28 |
+
# )
|
| 29 |
+
# except Exception as e:
|
| 30 |
+
# print(f'failed to download')
|
| 31 |
+
# restart_space()
|
| 32 |
|
| 33 |
raw_data = get_raw_eval_results(f"{EVAL_RESULTS_PATH}/AIR-Bench_24.04")
|
| 34 |
|
|
|
|
| 74 |
return update_metric(raw_data, "long-doc", metric, domains, langs, reranking_model, query, show_anonymous)
|
| 75 |
|
| 76 |
|
| 77 |
+
def update_table_without_ranking(
|
| 78 |
+
hidden_df,
|
| 79 |
+
domains,
|
| 80 |
+
langs,
|
| 81 |
+
reranking_query,
|
| 82 |
+
query,
|
| 83 |
+
show_anonymous
|
| 84 |
+
):
|
| 85 |
+
return update_table(hidden_df, domains, langs, reranking_query, query, show_anonymous, reset_ranking=False)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def update_table_without_ranking_long_doc(
|
| 89 |
+
hidden_df,
|
| 90 |
+
domains,
|
| 91 |
+
langs,
|
| 92 |
+
reranking_query,
|
| 93 |
+
query,
|
| 94 |
+
show_anonymous
|
| 95 |
+
):
|
| 96 |
+
return update_table_long_doc(hidden_df, domains, langs, reranking_query, query, show_anonymous, reset_ranking=False)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
demo = gr.Blocks(css=custom_css)
|
| 100 |
with demo:
|
| 101 |
gr.HTML(TITLE)
|
|
|
|
| 175 |
|
| 176 |
# Set search_bar listener
|
| 177 |
search_bar.submit(
|
| 178 |
+
update_table_without_ranking,
|
| 179 |
+
[
|
| 180 |
+
hidden_leaderboard_table_for_search,
|
| 181 |
+
selected_domains,
|
| 182 |
+
selected_langs,
|
| 183 |
+
selected_rerankings,
|
| 184 |
+
search_bar,
|
| 185 |
+
show_anonymous,
|
| 186 |
+
],
|
| 187 |
+
leaderboard_table,
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
selected_rerankings.change(
|
| 191 |
+
update_table_without_ranking,
|
| 192 |
[
|
| 193 |
hidden_leaderboard_table_for_search,
|
| 194 |
selected_domains,
|
|
|
|
| 202 |
|
| 203 |
# Set column-wise listener
|
| 204 |
for selector in [
|
| 205 |
+
selected_domains, selected_langs, show_anonymous
|
| 206 |
]:
|
| 207 |
selector.change(
|
| 208 |
update_table,
|
|
|
|
| 306 |
|
| 307 |
# Set search_bar listener
|
| 308 |
search_bar.submit(
|
| 309 |
+
update_table_without_ranking_long_doc,
|
| 310 |
+
[
|
| 311 |
+
hidden_leaderboard_table_for_search,
|
| 312 |
+
selected_domains,
|
| 313 |
+
selected_langs,
|
| 314 |
+
selected_rerankings,
|
| 315 |
+
search_bar,
|
| 316 |
+
show_anonymous,
|
| 317 |
+
],
|
| 318 |
+
leaderboard_table_long_doc,
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
selected_rerankings.change(
|
| 322 |
+
update_table_without_ranking_long_doc,
|
| 323 |
[
|
| 324 |
hidden_leaderboard_table_for_search,
|
| 325 |
selected_domains,
|
|
|
|
| 333 |
|
| 334 |
# Set column-wise listener
|
| 335 |
for selector in [
|
| 336 |
+
selected_domains, selected_langs, show_anonymous
|
| 337 |
]:
|
| 338 |
selector.change(
|
| 339 |
update_table_long_doc,
|
src/utils.py
CHANGED
|
@@ -92,7 +92,13 @@ FIXED_COLS = [c.name for _, _, c in fixed_cols]
|
|
| 92 |
FIXED_COLS_TYPES = [c.type for _, _, c in fixed_cols]
|
| 93 |
|
| 94 |
|
| 95 |
-
def select_columns(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
cols, _ = get_default_cols(task=task, columns=df.columns, add_fix_cols=False)
|
| 97 |
selected_cols = []
|
| 98 |
for c in cols:
|
|
@@ -110,25 +116,41 @@ def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, t
|
|
| 110 |
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2)
|
| 111 |
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
| 112 |
filtered_df.reset_index(inplace=True, drop=True)
|
| 113 |
-
|
|
|
|
| 114 |
|
| 115 |
return filtered_df
|
| 116 |
|
| 117 |
|
| 118 |
-
def
|
|
|
|
| 119 |
hidden_df: pd.DataFrame,
|
| 120 |
domains: list,
|
| 121 |
langs: list,
|
| 122 |
reranking_query: list,
|
| 123 |
query: str,
|
| 124 |
-
show_anonymous: bool
|
|
|
|
| 125 |
):
|
| 126 |
filtered_df = hidden_df.copy()
|
| 127 |
if not show_anonymous:
|
| 128 |
filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]]
|
| 129 |
filtered_df = filter_models(filtered_df, reranking_query)
|
| 130 |
filtered_df = filter_queries(query, filtered_df)
|
| 131 |
-
return select_columns(filtered_df, domains, langs, task
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
|
| 134 |
def update_table_long_doc(
|
|
@@ -137,15 +159,11 @@ def update_table_long_doc(
|
|
| 137 |
langs: list,
|
| 138 |
reranking_query: list,
|
| 139 |
query: str,
|
| 140 |
-
show_anonymous: bool
|
|
|
|
| 141 |
):
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]]
|
| 145 |
-
filtered_df = filter_models(filtered_df, reranking_query)
|
| 146 |
-
filtered_df = filter_queries(query, filtered_df)
|
| 147 |
-
df = select_columns(filtered_df, domains, langs, task='long-doc')
|
| 148 |
-
return df
|
| 149 |
|
| 150 |
|
| 151 |
def update_metric(
|
|
|
|
| 92 |
FIXED_COLS_TYPES = [c.type for _, _, c in fixed_cols]
|
| 93 |
|
| 94 |
|
| 95 |
+
def select_columns(
|
| 96 |
+
df: pd.DataFrame,
|
| 97 |
+
domain_query: list,
|
| 98 |
+
language_query: list,
|
| 99 |
+
task: str = "qa",
|
| 100 |
+
reset_ranking: bool = True
|
| 101 |
+
) -> pd.DataFrame:
|
| 102 |
cols, _ = get_default_cols(task=task, columns=df.columns, add_fix_cols=False)
|
| 103 |
selected_cols = []
|
| 104 |
for c in cols:
|
|
|
|
| 116 |
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2)
|
| 117 |
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
| 118 |
filtered_df.reset_index(inplace=True, drop=True)
|
| 119 |
+
if reset_ranking:
|
| 120 |
+
filtered_df[COL_NAME_RANK] = filtered_df[COL_NAME_AVG].rank(ascending=False, method="min")
|
| 121 |
|
| 122 |
return filtered_df
|
| 123 |
|
| 124 |
|
| 125 |
+
def _update_table(
|
| 126 |
+
task: str,
|
| 127 |
hidden_df: pd.DataFrame,
|
| 128 |
domains: list,
|
| 129 |
langs: list,
|
| 130 |
reranking_query: list,
|
| 131 |
query: str,
|
| 132 |
+
show_anonymous: bool,
|
| 133 |
+
reset_ranking: bool = True
|
| 134 |
):
|
| 135 |
filtered_df = hidden_df.copy()
|
| 136 |
if not show_anonymous:
|
| 137 |
filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]]
|
| 138 |
filtered_df = filter_models(filtered_df, reranking_query)
|
| 139 |
filtered_df = filter_queries(query, filtered_df)
|
| 140 |
+
return select_columns(filtered_df, domains, langs, task, reset_ranking)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def update_table(
|
| 144 |
+
hidden_df: pd.DataFrame,
|
| 145 |
+
domains: list,
|
| 146 |
+
langs: list,
|
| 147 |
+
reranking_query: list,
|
| 148 |
+
query: str,
|
| 149 |
+
show_anonymous: bool,
|
| 150 |
+
reset_ranking: bool = True
|
| 151 |
+
):
|
| 152 |
+
return _update_table(
|
| 153 |
+
"qa", hidden_df, domains, langs, reranking_query, query, show_anonymous, reset_ranking)
|
| 154 |
|
| 155 |
|
| 156 |
def update_table_long_doc(
|
|
|
|
| 159 |
langs: list,
|
| 160 |
reranking_query: list,
|
| 161 |
query: str,
|
| 162 |
+
show_anonymous: bool,
|
| 163 |
+
reset_ranking: bool = True
|
| 164 |
):
|
| 165 |
+
return _update_table(
|
| 166 |
+
"long-doc", hidden_df, domains, langs, reranking_query, query, show_anonymous, reset_ranking)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
|
| 169 |
def update_metric(
|