Create model_comparison.py
Browse files- model_comparison.py +249 -0
model_comparison.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from advanced_ocr import AdvancedLicensePlateOCR, get_available_models
|
| 6 |
+
import os
|
| 7 |
+
from typing import List, Dict, Tuple
|
| 8 |
+
|
| 9 |
+
class OCRModelComparison:
|
| 10 |
+
def __init__(self):
|
| 11 |
+
self.ocr_system = AdvancedLicensePlateOCR()
|
| 12 |
+
self.results_cache = {}
|
| 13 |
+
|
| 14 |
+
def benchmark_single_image(self, image: Image.Image, model_keys: List[str]) -> Dict:
|
| 15 |
+
results = {
|
| 16 |
+
"image_size": image.size,
|
| 17 |
+
"models_tested": len(model_keys),
|
| 18 |
+
"results": []
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
for model_key in model_keys:
|
| 22 |
+
try:
|
| 23 |
+
start_time = time.time()
|
| 24 |
+
|
| 25 |
+
extraction_result = self.ocr_system.extract_text_with_model(
|
| 26 |
+
image, model_key, use_preprocessing=True
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
end_time = time.time()
|
| 30 |
+
processing_time = end_time - start_time
|
| 31 |
+
|
| 32 |
+
model_info = self.ocr_system.models[model_key]
|
| 33 |
+
|
| 34 |
+
result_entry = {
|
| 35 |
+
"model_key": model_key,
|
| 36 |
+
"model_name": model_info["name"],
|
| 37 |
+
"model_type": model_info["type"],
|
| 38 |
+
"processing_time": round(processing_time, 3),
|
| 39 |
+
"success": "error" not in extraction_result,
|
| 40 |
+
"best_result": extraction_result.get("best_result", "Error"),
|
| 41 |
+
"confidence": extraction_result.get("confidence", 0.0),
|
| 42 |
+
"extractions_count": len(extraction_result.get("extractions", [])),
|
| 43 |
+
"status": "β
Success" if "error" not in extraction_result else f"β {extraction_result.get('error', 'Unknown error')}"
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
results["results"].append(result_entry)
|
| 47 |
+
|
| 48 |
+
except Exception as e:
|
| 49 |
+
result_entry = {
|
| 50 |
+
"model_key": model_key,
|
| 51 |
+
"model_name": self.ocr_system.models.get(model_key, {}).get("name", "Unknown"),
|
| 52 |
+
"model_type": self.ocr_system.models.get(model_key, {}).get("type", "Unknown"),
|
| 53 |
+
"processing_time": 0.0,
|
| 54 |
+
"success": False,
|
| 55 |
+
"best_result": f"Exception: {str(e)}",
|
| 56 |
+
"confidence": 0.0,
|
| 57 |
+
"extractions_count": 0,
|
| 58 |
+
"status": f"β Exception: {str(e)}"
|
| 59 |
+
}
|
| 60 |
+
results["results"].append(result_entry)
|
| 61 |
+
|
| 62 |
+
return results
|
| 63 |
+
|
| 64 |
+
def create_comparison_table(self, benchmark_results: Dict) -> pd.DataFrame:
|
| 65 |
+
if not benchmark_results.get("results"):
|
| 66 |
+
return pd.DataFrame()
|
| 67 |
+
|
| 68 |
+
df_data = []
|
| 69 |
+
for result in benchmark_results["results"]:
|
| 70 |
+
df_data.append({
|
| 71 |
+
"Model": result["model_name"],
|
| 72 |
+
"Type": result["model_type"],
|
| 73 |
+
"Status": result["status"],
|
| 74 |
+
"Extracted Text": result["best_result"],
|
| 75 |
+
"Confidence": f"{result['confidence']:.2f}",
|
| 76 |
+
"Processing Time (s)": result["processing_time"],
|
| 77 |
+
"Variants Processed": result["extractions_count"]
|
| 78 |
+
})
|
| 79 |
+
|
| 80 |
+
return pd.DataFrame(df_data)
|
| 81 |
+
|
| 82 |
+
def get_best_model_recommendation(self, benchmark_results: Dict) -> str:
|
| 83 |
+
if not benchmark_results.get("results"):
|
| 84 |
+
return "No results available"
|
| 85 |
+
|
| 86 |
+
successful_results = [r for r in benchmark_results["results"] if r["success"]]
|
| 87 |
+
|
| 88 |
+
if not successful_results:
|
| 89 |
+
return "β No models succeeded in text extraction"
|
| 90 |
+
|
| 91 |
+
best_by_confidence = max(successful_results, key=lambda x: x["confidence"])
|
| 92 |
+
fastest = min(successful_results, key=lambda x: x["processing_time"])
|
| 93 |
+
|
| 94 |
+
recommendation = f"""
|
| 95 |
+
π **Best Results:**
|
| 96 |
+
|
| 97 |
+
**Highest Confidence:** {best_by_confidence['model_name']}
|
| 98 |
+
- Text: "{best_by_confidence['best_result']}"
|
| 99 |
+
- Confidence: {best_by_confidence['confidence']:.2f}
|
| 100 |
+
- Time: {best_by_confidence['processing_time']:.3f}s
|
| 101 |
+
|
| 102 |
+
**Fastest Processing:** {fastest['model_name']}
|
| 103 |
+
- Text: "{fastest['best_result']}"
|
| 104 |
+
- Time: {fastest['processing_time']:.3f}s
|
| 105 |
+
- Confidence: {fastest['confidence']:.2f}
|
| 106 |
+
|
| 107 |
+
**Recommendation:**
|
| 108 |
+
{"Use " + best_by_confidence['model_name'] + " for best accuracy" if best_by_confidence != fastest else "Best overall: " + best_by_confidence['model_name']}
|
| 109 |
+
"""
|
| 110 |
+
return recommendation
|
| 111 |
+
|
| 112 |
+
def compare_ocr_models(image, selected_models):
|
| 113 |
+
if image is None:
|
| 114 |
+
return "Please upload an image", pd.DataFrame(), "No comparison performed"
|
| 115 |
+
|
| 116 |
+
if not selected_models:
|
| 117 |
+
return "Please select at least one model", pd.DataFrame(), "No models selected"
|
| 118 |
+
|
| 119 |
+
try:
|
| 120 |
+
comparator = OCRModelComparison()
|
| 121 |
+
|
| 122 |
+
if isinstance(image, str):
|
| 123 |
+
image = Image.open(image)
|
| 124 |
+
|
| 125 |
+
benchmark_results = comparator.benchmark_single_image(image, selected_models)
|
| 126 |
+
comparison_table = comparator.create_comparison_table(benchmark_results)
|
| 127 |
+
recommendation = comparator.get_best_model_recommendation(benchmark_results)
|
| 128 |
+
|
| 129 |
+
status_msg = f"β
Comparison completed! Tested {len(selected_models)} models on image size {benchmark_results['image_size']}"
|
| 130 |
+
|
| 131 |
+
return status_msg, comparison_table, recommendation
|
| 132 |
+
|
| 133 |
+
except Exception as e:
|
| 134 |
+
error_msg = f"β Error during comparison: {str(e)}"
|
| 135 |
+
return error_msg, pd.DataFrame(), "Comparison failed"
|
| 136 |
+
|
| 137 |
+
def create_model_comparison_app():
|
| 138 |
+
models = get_available_models()
|
| 139 |
+
model_choices = [(info["name"], key) for key, info in models.items()]
|
| 140 |
+
|
| 141 |
+
css = """
|
| 142 |
+
.model-comparison {
|
| 143 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 144 |
+
color: white;
|
| 145 |
+
padding: 20px;
|
| 146 |
+
border-radius: 10px;
|
| 147 |
+
text-align: center;
|
| 148 |
+
}
|
| 149 |
+
.recommendation-box {
|
| 150 |
+
background-color: #f8f9fa;
|
| 151 |
+
border: 2px solid #28a745;
|
| 152 |
+
border-radius: 8px;
|
| 153 |
+
padding: 15px;
|
| 154 |
+
margin: 10px 0;
|
| 155 |
+
}
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
with gr.Blocks(css=css, title="OCR Model Comparison Tool") as demo:
|
| 159 |
+
gr.HTML("""
|
| 160 |
+
<div class="model-comparison">
|
| 161 |
+
<h1>π License Plate OCR Model Comparison</h1>
|
| 162 |
+
<p>Compare different OCR models on your license plate images</p>
|
| 163 |
+
</div>
|
| 164 |
+
""")
|
| 165 |
+
|
| 166 |
+
with gr.Row():
|
| 167 |
+
with gr.Column(scale=1):
|
| 168 |
+
gr.Markdown("### Input")
|
| 169 |
+
|
| 170 |
+
input_image = gr.Image(
|
| 171 |
+
type="filepath",
|
| 172 |
+
label="Upload License Plate Image",
|
| 173 |
+
sources=["upload", "webcam"]
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
model_selector = gr.CheckboxGroup(
|
| 177 |
+
choices=model_choices,
|
| 178 |
+
value=["trocr_license", "easyocr"],
|
| 179 |
+
label="Select Models to Compare",
|
| 180 |
+
info="Choose which models to test (recommended: start with 2-3 models)"
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
compare_btn = gr.Button("π Compare Models", variant="primary", size="lg")
|
| 184 |
+
|
| 185 |
+
gr.Markdown("### Available Models")
|
| 186 |
+
model_info_text = ""
|
| 187 |
+
for key, info in models.items():
|
| 188 |
+
model_info_text += f"**{info['name']}** ({info['type']})\n{info['description']}\n\n"
|
| 189 |
+
|
| 190 |
+
gr.Markdown(model_info_text)
|
| 191 |
+
|
| 192 |
+
with gr.Column(scale=2):
|
| 193 |
+
gr.Markdown("### Comparison Results")
|
| 194 |
+
|
| 195 |
+
status_output = gr.Textbox(
|
| 196 |
+
label="Status",
|
| 197 |
+
placeholder="Upload an image and select models to compare...",
|
| 198 |
+
interactive=False
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
comparison_table = gr.Dataframe(
|
| 202 |
+
label="Detailed Comparison",
|
| 203 |
+
headers=["Model", "Type", "Status", "Extracted Text", "Confidence", "Processing Time (s)", "Variants Processed"],
|
| 204 |
+
interactive=False
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
with gr.Group(elem_classes="recommendation-box"):
|
| 208 |
+
recommendation_output = gr.Markdown(
|
| 209 |
+
value="### π― Recommendations will appear here after comparison",
|
| 210 |
+
label="Model Recommendation"
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
gr.Markdown("### Quick Start Guide")
|
| 214 |
+
gr.Markdown("""
|
| 215 |
+
1. **Upload** a license plate image
|
| 216 |
+
2. **Select** 2-3 models to compare (recommended combinations):
|
| 217 |
+
- `TrOCR License Plates + EasyOCR` (accuracy vs speed)
|
| 218 |
+
- `All TrOCR models` (compare TrOCR variants)
|
| 219 |
+
- `DETR + YOLO + EasyOCR` (different approaches)
|
| 220 |
+
3. **Click Compare** and wait for results
|
| 221 |
+
4. **Review** the recommendation for your use case
|
| 222 |
+
|
| 223 |
+
**Model Types:**
|
| 224 |
+
- **Transformers**: Modern AI models (TrOCR) - high accuracy, slower
|
| 225 |
+
- **Traditional**: Classic OCR (EasyOCR) - fast, reliable baseline
|
| 226 |
+
- **Object Detection**: End-to-end systems (DETR, YOLO) - detect + recognize
|
| 227 |
+
""")
|
| 228 |
+
|
| 229 |
+
compare_btn.click(
|
| 230 |
+
fn=compare_ocr_models,
|
| 231 |
+
inputs=[input_image, model_selector],
|
| 232 |
+
outputs=[status_output, comparison_table, recommendation_output]
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
gr.Examples(
|
| 236 |
+
examples=[
|
| 237 |
+
[["sample_1.jpg"], ["trocr_license", "easyocr"]],
|
| 238 |
+
[["sample_2.jpg"], ["trocr_license", "trocr_base", "easyocr"]]
|
| 239 |
+
],
|
| 240 |
+
inputs=[input_image, model_selector],
|
| 241 |
+
outputs=[status_output, comparison_table, recommendation_output],
|
| 242 |
+
fn=compare_ocr_models
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
return demo
|
| 246 |
+
|
| 247 |
+
if __name__ == "__main__":
|
| 248 |
+
demo = create_model_comparison_app()
|
| 249 |
+
demo.launch(debug=True, share=True)
|