First vesrion
Browse files- app.py +157 -0
- config.py +7 -0
- core/__init__.py +0 -0
- core/agent.py +17 -0
- core/ai_enrichment.py +41 -0
- core/components.py +23 -0
- core/components.pyi +29 -0
- core/database.py +81 -0
- core/parser.py +30 -0
- core/processing.py +42 -0
- core/storage.py +58 -0
- core/summarizer.py +25 -0
- core/utils.py +23 -0
- data/article_url.txt +0 -0
- data/document1.pdf +0 -0
- data/sample_note.txt +0 -0
- mcp_tools.py +122 -0
- requirements.txt +12 -0
app.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import uuid
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from gradio import components
|
| 5 |
+
from fastmcp import FastMCP
|
| 6 |
+
# from core.parser import parse_document, parse_url
|
| 7 |
+
from core.parser import parse_document, parse_url
|
| 8 |
+
from core.summarizer import summarize_content, tag_content
|
| 9 |
+
from core.storage import add_document, search_documents
|
| 10 |
+
from core.agent import answer_question
|
| 11 |
+
# from core.components import DocumentViewer
|
| 12 |
+
import plotly.graph_objects as go
|
| 13 |
+
|
| 14 |
+
# Initialize the FastMCP server (for agentic tools)
|
| 15 |
+
mcp = FastMCP("IntelligentContentOrganizer")
|
| 16 |
+
|
| 17 |
+
# Gradio UI functions
|
| 18 |
+
def process_content(file_obj, url, tags_input):
|
| 19 |
+
"""
|
| 20 |
+
Handle file upload or URL input: parse content, summarize, tag, store.
|
| 21 |
+
"""
|
| 22 |
+
content_text = ""
|
| 23 |
+
source = ""
|
| 24 |
+
if file_obj is not None:
|
| 25 |
+
# Save uploaded file to temp path
|
| 26 |
+
file_path = file_obj.name
|
| 27 |
+
content_text = parse_document(file_path)
|
| 28 |
+
source = file_obj.name
|
| 29 |
+
elif url:
|
| 30 |
+
content_text = parse_url(url)
|
| 31 |
+
source = url
|
| 32 |
+
else:
|
| 33 |
+
return "No document provided.", "", "", ""
|
| 34 |
+
|
| 35 |
+
# Summarize and tag (simulated)
|
| 36 |
+
summary = summarize_content(content_text)
|
| 37 |
+
tags = tag_content(content_text)
|
| 38 |
+
|
| 39 |
+
# Allow user to override or confirm tags via input
|
| 40 |
+
if tags_input:
|
| 41 |
+
# If user entered new tags, split by comma
|
| 42 |
+
tags = [t.strip() for t in tags_input.split(",") if t.strip() != ""]
|
| 43 |
+
|
| 44 |
+
# Store in ChromaDB with a unique ID
|
| 45 |
+
doc_id = str(uuid.uuid4())
|
| 46 |
+
metadata = {"source": source, "tags": tags}
|
| 47 |
+
add_document(doc_id, content_text, metadata)
|
| 48 |
+
|
| 49 |
+
return content_text, summary, ", ".join(tags), f"Document stored with ID: {doc_id}"
|
| 50 |
+
|
| 51 |
+
def generate_graph():
|
| 52 |
+
"""
|
| 53 |
+
Create a simple Plotly graph of documents.
|
| 54 |
+
Nodes = documents, edges = shared tags.
|
| 55 |
+
"""
|
| 56 |
+
# Fetch all documents from ChromaDB
|
| 57 |
+
from core.storage import get_all_documents
|
| 58 |
+
docs = get_all_documents()
|
| 59 |
+
if not docs:
|
| 60 |
+
return go.Figure() # empty
|
| 61 |
+
|
| 62 |
+
# Build graph connections: if two docs share a tag, connect them
|
| 63 |
+
nodes = {doc["id"]: doc for doc in docs}
|
| 64 |
+
edges = []
|
| 65 |
+
for i, doc1 in enumerate(docs):
|
| 66 |
+
for doc2 in docs[i+1:]:
|
| 67 |
+
shared_tags = set(doc1["metadata"]["tags"]) & set(doc2["metadata"]["tags"])
|
| 68 |
+
if shared_tags:
|
| 69 |
+
edges.append((doc1["id"], doc2["id"]))
|
| 70 |
+
|
| 71 |
+
# Use networkx to compute layout (or simple fixed positions)
|
| 72 |
+
import networkx as nx
|
| 73 |
+
G = nx.Graph()
|
| 74 |
+
G.add_nodes_from(nodes.keys())
|
| 75 |
+
G.add_edges_from(edges)
|
| 76 |
+
pos = nx.spring_layout(G, seed=42)
|
| 77 |
+
|
| 78 |
+
# Create Plotly traces
|
| 79 |
+
edge_x = []
|
| 80 |
+
edge_y = []
|
| 81 |
+
for (src, dst) in edges:
|
| 82 |
+
x0, y0 = pos[src]
|
| 83 |
+
x1, y1 = pos[dst]
|
| 84 |
+
edge_x += [x0, x1, None]
|
| 85 |
+
edge_y += [y0, y1, None]
|
| 86 |
+
edge_trace = go.Scatter(
|
| 87 |
+
x=edge_x, y=edge_y,
|
| 88 |
+
line=dict(width=1, color='#888'),
|
| 89 |
+
hoverinfo='none',
|
| 90 |
+
mode='lines')
|
| 91 |
+
|
| 92 |
+
node_x = []
|
| 93 |
+
node_y = []
|
| 94 |
+
node_text = []
|
| 95 |
+
for node_id in G.nodes():
|
| 96 |
+
x, y = pos[node_id]
|
| 97 |
+
node_x.append(x)
|
| 98 |
+
node_y.append(y)
|
| 99 |
+
text = nodes[node_id]["metadata"].get("source", "")
|
| 100 |
+
node_text.append(f"{text}\nTags: {nodes[node_id]['metadata']['tags']}")
|
| 101 |
+
|
| 102 |
+
node_trace = go.Scatter(
|
| 103 |
+
x=node_x, y=node_y,
|
| 104 |
+
mode='markers+text',
|
| 105 |
+
marker=dict(size=10, color='skyblue'),
|
| 106 |
+
text=node_text, hoverinfo='text', textposition="bottom center")
|
| 107 |
+
|
| 108 |
+
fig = go.Figure(data=[edge_trace, node_trace],
|
| 109 |
+
layout=go.Layout(title="Document Knowledge Graph",
|
| 110 |
+
showlegend=False,
|
| 111 |
+
margin=dict(l=20, r=20, b=20, t=30)))
|
| 112 |
+
return fig
|
| 113 |
+
|
| 114 |
+
def handle_query(question):
|
| 115 |
+
"""
|
| 116 |
+
Answer a user question by retrieving relevant documents and summarizing them.
|
| 117 |
+
"""
|
| 118 |
+
if not question:
|
| 119 |
+
return "Please enter a question."
|
| 120 |
+
|
| 121 |
+
answer = answer_question(question)
|
| 122 |
+
return answer
|
| 123 |
+
|
| 124 |
+
# Build Gradio interface with Blocks
|
| 125 |
+
with gr.Blocks(title="Intelligent Content Organizer") as demo:
|
| 126 |
+
gr.Markdown("# Intelligent Content Organizer")
|
| 127 |
+
with gr.Tab("Upload / Fetch Content"):
|
| 128 |
+
gr.Markdown("**Add a document:** Upload a file or enter a URL.")
|
| 129 |
+
with gr.Row():
|
| 130 |
+
file_in = gr.File(label="Upload Document (PDF, TXT, etc.)")
|
| 131 |
+
url_in = gr.Textbox(label="Document URL", placeholder="https://example.com/article")
|
| 132 |
+
tags_in = gr.Textbox(label="Tags (comma-separated)", placeholder="Enter tags or leave blank")
|
| 133 |
+
process_btn = gr.Button("Parse & Add Document")
|
| 134 |
+
doc_view = gr.Textbox(label="Document Preview", lines=10, interactive=False)
|
| 135 |
+
summary_out = gr.Textbox(label="Summary", interactive=False)
|
| 136 |
+
tags_out = gr.Textbox(label="Detected Tags", interactive=False)
|
| 137 |
+
status_out = gr.Textbox(label="Status/Info", interactive=False)
|
| 138 |
+
process_btn.click(fn=process_content, inputs=[file_in, url_in, tags_in],
|
| 139 |
+
outputs=[doc_view, summary_out, tags_out, status_out])
|
| 140 |
+
|
| 141 |
+
with gr.Tab("Knowledge Graph"):
|
| 142 |
+
gr.Markdown("**Document relationships:** Shared tags indicate edges.")
|
| 143 |
+
graph_plot = gr.Plot(label="Knowledge Graph")
|
| 144 |
+
refresh_btn = gr.Button("Refresh Graph")
|
| 145 |
+
refresh_btn.click(fn=generate_graph, inputs=None, outputs=graph_plot)
|
| 146 |
+
|
| 147 |
+
with gr.Tab("Ask a Question"):
|
| 148 |
+
gr.Markdown("**AI Q&A:** Ask a question about your documents.")
|
| 149 |
+
question_in = gr.Textbox(label="Your Question")
|
| 150 |
+
answer_out = gr.Textbox(label="Answer", interactive=False)
|
| 151 |
+
ask_btn = gr.Button("Get Answer")
|
| 152 |
+
ask_btn.click(fn=handle_query, inputs=question_in, outputs=answer_out)
|
| 153 |
+
|
| 154 |
+
if __name__ == "__main__":
|
| 155 |
+
# Launch Gradio app (Hugging Face Spaces will auto-launch this)
|
| 156 |
+
# demo.queue().launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|
| 157 |
+
demo.launch(mcp_server=True)
|
config.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# config.py
|
| 2 |
+
import os
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
load_dotenv() # loads from .env if present
|
| 5 |
+
MISTRAL_API_KEY = os.environ.get("MISTRAL_API_KEY")
|
| 6 |
+
CLAUDE_API_KEY = os.environ.get("CLAUDE_API_KEY")
|
| 7 |
+
BRAVE_API_KEY = os.environ.get("BRAVE_API_KEY")
|
core/__init__.py
ADDED
|
File without changes
|
core/agent.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from core.storage import search_documents
|
| 3 |
+
# For Q&A we can use a simple retrieval + QA pipeline (stubbed here)
|
| 4 |
+
# In a real app, you might use LangChain or a HuggingFace question-answering model.
|
| 5 |
+
|
| 6 |
+
def answer_question(question: str) -> str:
|
| 7 |
+
"""
|
| 8 |
+
Agent: retrieve relevant docs and answer the question.
|
| 9 |
+
"""
|
| 10 |
+
# Retrieve top documents
|
| 11 |
+
results = search_documents(question, top_k=3)
|
| 12 |
+
doc_texts = results.get("documents", [[]])[0]
|
| 13 |
+
combined = " ".join(doc_texts)
|
| 14 |
+
# Stub: just echo the question and number of docs
|
| 15 |
+
if not combined.strip():
|
| 16 |
+
return "No relevant documents found."
|
| 17 |
+
return f"Answered question: '{question}' (based on {len(doc_texts)} documents)."
|
core/ai_enrichment.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# core/ai_enrichment.py
|
| 2 |
+
|
| 3 |
+
from mistralai import Mistral
|
| 4 |
+
import config
|
| 5 |
+
|
| 6 |
+
def generate_tags(text: str) -> list[str]:
|
| 7 |
+
"""
|
| 8 |
+
Use Mistral AI to generate 5-7 relevant tags for the text.
|
| 9 |
+
"""
|
| 10 |
+
with Mistral(api_key=config.MISTRAL_API_KEY) as client:
|
| 11 |
+
response = client.chat.complete(
|
| 12 |
+
model="mistral-small-latest",
|
| 13 |
+
messages=[{
|
| 14 |
+
"role": "user",
|
| 15 |
+
"content": f"Generate 5-7 relevant tags (comma-separated) for the following text:\n\n{text}"
|
| 16 |
+
}]
|
| 17 |
+
)
|
| 18 |
+
try:
|
| 19 |
+
content = response["choices"][0]["message"]["content"]
|
| 20 |
+
except (KeyError, IndexError):
|
| 21 |
+
return []
|
| 22 |
+
tags = [tag.strip() for tag in content.split(",") if tag.strip()]
|
| 23 |
+
return tags
|
| 24 |
+
|
| 25 |
+
def summarize_text(text: str) -> str:
|
| 26 |
+
"""
|
| 27 |
+
Use Mistral AI to generate a concise summary of the text.
|
| 28 |
+
"""
|
| 29 |
+
with Mistral(api_key=config.MISTRAL_API_KEY) as client:
|
| 30 |
+
response = client.chat.complete(
|
| 31 |
+
model="mistral-small-latest",
|
| 32 |
+
messages=[{
|
| 33 |
+
"role": "user",
|
| 34 |
+
"content": f"Summarize the following text in a concise manner:\n\n{text}"
|
| 35 |
+
}]
|
| 36 |
+
)
|
| 37 |
+
try:
|
| 38 |
+
summary = response["choices"][0]["message"]["content"].strip()
|
| 39 |
+
except (KeyError, IndexError):
|
| 40 |
+
return ""
|
| 41 |
+
return summary
|
core/components.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
class DocumentViewer(gr.components.Component):
|
| 4 |
+
"""
|
| 5 |
+
Custom Gradio component for document preview and tag editing.
|
| 6 |
+
(Stub implementation)
|
| 7 |
+
"""
|
| 8 |
+
def __init__(self, label=None):
|
| 9 |
+
super().__init__(label=label, value=None)
|
| 10 |
+
self.visible = True
|
| 11 |
+
self.interactive = False
|
| 12 |
+
|
| 13 |
+
def preprocess(self, x):
|
| 14 |
+
# Input is a file path (or object); just return as-is
|
| 15 |
+
return x
|
| 16 |
+
|
| 17 |
+
def postprocess(self, x):
|
| 18 |
+
# x is the raw document text; display first few lines as preview
|
| 19 |
+
if not x:
|
| 20 |
+
return ""
|
| 21 |
+
lines = x.splitlines()
|
| 22 |
+
preview = "\n".join(lines[:10])
|
| 23 |
+
return preview
|
core/components.pyi
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from gradio.events import Dependency
|
| 3 |
+
|
| 4 |
+
class DocumentViewer(gr.components.Component):
|
| 5 |
+
"""
|
| 6 |
+
Custom Gradio component for document preview and tag editing.
|
| 7 |
+
(Stub implementation)
|
| 8 |
+
"""
|
| 9 |
+
def __init__(self, label=None):
|
| 10 |
+
super().__init__(label=label, value=None)
|
| 11 |
+
self.visible = True
|
| 12 |
+
self.interactive = False
|
| 13 |
+
|
| 14 |
+
def preprocess(self, x):
|
| 15 |
+
# Input is a file path (or object); just return as-is
|
| 16 |
+
return x
|
| 17 |
+
|
| 18 |
+
def postprocess(self, x):
|
| 19 |
+
# x is the raw document text; display first few lines as preview
|
| 20 |
+
if not x:
|
| 21 |
+
return ""
|
| 22 |
+
lines = x.splitlines()
|
| 23 |
+
preview = "\n".join(lines[:10])
|
| 24 |
+
return preview
|
| 25 |
+
from typing import Callable, Literal, Sequence, Any, TYPE_CHECKING
|
| 26 |
+
from gradio.blocks import Block
|
| 27 |
+
if TYPE_CHECKING:
|
| 28 |
+
from gradio.components import Timer
|
| 29 |
+
from gradio.components.base import Component
|
core/database.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# core/database.py
|
| 2 |
+
|
| 3 |
+
import chromadb
|
| 4 |
+
from chromadb.config import Settings
|
| 5 |
+
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
|
| 6 |
+
import config
|
| 7 |
+
|
| 8 |
+
def init_chroma():
|
| 9 |
+
"""
|
| 10 |
+
Initialize a ChromaDB client and collection with an embedding function.
|
| 11 |
+
Uses OpenAI embeddings if API key is available, otherwise a dummy embedding.
|
| 12 |
+
"""
|
| 13 |
+
# Initialize Chroma client (in-memory by default)
|
| 14 |
+
client = chromadb.Client(Settings())
|
| 15 |
+
|
| 16 |
+
# Determine embedding function
|
| 17 |
+
embedding_fn = None
|
| 18 |
+
try:
|
| 19 |
+
openai_key = config.OPENAI_API_KEY
|
| 20 |
+
except AttributeError:
|
| 21 |
+
openai_key = None
|
| 22 |
+
|
| 23 |
+
if openai_key:
|
| 24 |
+
embedding_fn = OpenAIEmbeddingFunction(
|
| 25 |
+
api_key=openai_key,
|
| 26 |
+
model_name="text-embedding-ada-002"
|
| 27 |
+
)
|
| 28 |
+
else:
|
| 29 |
+
# Dummy embedding: one-dimensional embedding based on text length
|
| 30 |
+
class DummyEmbedding:
|
| 31 |
+
def __call__(self, texts):
|
| 32 |
+
return [[float(len(text))] for text in texts]
|
| 33 |
+
embedding_fn = DummyEmbedding()
|
| 34 |
+
|
| 35 |
+
# Create or get collection named "documents"
|
| 36 |
+
collection = client.get_or_create_collection(
|
| 37 |
+
name="documents",
|
| 38 |
+
embedding_function=embedding_fn
|
| 39 |
+
)
|
| 40 |
+
return collection
|
| 41 |
+
|
| 42 |
+
def add_document(collection, doc_id: str, text: str, tags: list[str], summary: str, source: str):
|
| 43 |
+
"""
|
| 44 |
+
Add a document to the ChromaDB collection with metadata.
|
| 45 |
+
"""
|
| 46 |
+
metadata = {"tags": tags, "summary": summary, "source": source}
|
| 47 |
+
# Add document (Chroma will generate embeddings using the collection's embedding function)
|
| 48 |
+
collection.add(
|
| 49 |
+
ids=[doc_id],
|
| 50 |
+
documents=[text],
|
| 51 |
+
metadatas=[metadata]
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
def search_documents(collection, query: str, top_n: int = 5) -> list[dict]:
|
| 55 |
+
"""
|
| 56 |
+
Search for semantically similar documents in the collection.
|
| 57 |
+
Returns top N results with their metadata.
|
| 58 |
+
"""
|
| 59 |
+
results = collection.query(
|
| 60 |
+
query_texts=[query],
|
| 61 |
+
n_results=top_n,
|
| 62 |
+
include=["metadatas", "documents", "distances"]
|
| 63 |
+
)
|
| 64 |
+
hits = []
|
| 65 |
+
# Extract the results from the Chroma query response
|
| 66 |
+
ids = results.get("ids", [[]])[0]
|
| 67 |
+
documents = results.get("documents", [[]])[0]
|
| 68 |
+
metadatas = results.get("metadatas", [[]])[0]
|
| 69 |
+
distances = results.get("distances", [[]])[0]
|
| 70 |
+
|
| 71 |
+
for i, doc_id in enumerate(ids):
|
| 72 |
+
hit = {
|
| 73 |
+
"id": doc_id,
|
| 74 |
+
"score": distances[i] if i < len(distances) else None,
|
| 75 |
+
"source": metadatas[i].get("source") if i < len(metadatas) else None,
|
| 76 |
+
"tags": metadatas[i].get("tags") if i < len(metadatas) else None,
|
| 77 |
+
"summary": metadatas[i].get("summary") if i < len(metadatas) else None,
|
| 78 |
+
"document": documents[i] if i < len(documents) else None
|
| 79 |
+
}
|
| 80 |
+
hits.append(hit)
|
| 81 |
+
return hits
|
core/parser.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from bs4 import BeautifulSoup
|
| 3 |
+
from unstructured.partition.auto import partition
|
| 4 |
+
|
| 5 |
+
def parse_document(file_path: str) -> str:
|
| 6 |
+
"""
|
| 7 |
+
Parse a document file (PDF, DOCX, TXT, etc.) into text using Unstructured.
|
| 8 |
+
"""
|
| 9 |
+
try:
|
| 10 |
+
elements = partition(file_path)
|
| 11 |
+
# Combine text elements into a single string
|
| 12 |
+
text = "\n".join([elem.text for elem in elements if elem.text])
|
| 13 |
+
return text
|
| 14 |
+
except Exception as e:
|
| 15 |
+
return f"Error parsing document: {e}"
|
| 16 |
+
|
| 17 |
+
def parse_url(url: str) -> str:
|
| 18 |
+
"""
|
| 19 |
+
Fetch and parse webpage content at the given URL.
|
| 20 |
+
"""
|
| 21 |
+
try:
|
| 22 |
+
headers = {"User-Agent": "Mozilla/5.0"}
|
| 23 |
+
response = requests.get(url, headers=headers, timeout=10)
|
| 24 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 25 |
+
# Extract visible text from paragraphs
|
| 26 |
+
paragraphs = soup.find_all(['p', 'h1', 'h2', 'h3', 'li'])
|
| 27 |
+
text = "\n".join([p.get_text() for p in paragraphs])
|
| 28 |
+
return text
|
| 29 |
+
except Exception as e:
|
| 30 |
+
return f"Error fetching URL: {e}"
|
core/processing.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# core/processing.py
|
| 2 |
+
|
| 3 |
+
import requests
|
| 4 |
+
from unstructured.partition.html import partition_html
|
| 5 |
+
from unstructured.partition.auto import partition
|
| 6 |
+
import config
|
| 7 |
+
|
| 8 |
+
def fetch_web_content(url: str) -> str:
|
| 9 |
+
"""
|
| 10 |
+
Fetch and parse web content from the given URL into structured text.
|
| 11 |
+
"""
|
| 12 |
+
try:
|
| 13 |
+
# Use Unstructured to fetch and parse HTML content directly from the URL
|
| 14 |
+
elements = partition_html(url=url)
|
| 15 |
+
text = "\n\n".join([elem.text for elem in elements if hasattr(elem, 'text') and elem.text])
|
| 16 |
+
return text
|
| 17 |
+
except Exception:
|
| 18 |
+
# If Unstructured parsing fails, attempt a simple HTTP GET as a fallback
|
| 19 |
+
try:
|
| 20 |
+
response = requests.get(url)
|
| 21 |
+
response.raise_for_status()
|
| 22 |
+
html_text = response.text
|
| 23 |
+
# Attempt parsing the fetched HTML text
|
| 24 |
+
elements = partition(filename=None, file=html_text)
|
| 25 |
+
text = "\n\n".join([elem.text for elem in elements if hasattr(elem, 'text') and elem.text])
|
| 26 |
+
return text
|
| 27 |
+
except Exception:
|
| 28 |
+
# On failure, return empty string
|
| 29 |
+
return ""
|
| 30 |
+
|
| 31 |
+
def parse_local_file(file_path: str) -> str:
|
| 32 |
+
"""
|
| 33 |
+
Parse a local file into structured text using the Unstructured library.
|
| 34 |
+
Supports various file formats (e.g., PDF, DOCX, TXT).
|
| 35 |
+
"""
|
| 36 |
+
try:
|
| 37 |
+
elements = partition(filename=file_path)
|
| 38 |
+
text = "\n\n".join([elem.text for elem in elements if hasattr(elem, 'text') and elem.text])
|
| 39 |
+
return text
|
| 40 |
+
except Exception:
|
| 41 |
+
# Return empty string on failure
|
| 42 |
+
return ""
|
core/storage.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import chromadb
|
| 2 |
+
import os
|
| 3 |
+
from mistralai import Mistral
|
| 4 |
+
import config
|
| 5 |
+
|
| 6 |
+
# Initialize ChromaDB client (persistent directory can be set via CHROMA_DB_DIR)
|
| 7 |
+
chroma_db_path = os.getenv("CHROMA_DB_DIR", "db/")
|
| 8 |
+
client = chromadb.Client()
|
| 9 |
+
collection = client.get_or_create_collection("documents")
|
| 10 |
+
|
| 11 |
+
# Use Mistral API for embeddings
|
| 12 |
+
|
| 13 |
+
def get_mistral_embedding(text: str) -> list[float]:
|
| 14 |
+
"""
|
| 15 |
+
Get embedding for the given text using Mistral API.
|
| 16 |
+
"""
|
| 17 |
+
with Mistral(api_key=config.MISTRAL_API_KEY) as client:
|
| 18 |
+
response = client.embeddings.create(
|
| 19 |
+
model="mistral-embed",
|
| 20 |
+
input=text
|
| 21 |
+
)
|
| 22 |
+
# The API returns a list of embeddings (one per input)
|
| 23 |
+
return response['data'][0]['embedding']
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def add_document(doc_id: str, text: str, metadata: dict):
|
| 27 |
+
"""
|
| 28 |
+
Add a document's text and metadata to the ChromaDB collection.
|
| 29 |
+
"""
|
| 30 |
+
embedding = get_mistral_embedding(text)
|
| 31 |
+
collection.add(ids=[doc_id], embeddings=[embedding], documents=[text], metadatas=[metadata])
|
| 32 |
+
# Persist to disk
|
| 33 |
+
client.persist()
|
| 34 |
+
return True
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def search_documents(query: str, top_k: int = 5) -> dict:
|
| 38 |
+
"""
|
| 39 |
+
Search for documents semantically similar to the query.
|
| 40 |
+
Returns a dictionary of top results.
|
| 41 |
+
"""
|
| 42 |
+
query_vec = get_mistral_embedding(query)
|
| 43 |
+
results = collection.query(query_embeddings=[query_vec], n_results=top_k,
|
| 44 |
+
include=['ids','distances','documents','metadatas'])
|
| 45 |
+
return results
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_all_documents() -> list:
|
| 49 |
+
"""
|
| 50 |
+
Retrieve metadata for all documents in the collection.
|
| 51 |
+
"""
|
| 52 |
+
all_ids = collection.get()['ids']
|
| 53 |
+
docs = []
|
| 54 |
+
for doc_id in all_ids:
|
| 55 |
+
res = collection.get(ids=[doc_id])
|
| 56 |
+
if res and res['metadatas']:
|
| 57 |
+
docs.append({"id": doc_id, "metadata": res['metadatas'][0]})
|
| 58 |
+
return docs
|
core/summarizer.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def summarize_content(text: str) -> str:
|
| 2 |
+
"""
|
| 3 |
+
Generate a summary of the text. (This is a stub simulating a Claude 3 Haiku call.)
|
| 4 |
+
"""
|
| 5 |
+
# In a real app, you might call the Anthropic Claude 3 API here.
|
| 6 |
+
# We'll return the first 100 characters as a "summary".
|
| 7 |
+
summary = text.strip().replace("\n", " ")
|
| 8 |
+
summary = summary[:100] + ("..." if len(summary) > 100 else "")
|
| 9 |
+
return f"Summary: {summary}"
|
| 10 |
+
|
| 11 |
+
def tag_content(text: str) -> list:
|
| 12 |
+
"""
|
| 13 |
+
Generate tags for the text. (This is a stub simulating a Mistral 7B call.)
|
| 14 |
+
"""
|
| 15 |
+
# In a real app, you might call a tag-generation model or use embeddings.
|
| 16 |
+
# We'll simulate by picking some keywords.
|
| 17 |
+
common_words = ["data", "analysis", "python", "research", "AI"]
|
| 18 |
+
tags = []
|
| 19 |
+
lower = text.lower()
|
| 20 |
+
for word in common_words:
|
| 21 |
+
if word in lower:
|
| 22 |
+
tags.append(word)
|
| 23 |
+
if not tags:
|
| 24 |
+
tags = ["general"]
|
| 25 |
+
return tags
|
core/utils.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# core/utils.py
|
| 2 |
+
|
| 3 |
+
import re
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
import hashlib
|
| 6 |
+
|
| 7 |
+
def clean_text(text: str) -> str:
|
| 8 |
+
"""
|
| 9 |
+
Clean and normalize text by removing extra whitespace.
|
| 10 |
+
"""
|
| 11 |
+
if not text:
|
| 12 |
+
return ""
|
| 13 |
+
# Collapse multiple whitespace into single spaces and strip ends
|
| 14 |
+
cleaned = re.sub(r'\s+', ' ', text)
|
| 15 |
+
return cleaned.strip()
|
| 16 |
+
|
| 17 |
+
def generate_doc_id(source: str) -> str:
|
| 18 |
+
"""
|
| 19 |
+
Generate a unique document ID based on source identifier and timestamp.
|
| 20 |
+
"""
|
| 21 |
+
timestamp = datetime.now().isoformat()
|
| 22 |
+
raw_id = f"{source}-{timestamp}"
|
| 23 |
+
return hashlib.md5(raw_id.encode()).hexdigest()
|
data/article_url.txt
ADDED
|
File without changes
|
data/document1.pdf
ADDED
|
File without changes
|
data/sample_note.txt
ADDED
|
File without changes
|
mcp_tools.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# # mcp_tools.py
|
| 2 |
+
|
| 3 |
+
# from fastmcp import FastMCP
|
| 4 |
+
# import core.processing as processing
|
| 5 |
+
# import core.ai_enrichment as ai_enrichment
|
| 6 |
+
# import core.database as db
|
| 7 |
+
# import core.utils as utils
|
| 8 |
+
|
| 9 |
+
# # Initialize the FastMCP server instance
|
| 10 |
+
# mcp = FastMCP(name="IntelligentContentOrganizer")
|
| 11 |
+
|
| 12 |
+
# # Initialize the ChromaDB collection (shared for all tools)
|
| 13 |
+
# collection = db.init_chroma()
|
| 14 |
+
|
| 15 |
+
# @mcp.tool()
|
| 16 |
+
# def process_content(url: str) -> dict:
|
| 17 |
+
# """
|
| 18 |
+
# Process content from a web URL: fetch, enrich, and store.
|
| 19 |
+
# Returns document ID, tags, summary, and source.
|
| 20 |
+
# """
|
| 21 |
+
# content = processing.fetch_web_content(url)
|
| 22 |
+
# text = utils.clean_text(content)
|
| 23 |
+
# tags = ai_enrichment.generate_tags(text) if text else []
|
| 24 |
+
# summary = ai_enrichment.summarize_text(text) if text else ""
|
| 25 |
+
# doc_id = utils.generate_doc_id(url)
|
| 26 |
+
# # Add the document to the database collection
|
| 27 |
+
# db.add_document(collection, doc_id, text, tags, summary, source=url)
|
| 28 |
+
# return {"id": doc_id, "tags": tags, "summary": summary, "source": url}
|
| 29 |
+
|
| 30 |
+
# @mcp.tool()
|
| 31 |
+
# def upload_local_file(file_path: str) -> dict:
|
| 32 |
+
# """
|
| 33 |
+
# Process a local file: parse, enrich, and store.
|
| 34 |
+
# Returns document ID, tags, summary, and source.
|
| 35 |
+
# """
|
| 36 |
+
# content = processing.parse_local_file(file_path)
|
| 37 |
+
# text = utils.clean_text(content)
|
| 38 |
+
# tags = ai_enrichment.generate_tags(text) if text else []
|
| 39 |
+
# summary = ai_enrichment.summarize_text(text) if text else ""
|
| 40 |
+
# doc_id = utils.generate_doc_id(file_path)
|
| 41 |
+
# db.add_document(collection, doc_id, text, tags, summary, source=file_path)
|
| 42 |
+
# return {"id": doc_id, "tags": tags, "summary": summary, "source": file_path}
|
| 43 |
+
|
| 44 |
+
# @mcp.tool()
|
| 45 |
+
# def semantic_search(query: str, top_n: int = 5) -> list:
|
| 46 |
+
# """
|
| 47 |
+
# Search for documents semantically similar to the query.
|
| 48 |
+
# Returns top N results as a list of dictionaries.
|
| 49 |
+
# """
|
| 50 |
+
# results = db.search_documents(collection, query, top_n)
|
| 51 |
+
# return results
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
from fastmcp import FastMCP
|
| 55 |
+
from core.parser import parse_document, parse_url
|
| 56 |
+
from core.summarizer import summarize_content, tag_content
|
| 57 |
+
from core.storage import add_document, search_documents
|
| 58 |
+
from core.agent import answer_question
|
| 59 |
+
import json
|
| 60 |
+
|
| 61 |
+
mcp = FastMCP("IntelligentContentOrganizer_MCP")
|
| 62 |
+
|
| 63 |
+
@mcp.tool(name="parse_document")
|
| 64 |
+
def mcp_parse_document(file_path: str) -> str:
|
| 65 |
+
"""
|
| 66 |
+
MCP tool: Parse a document file and return extracted text.
|
| 67 |
+
"""
|
| 68 |
+
text = parse_document(file_path)
|
| 69 |
+
return text
|
| 70 |
+
|
| 71 |
+
@mcp.tool(name="parse_url")
|
| 72 |
+
def mcp_parse_url(url: str) -> str:
|
| 73 |
+
"""
|
| 74 |
+
MCP tool: Fetch and parse webpage content from a URL.
|
| 75 |
+
"""
|
| 76 |
+
text = parse_url(url)
|
| 77 |
+
return text
|
| 78 |
+
|
| 79 |
+
@mcp.tool(name="summarize")
|
| 80 |
+
def mcp_summarize(text: str) -> str:
|
| 81 |
+
"""
|
| 82 |
+
MCP tool: Generate a summary of the provided text.
|
| 83 |
+
"""
|
| 84 |
+
return summarize_content(text)
|
| 85 |
+
|
| 86 |
+
@mcp.tool(name="tag")
|
| 87 |
+
def mcp_tag(text: str) -> str:
|
| 88 |
+
"""
|
| 89 |
+
MCP tool: Generate tags for the provided text (JSON list).
|
| 90 |
+
"""
|
| 91 |
+
tags = tag_content(text)
|
| 92 |
+
return json.dumps(tags)
|
| 93 |
+
|
| 94 |
+
@mcp.tool(name="add_to_db")
|
| 95 |
+
def mcp_add_to_db(doc_id: str, text: str, metadata_json: str) -> str:
|
| 96 |
+
"""
|
| 97 |
+
MCP tool: Add a document to ChromaDB with given ID and metadata (JSON).
|
| 98 |
+
"""
|
| 99 |
+
metadata = json.loads(metadata_json)
|
| 100 |
+
add_document(doc_id, text, metadata)
|
| 101 |
+
return "Document added with ID: " + doc_id
|
| 102 |
+
|
| 103 |
+
@mcp.tool(name="search_db")
|
| 104 |
+
def mcp_search_db(query: str, top_k: int = 5) -> str:
|
| 105 |
+
"""
|
| 106 |
+
MCP tool: Search documents using a query (semantic search). Returns JSON results.
|
| 107 |
+
"""
|
| 108 |
+
results = search_documents(query, top_k=top_k)
|
| 109 |
+
return json.dumps(results)
|
| 110 |
+
|
| 111 |
+
@mcp.tool(name="answer_question")
|
| 112 |
+
def mcp_answer_question(question: str) -> str:
|
| 113 |
+
"""
|
| 114 |
+
MCP tool: Answer a question using the agentic workflow.
|
| 115 |
+
"""
|
| 116 |
+
answer = answer_question(question)
|
| 117 |
+
return answer
|
| 118 |
+
|
| 119 |
+
if __name__ == "__main__":
|
| 120 |
+
# Run the MCP server (streamable HTTP for web integration:contentReference[oaicite:6]{index=6})
|
| 121 |
+
mcp.run(transport="streamable-http", host="0.0.0.0", port=7861, path="/mcp")
|
| 122 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
mistralai
|
| 3 |
+
python-dotenv
|
| 4 |
+
gradio>=4.0
|
| 5 |
+
fastmcp>=2.0
|
| 6 |
+
chromadb
|
| 7 |
+
sentence-transformers
|
| 8 |
+
unstructured
|
| 9 |
+
requests
|
| 10 |
+
beautifulsoup4
|
| 11 |
+
plotly
|
| 12 |
+
networkx
|