import argparse import json import math import os import random import time from multiprocessing import Value # from omegaconf import OmegaConf import toml from tqdm import tqdm import torch from library import deepspeed_utils from library.device_utils import init_ipex, clean_memory_on_device init_ipex() from torch.nn.parallel import DistributedDataParallel as DDP from accelerate.utils import set_seed from diffusers import DDPMScheduler, ControlNetModel from safetensors.torch import load_file import library.model_util as model_util import library.train_util as train_util import library.config_util as config_util from library.config_util import ( ConfigSanitizer, BlueprintGenerator, ) import library.huggingface_util as huggingface_util import library.custom_train_functions as custom_train_functions from library.custom_train_functions import ( apply_snr_weight, pyramid_noise_like, apply_noise_offset, ) from library.utils import setup_logging, add_logging_arguments setup_logging() import logging logger = logging.getLogger(__name__) # TODO 他のスクリプトと共通化する def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler): logs = { "loss/current": current_loss, "loss/average": avr_loss, "lr": lr_scheduler.get_last_lr()[0], } if args.optimizer_type.lower().startswith("DAdapt".lower()): logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"] return logs def train(args): # session_id = random.randint(0, 2**32) # training_started_at = time.time() train_util.verify_training_args(args) train_util.prepare_dataset_args(args, True) setup_logging(args, reset=True) cache_latents = args.cache_latents use_user_config = args.dataset_config is not None if args.seed is None: args.seed = random.randint(0, 2**32) set_seed(args.seed) tokenizer = train_util.load_tokenizer(args) # データセットを準備する blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, False, True, True)) if use_user_config: logger.info(f"Load dataset config from {args.dataset_config}") user_config = config_util.load_user_config(args.dataset_config) ignored = ["train_data_dir", "conditioning_data_dir"] if any(getattr(args, attr) is not None for attr in ignored): logger.warning( "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( ", ".join(ignored) ) ) else: user_config = { "datasets": [ { "subsets": config_util.generate_controlnet_subsets_config_by_subdirs( args.train_data_dir, args.conditioning_data_dir, args.caption_extension, ) } ] } blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer) train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) current_epoch = Value("i", 0) current_step = Value("i", 0) ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) train_dataset_group.verify_bucket_reso_steps(64) if args.debug_dataset: train_util.debug_dataset(train_dataset_group) return if len(train_dataset_group) == 0: logger.error( "No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)" ) return if cache_latents: assert ( train_dataset_group.is_latent_cacheable() ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" # acceleratorを準備する logger.info("prepare accelerator") accelerator = train_util.prepare_accelerator(args) is_main_process = accelerator.is_main_process # mixed precisionに対応した型を用意しておき適宜castする weight_dtype, save_dtype = train_util.prepare_dtype(args) # モデルを読み込む text_encoder, vae, unet, _ = train_util.load_target_model( args, weight_dtype, accelerator, unet_use_linear_projection_in_v2=True ) # DiffusersのControlNetが使用するデータを準備する if args.v2: unet.config = { "act_fn": "silu", "attention_head_dim": [5, 10, 20, 20], "block_out_channels": [320, 640, 1280, 1280], "center_input_sample": False, "cross_attention_dim": 1024, "down_block_types": ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"], "downsample_padding": 1, "dual_cross_attention": False, "flip_sin_to_cos": True, "freq_shift": 0, "in_channels": 4, "layers_per_block": 2, "mid_block_scale_factor": 1, "mid_block_type": "UNetMidBlock2DCrossAttn", "norm_eps": 1e-05, "norm_num_groups": 32, "num_attention_heads": [5, 10, 20, 20], "num_class_embeds": None, "only_cross_attention": False, "out_channels": 4, "sample_size": 96, "up_block_types": ["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"], "use_linear_projection": True, "upcast_attention": True, "only_cross_attention": False, "downsample_padding": 1, "use_linear_projection": True, "class_embed_type": None, "num_class_embeds": None, "resnet_time_scale_shift": "default", "projection_class_embeddings_input_dim": None, } else: unet.config = { "act_fn": "silu", "attention_head_dim": 8, "block_out_channels": [320, 640, 1280, 1280], "center_input_sample": False, "cross_attention_dim": 768, "down_block_types": ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"], "downsample_padding": 1, "flip_sin_to_cos": True, "freq_shift": 0, "in_channels": 4, "layers_per_block": 2, "mid_block_scale_factor": 1, "mid_block_type": "UNetMidBlock2DCrossAttn", "norm_eps": 1e-05, "norm_num_groups": 32, "num_attention_heads": 8, "out_channels": 4, "sample_size": 64, "up_block_types": ["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"], "only_cross_attention": False, "downsample_padding": 1, "use_linear_projection": False, "class_embed_type": None, "num_class_embeds": None, "upcast_attention": False, "resnet_time_scale_shift": "default", "projection_class_embeddings_input_dim": None, } # unet.config = OmegaConf.create(unet.config) # make unet.config iterable and accessible by attribute class CustomConfig: def __init__(self, **kwargs): self.__dict__.update(kwargs) def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] else: raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'") def __contains__(self, name): return name in self.__dict__ unet.config = CustomConfig(**unet.config) controlnet = ControlNetModel.from_unet(unet) if args.controlnet_model_name_or_path: filename = args.controlnet_model_name_or_path if os.path.isfile(filename): if os.path.splitext(filename)[1] == ".safetensors": state_dict = load_file(filename) else: state_dict = torch.load(filename) state_dict = model_util.convert_controlnet_state_dict_to_diffusers(state_dict) controlnet.load_state_dict(state_dict) elif os.path.isdir(filename): controlnet = ControlNetModel.from_pretrained(filename) # モデルに xformers とか memory efficient attention を組み込む train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa) # 学習を準備する if cache_latents: vae.to(accelerator.device, dtype=weight_dtype) vae.requires_grad_(False) vae.eval() with torch.no_grad(): train_dataset_group.cache_latents( vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process, ) vae.to("cpu") clean_memory_on_device(accelerator.device) accelerator.wait_for_everyone() if args.gradient_checkpointing: controlnet.enable_gradient_checkpointing() # 学習に必要なクラスを準備する accelerator.print("prepare optimizer, data loader etc.") trainable_params = list(controlnet.parameters()) _, _, optimizer = train_util.get_optimizer(args, trainable_params) # dataloaderを準備する # DataLoaderのプロセス数:0 は persistent_workers が使えないので注意 n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers train_dataloader = torch.utils.data.DataLoader( train_dataset_group, batch_size=1, shuffle=True, collate_fn=collator, num_workers=n_workers, persistent_workers=args.persistent_data_loader_workers, ) # 学習ステップ数を計算する if args.max_train_epochs is not None: args.max_train_steps = args.max_train_epochs * math.ceil( len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps ) accelerator.print( f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" ) # データセット側にも学習ステップを送信 train_dataset_group.set_max_train_steps(args.max_train_steps) # lr schedulerを用意する lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) # 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする if args.full_fp16: assert ( args.mixed_precision == "fp16" ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" accelerator.print("enable full fp16 training.") controlnet.to(weight_dtype) # acceleratorがなんかよろしくやってくれるらしい controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( controlnet, optimizer, train_dataloader, lr_scheduler ) unet.requires_grad_(False) text_encoder.requires_grad_(False) unet.to(accelerator.device) text_encoder.to(accelerator.device) # transform DDP after prepare controlnet = controlnet.module if isinstance(controlnet, DDP) else controlnet controlnet.train() if not cache_latents: vae.requires_grad_(False) vae.eval() vae.to(accelerator.device, dtype=weight_dtype) # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする if args.full_fp16: train_util.patch_accelerator_for_fp16_training(accelerator) # resumeする train_util.resume_from_local_or_hf_if_specified(accelerator, args) # epoch数を計算する num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 # 学習する # TODO: find a way to handle total batch size when there are multiple datasets accelerator.print("running training / 学習開始") accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") accelerator.print(f" num epochs / epoch数: {num_train_epochs}") accelerator.print( f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}" ) # logger.info(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}") accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") progress_bar = tqdm( range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps", ) global_step = 0 noise_scheduler = DDPMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False, ) if accelerator.is_main_process: init_kwargs = {} if args.wandb_run_name: init_kwargs["wandb"] = {"name": args.wandb_run_name} if args.log_tracker_config is not None: init_kwargs = toml.load(args.log_tracker_config) accelerator.init_trackers( "controlnet_train" if args.log_tracker_name is None else args.log_tracker_name, config=train_util.get_sanitized_config_or_none(args), init_kwargs=init_kwargs, ) loss_recorder = train_util.LossRecorder() del train_dataset_group # function for saving/removing def save_model(ckpt_name, model, force_sync_upload=False): os.makedirs(args.output_dir, exist_ok=True) ckpt_file = os.path.join(args.output_dir, ckpt_name) accelerator.print(f"\nsaving checkpoint: {ckpt_file}") state_dict = model_util.convert_controlnet_state_dict_to_sd(model.state_dict()) if save_dtype is not None: for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(save_dtype) state_dict[key] = v if os.path.splitext(ckpt_file)[1] == ".safetensors": from safetensors.torch import save_file save_file(state_dict, ckpt_file) else: torch.save(state_dict, ckpt_file) if args.huggingface_repo_id is not None: huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload) def remove_model(old_ckpt_name): old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name) if os.path.exists(old_ckpt_file): accelerator.print(f"removing old checkpoint: {old_ckpt_file}") os.remove(old_ckpt_file) # For --sample_at_first train_util.sample_images( accelerator, args, 0, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, controlnet=controlnet ) # training loop for epoch in range(num_train_epochs): if is_main_process: accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}") current_epoch.value = epoch + 1 for step, batch in enumerate(train_dataloader): current_step.value = global_step with accelerator.accumulate(controlnet): with torch.no_grad(): if "latents" in batch and batch["latents"] is not None: latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype) else: # latentに変換 latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * 0.18215 b_size = latents.shape[0] input_ids = batch["input_ids"].to(accelerator.device) encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype) # Sample noise that we'll add to the latents noise = torch.randn_like(latents, device=latents.device) if args.noise_offset: noise = apply_noise_offset(latents, noise, args.noise_offset, args.adaptive_noise_scale) elif args.multires_noise_iterations: noise = pyramid_noise_like( noise, latents.device, args.multires_noise_iterations, args.multires_noise_discount, ) # Sample a random timestep for each image timesteps, huber_c = train_util.get_timesteps_and_huber_c( args, 0, noise_scheduler.config.num_train_timesteps, noise_scheduler, b_size, latents.device ) # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) controlnet_image = batch["conditioning_images"].to(dtype=weight_dtype) with accelerator.autocast(): down_block_res_samples, mid_block_res_sample = controlnet( noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states, controlnet_cond=controlnet_image, return_dict=False, ) # Predict the noise residual noise_pred = unet( noisy_latents, timesteps, encoder_hidden_states, down_block_additional_residuals=[sample.to(dtype=weight_dtype) for sample in down_block_res_samples], mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype), ).sample if args.v_parameterization: # v-parameterization training target = noise_scheduler.get_velocity(latents, noise, timesteps) else: target = noise loss = train_util.conditional_loss( noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c ) loss = loss.mean([1, 2, 3]) loss_weights = batch["loss_weights"] # 各sampleごとのweight loss = loss * loss_weights if args.min_snr_gamma: loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization) loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし accelerator.backward(loss) if accelerator.sync_gradients and args.max_grad_norm != 0.0: params_to_clip = controlnet.parameters() accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=True) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 train_util.sample_images( accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, controlnet=controlnet, ) # 指定ステップごとにモデルを保存 if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: accelerator.wait_for_everyone() if accelerator.is_main_process: ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step) save_model( ckpt_name, accelerator.unwrap_model(controlnet), ) if args.save_state: train_util.save_and_remove_state_stepwise(args, accelerator, global_step) remove_step_no = train_util.get_remove_step_no(args, global_step) if remove_step_no is not None: remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no) remove_model(remove_ckpt_name) current_loss = loss.detach().item() loss_recorder.add(epoch=epoch, step=step, loss=current_loss) avr_loss: float = loss_recorder.moving_average logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if args.logging_dir is not None: logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break if args.logging_dir is not None: logs = {"loss/epoch": loss_recorder.moving_average} accelerator.log(logs, step=epoch + 1) accelerator.wait_for_everyone() # 指定エポックごとにモデルを保存 if args.save_every_n_epochs is not None: saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs if is_main_process and saving: ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1) save_model(ckpt_name, accelerator.unwrap_model(controlnet)) remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1) if remove_epoch_no is not None: remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no) remove_model(remove_ckpt_name) if args.save_state: train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1) train_util.sample_images( accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, controlnet=controlnet, ) # end of epoch if is_main_process: controlnet = accelerator.unwrap_model(controlnet) accelerator.end_training() if is_main_process and (args.save_state or args.save_state_on_train_end): train_util.save_state_on_train_end(args, accelerator) # del accelerator # この後メモリを使うのでこれは消す→printで使うので消さずにおく if is_main_process: ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as) save_model(ckpt_name, controlnet, force_sync_upload=True) logger.info("model saved.") def setup_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() add_logging_arguments(parser) train_util.add_sd_models_arguments(parser) train_util.add_dataset_arguments(parser, False, True, True) train_util.add_training_arguments(parser, False) deepspeed_utils.add_deepspeed_arguments(parser) train_util.add_optimizer_arguments(parser) config_util.add_config_arguments(parser) custom_train_functions.add_custom_train_arguments(parser) parser.add_argument( "--save_model_as", type=str, default="safetensors", choices=[None, "ckpt", "pt", "safetensors"], help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)", ) parser.add_argument( "--controlnet_model_name_or_path", type=str, default=None, help="controlnet model name or path / controlnetのモデル名またはパス", ) parser.add_argument( "--conditioning_data_dir", type=str, default=None, help="conditioning data directory / 条件付けデータのディレクトリ", ) return parser if __name__ == "__main__": parser = setup_parser() args = parser.parse_args() train_util.verify_command_line_training_args(args) args = train_util.read_config_from_file(args, parser) train(args)