4 models
Browse files
app.py
CHANGED
|
@@ -13,9 +13,17 @@ tokenizer = AutoTokenizer.from_pretrained("LazarusNLP/NusaBERT-large")
|
|
| 13 |
bigru_model = BERTBiGRUClassifier.from_pretrained("Amal17/NusaBERT-concate-BiGRU-NusaX-ace")
|
| 14 |
bigru_model.eval()
|
| 15 |
|
|
|
|
|
|
|
|
|
|
| 16 |
bilstm_model = BERTBiLSTMClassifier.from_pretrained("Amal17/NusaBERT-concate-BiLSTM-NusaX-ace")
|
| 17 |
bilstm_model.eval()
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# Inference helper
|
| 20 |
def predict_with_model(model, text):
|
| 21 |
inputs = tokenizer(
|
|
@@ -38,9 +46,14 @@ def compare_models(text):
|
|
| 38 |
pred_a, conf_a = predict_with_model(bigru_model, text)
|
| 39 |
pred_b, conf_b = predict_with_model(bilstm_model, text)
|
| 40 |
|
|
|
|
|
|
|
|
|
|
| 41 |
return (
|
| 42 |
-
f"
|
| 43 |
-
f"
|
|
|
|
|
|
|
| 44 |
)
|
| 45 |
|
| 46 |
# Build Gradio UI
|
|
@@ -48,12 +61,12 @@ interface = gr.Interface(
|
|
| 48 |
fn=compare_models,
|
| 49 |
inputs=gr.Textbox(label="Input Text"),
|
| 50 |
outputs=[
|
| 51 |
-
gr.Textbox(label="BiGRU
|
| 52 |
-
gr.Textbox(label="
|
| 53 |
-
gr.Textbox(label="
|
| 54 |
-
gr.Textbox(label="
|
| 55 |
],
|
| 56 |
-
title="Model
|
| 57 |
)
|
| 58 |
|
| 59 |
interface.launch()
|
|
|
|
| 13 |
bigru_model = BERTBiGRUClassifier.from_pretrained("Amal17/NusaBERT-concate-BiGRU-NusaX-ace")
|
| 14 |
bigru_model.eval()
|
| 15 |
|
| 16 |
+
bigru_translate_model = BERTBiGRUClassifier.from_pretrained("Amal17/NusaBERT-concate-BiGRU-NusaTranslate-senti")
|
| 17 |
+
bigru_translate_model.eval()
|
| 18 |
+
|
| 19 |
bilstm_model = BERTBiLSTMClassifier.from_pretrained("Amal17/NusaBERT-concate-BiLSTM-NusaX-ace")
|
| 20 |
bilstm_model.eval()
|
| 21 |
|
| 22 |
+
bilstm_translate_model = BERTBiLSTMClassifier.from_pretrained("Amal17/NusaBERT-concate-BiLSTM-NusaTranslate-senti")
|
| 23 |
+
bilstm_translate_model.eval()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
# Inference helper
|
| 28 |
def predict_with_model(model, text):
|
| 29 |
inputs = tokenizer(
|
|
|
|
| 46 |
pred_a, conf_a = predict_with_model(bigru_model, text)
|
| 47 |
pred_b, conf_b = predict_with_model(bilstm_model, text)
|
| 48 |
|
| 49 |
+
pred_c, conf_c = predict_with_model(bigru_translate_model, text)
|
| 50 |
+
pred_d, conf_d = predict_with_model(bilstm_translate_model, text)
|
| 51 |
+
|
| 52 |
return (
|
| 53 |
+
f"Class: {pred_a} ({CLASS_MAP[pred_a]}) with confidence: {conf_a:.4f}",
|
| 54 |
+
f"Class: {pred_b} ({CLASS_MAP[pred_b]}) with confidence: {conf_b:.4f}",
|
| 55 |
+
f"Class: {pred_c} ({CLASS_MAP[pred_c]}) with confidence: {conf_c:.4f}",
|
| 56 |
+
f"Class: {pred_d} ({CLASS_MAP[pred_d]}) with confidence: {conf_d:.4f}",
|
| 57 |
)
|
| 58 |
|
| 59 |
# Build Gradio UI
|
|
|
|
| 61 |
fn=compare_models,
|
| 62 |
inputs=gr.Textbox(label="Input Text"),
|
| 63 |
outputs=[
|
| 64 |
+
gr.Textbox(label="NusaBERT-BiGRU-ace"),
|
| 65 |
+
gr.Textbox(label="NusaBERT-BiLSTM-ace"),
|
| 66 |
+
gr.Textbox(label="NusaBERT-BiGRU-translate"),
|
| 67 |
+
gr.Textbox(label="NusaBERT-BiLSRM-translate"),
|
| 68 |
],
|
| 69 |
+
title="Hybrid Model NusaBERT + RNN"
|
| 70 |
)
|
| 71 |
|
| 72 |
interface.launch()
|