Spaces:
Starting
Starting
Upload 6 files
Browse files- app.py +302 -0
- config.py +51 -0
- model_handler.py +209 -0
- planning.py +60 -0
- requirements.txt +19 -0
- utils.py +102 -0
app.py
ADDED
|
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio interface for WAN-VACE video generation
|
| 3 |
+
"""
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torch
|
| 6 |
+
import time
|
| 7 |
+
from typing import Optional
|
| 8 |
+
|
| 9 |
+
# Import the simple planner
|
| 10 |
+
from planning import plan_from_topic
|
| 11 |
+
|
| 12 |
+
from config import UI_CONFIG, DEFAULT_PARAMS, SERVER_CONFIG
|
| 13 |
+
from model_handler import model_handler
|
| 14 |
+
from utils import cleanup_temp_files
|
| 15 |
+
|
| 16 |
+
def load_model_interface(progress=gr.Progress()):
|
| 17 |
+
"""Interface function for loading the model"""
|
| 18 |
+
def progress_callback(value, message):
|
| 19 |
+
progress(value, desc=message)
|
| 20 |
+
|
| 21 |
+
success, message = model_handler.load_model(progress_callback)
|
| 22 |
+
|
| 23 |
+
if success:
|
| 24 |
+
return (
|
| 25 |
+
gr.update(visible=False), # Hide load button
|
| 26 |
+
gr.update(visible=True), # Show generation interface
|
| 27 |
+
gr.update(value=message, visible=True), # Show success message
|
| 28 |
+
gr.update(visible=False) # Hide error message
|
| 29 |
+
)
|
| 30 |
+
else:
|
| 31 |
+
return (
|
| 32 |
+
gr.update(visible=True), # Keep load button visible
|
| 33 |
+
gr.update(visible=False), # Keep generation interface hidden
|
| 34 |
+
gr.update(visible=False), # Hide success message
|
| 35 |
+
gr.update(value=message, visible=True) # Show error message
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
def generate_video_interface(
|
| 39 |
+
prompt: str,
|
| 40 |
+
negative_prompt: str,
|
| 41 |
+
width: int,
|
| 42 |
+
height: int,
|
| 43 |
+
num_frames: int,
|
| 44 |
+
num_inference_steps: int,
|
| 45 |
+
guidance_scale: float,
|
| 46 |
+
seed: Optional[int],
|
| 47 |
+
progress=gr.Progress()
|
| 48 |
+
):
|
| 49 |
+
"""Interface function for video generation"""
|
| 50 |
+
|
| 51 |
+
def progress_callback(value, message):
|
| 52 |
+
progress(value, desc=message)
|
| 53 |
+
|
| 54 |
+
# Plan the prompt: treat the user input as a high‑level concept and let the
|
| 55 |
+
# agent craft a refined prompt and recommended negative prompt. If the user
|
| 56 |
+
# supplies a negative prompt, it overrides the recommended negative prompt.
|
| 57 |
+
plan = plan_from_topic(prompt)
|
| 58 |
+
# Use the refined prompt from the plan
|
| 59 |
+
effective_prompt = plan.prompt
|
| 60 |
+
# If the user provided a negative prompt, use it; otherwise use the recommended one
|
| 61 |
+
effective_negative = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else plan.negative_prompt
|
| 62 |
+
|
| 63 |
+
success, video_path, error_msg, gen_info = model_handler.generate_video(
|
| 64 |
+
prompt=effective_prompt,
|
| 65 |
+
negative_prompt=effective_negative,
|
| 66 |
+
width=width,
|
| 67 |
+
height=height,
|
| 68 |
+
num_frames=num_frames,
|
| 69 |
+
num_inference_steps=num_inference_steps,
|
| 70 |
+
guidance_scale=guidance_scale,
|
| 71 |
+
seed=seed,
|
| 72 |
+
progress_callback=progress_callback
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
if success:
|
| 76 |
+
return (
|
| 77 |
+
gr.update(value=video_path, visible=True), # Video output
|
| 78 |
+
gr.update(value=gen_info, visible=True), # Generation info
|
| 79 |
+
gr.update(visible=False) # Hide error message
|
| 80 |
+
)
|
| 81 |
+
else:
|
| 82 |
+
return (
|
| 83 |
+
gr.update(value=None, visible=False), # Hide video output
|
| 84 |
+
gr.update(visible=False), # Hide generation info
|
| 85 |
+
gr.update(value=error_msg, visible=True) # Show error message
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
def create_interface():
|
| 89 |
+
"""Create the Gradio interface"""
|
| 90 |
+
|
| 91 |
+
with gr.Blocks(
|
| 92 |
+
title=UI_CONFIG["title"],
|
| 93 |
+
theme=UI_CONFIG["theme"]
|
| 94 |
+
) as demo:
|
| 95 |
+
|
| 96 |
+
# Header
|
| 97 |
+
gr.Markdown(f"# {UI_CONFIG['title']}")
|
| 98 |
+
gr.Markdown(UI_CONFIG["description"])
|
| 99 |
+
|
| 100 |
+
# Model loading section
|
| 101 |
+
with gr.Row():
|
| 102 |
+
with gr.Column():
|
| 103 |
+
load_btn = gr.Button(
|
| 104 |
+
"🚀 Load Video Generation Model",
|
| 105 |
+
variant="primary",
|
| 106 |
+
size="lg"
|
| 107 |
+
)
|
| 108 |
+
load_success_msg = gr.Markdown(visible=False)
|
| 109 |
+
load_error_msg = gr.Markdown(visible=False)
|
| 110 |
+
|
| 111 |
+
# Main generation interface (initially hidden)
|
| 112 |
+
with gr.Column(visible=False) as generation_interface:
|
| 113 |
+
|
| 114 |
+
# Input section
|
| 115 |
+
with gr.Row():
|
| 116 |
+
with gr.Column(scale=2):
|
| 117 |
+
with gr.Group():
|
| 118 |
+
gr.Markdown("### 📝 Concept & Prompts")
|
| 119 |
+
# The user supplies a high‑level concept or topic. The agent will
|
| 120 |
+
# refine this into a detailed prompt automatically.
|
| 121 |
+
prompt_input = gr.Textbox(
|
| 122 |
+
label="Video Concept",
|
| 123 |
+
placeholder="Describe the concept you want to generate, e.g. 'a pig in a winter forest'...",
|
| 124 |
+
lines=3,
|
| 125 |
+
value="a pig moving quickly in a beautiful winter scenery nature trees sunset tracking camera"
|
| 126 |
+
)
|
| 127 |
+
# Optional negative prompt: overrides the agent's recommended negative prompt.
|
| 128 |
+
negative_prompt_input = gr.Textbox(
|
| 129 |
+
label="Negative Prompt (Optional)",
|
| 130 |
+
placeholder="Things you don't want in the video; leave empty to use the agent's recommendation...",
|
| 131 |
+
lines=2,
|
| 132 |
+
value=""
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
with gr.Column(scale=1):
|
| 136 |
+
with gr.Group():
|
| 137 |
+
gr.Markdown("### ⚙️ Generation Parameters")
|
| 138 |
+
|
| 139 |
+
with gr.Row():
|
| 140 |
+
width_slider = gr.Slider(
|
| 141 |
+
label="Width",
|
| 142 |
+
minimum=64,
|
| 143 |
+
maximum=1920,
|
| 144 |
+
step=8,
|
| 145 |
+
value=DEFAULT_PARAMS["width"]
|
| 146 |
+
)
|
| 147 |
+
height_slider = gr.Slider(
|
| 148 |
+
label="Height",
|
| 149 |
+
minimum=64,
|
| 150 |
+
maximum=1080,
|
| 151 |
+
step=8,
|
| 152 |
+
value=DEFAULT_PARAMS["height"]
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
num_frames_slider = gr.Slider(
|
| 156 |
+
label="Number of Frames",
|
| 157 |
+
minimum=1,
|
| 158 |
+
maximum=200,
|
| 159 |
+
step=1,
|
| 160 |
+
value=DEFAULT_PARAMS["num_frames"]
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
inference_steps_slider = gr.Slider(
|
| 164 |
+
label="Inference Steps",
|
| 165 |
+
minimum=1,
|
| 166 |
+
maximum=100,
|
| 167 |
+
step=1,
|
| 168 |
+
value=DEFAULT_PARAMS["num_inference_steps"]
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
guidance_scale_slider = gr.Slider(
|
| 172 |
+
label="Guidance Scale",
|
| 173 |
+
minimum=0.0,
|
| 174 |
+
maximum=20.0,
|
| 175 |
+
step=0.1,
|
| 176 |
+
value=DEFAULT_PARAMS["guidance_scale"]
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
seed_input = gr.Number(
|
| 180 |
+
label="Seed (Optional)",
|
| 181 |
+
value=0,
|
| 182 |
+
precision=0
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
# Generation button
|
| 186 |
+
with gr.Row():
|
| 187 |
+
generate_btn = gr.Button(
|
| 188 |
+
"🎬 Generate Video",
|
| 189 |
+
variant="primary",
|
| 190 |
+
size="lg"
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# Output section
|
| 194 |
+
with gr.Row():
|
| 195 |
+
with gr.Column():
|
| 196 |
+
video_output = gr.Video(
|
| 197 |
+
label="Generated Video",
|
| 198 |
+
visible=False
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
generation_info = gr.Markdown(
|
| 202 |
+
label="Generation Information",
|
| 203 |
+
visible=False
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
generation_error = gr.Markdown(
|
| 207 |
+
visible=False
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
# Additional controls
|
| 211 |
+
with gr.Row():
|
| 212 |
+
with gr.Column():
|
| 213 |
+
gr.Markdown("""
|
| 214 |
+
### 💡 Tips:
|
| 215 |
+
- Enter a short **concept** (e.g. “a busy city street at dawn”). The agent will expand it into a detailed prompt.
|
| 216 |
+
- Adjust the **guidance scale**: higher values make the video adhere more closely to the refined prompt.
|
| 217 |
+
- Increasing **inference steps** improves quality at the cost of generation time.
|
| 218 |
+
- Use the optional **Negative Prompt** field only if you want to override the agent's recommended terms.
|
| 219 |
+
- Keep width and height multiples of 8 for optimal performance.
|
| 220 |
+
""")
|
| 221 |
+
|
| 222 |
+
with gr.Column():
|
| 223 |
+
if torch.cuda.is_available():
|
| 224 |
+
gpu_info = f"🎮 GPU: {torch.cuda.get_device_name()}"
|
| 225 |
+
else:
|
| 226 |
+
gpu_info = "💻 Running on CPU"
|
| 227 |
+
|
| 228 |
+
gr.Markdown(f"""
|
| 229 |
+
### 🖥️ System Information:
|
| 230 |
+
{gpu_info}
|
| 231 |
+
|
| 232 |
+
### 📊 Model Information:
|
| 233 |
+
- **Model:** WAN‑VACE 1.3B (Q4_0 Quantized)
|
| 234 |
+
- **Text Encoder:** UMT5‑XXL
|
| 235 |
+
- **Scheduler:** UniPC Multistep
|
| 236 |
+
|
| 237 |
+
### 🤖 Agent Details:
|
| 238 |
+
- **Planning:** The agent automatically crafts a detailed prompt and a recommended negative prompt based on your concept.
|
| 239 |
+
- **Override:** Supply your own negative prompt to override the recommendation if desired.
|
| 240 |
+
""")
|
| 241 |
+
|
| 242 |
+
# Event handlers
|
| 243 |
+
load_btn.click(
|
| 244 |
+
fn=load_model_interface,
|
| 245 |
+
outputs=[
|
| 246 |
+
load_btn,
|
| 247 |
+
generation_interface,
|
| 248 |
+
load_success_msg,
|
| 249 |
+
load_error_msg
|
| 250 |
+
]
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
generate_btn.click(
|
| 254 |
+
fn=generate_video_interface,
|
| 255 |
+
inputs=[
|
| 256 |
+
prompt_input,
|
| 257 |
+
negative_prompt_input,
|
| 258 |
+
width_slider,
|
| 259 |
+
height_slider,
|
| 260 |
+
num_frames_slider,
|
| 261 |
+
inference_steps_slider,
|
| 262 |
+
guidance_scale_slider,
|
| 263 |
+
seed_input
|
| 264 |
+
],
|
| 265 |
+
outputs=[
|
| 266 |
+
video_output,
|
| 267 |
+
generation_info,
|
| 268 |
+
generation_error
|
| 269 |
+
]
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
return demo
|
| 273 |
+
|
| 274 |
+
def main():
|
| 275 |
+
"""Main function to launch the application"""
|
| 276 |
+
print(f"🚀 Starting {UI_CONFIG['title']}...")
|
| 277 |
+
print(f"🔧 Server configuration: {SERVER_CONFIG['host']}:{SERVER_CONFIG['port']}")
|
| 278 |
+
|
| 279 |
+
# Check GPU availability
|
| 280 |
+
if torch.cuda.is_available():
|
| 281 |
+
print(f"🎮 GPU detected: {torch.cuda.get_device_name()}")
|
| 282 |
+
print(f"💾 GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB")
|
| 283 |
+
else:
|
| 284 |
+
print("💻 Running on CPU (GPU recommended for better performance)")
|
| 285 |
+
|
| 286 |
+
# Create interface and enable the event queue to support multiple users.
|
| 287 |
+
demo = create_interface()
|
| 288 |
+
# Hugging Face Spaces expect `.queue()` to be called for handling request concurrency.
|
| 289 |
+
# Limiting concurrency_count to 1 helps prevent excessive memory usage on CPU-only hardware.
|
| 290 |
+
demo = demo.queue(concurrency_count=1)
|
| 291 |
+
|
| 292 |
+
# Launch the interface.
|
| 293 |
+
demo.launch(
|
| 294 |
+
server_name=SERVER_CONFIG["host"],
|
| 295 |
+
server_port=SERVER_CONFIG["port"],
|
| 296 |
+
share=SERVER_CONFIG["share"],
|
| 297 |
+
show_error=True,
|
| 298 |
+
show_tips=True
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
if __name__ == "__main__":
|
| 302 |
+
main()
|
config.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Configuration file for WAN-VACE video generation application
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# Hugging Face token (must be set as environment variable)
|
| 7 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 8 |
+
|
| 9 |
+
# Model paths and configurations
|
| 10 |
+
MODEL_CONFIG = {
|
| 11 |
+
"transformer_path": "https://huggingface.co/calcuis/wan-gguf/blob/main/wan2.1-v5-vace-1.3b-q4_0.gguf",
|
| 12 |
+
"text_encoder_path": "chatpig/umt5xxl-encoder-gguf",
|
| 13 |
+
"text_encoder_file": "umt5xxl-encoder-q4_0.gguf",
|
| 14 |
+
"vae_path": "callgg/wan-decoder",
|
| 15 |
+
"pipeline_path": "callgg/wan-decoder"
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
# Default generation parameters
|
| 19 |
+
DEFAULT_PARAMS = {
|
| 20 |
+
"width": 720,
|
| 21 |
+
"height": 480,
|
| 22 |
+
"num_frames": 57,
|
| 23 |
+
"num_inference_steps": 24,
|
| 24 |
+
"guidance_scale": 2.5,
|
| 25 |
+
"conditioning_scale": 0.0,
|
| 26 |
+
"fps": 16,
|
| 27 |
+
"flow_shift": 3.0
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
# UI configuration
|
| 31 |
+
#
|
| 32 |
+
# The title and description here emphasise the agentic nature of the app:
|
| 33 |
+
# you provide a concept and the system plans the prompts for you. Feel free
|
| 34 |
+
# to adjust these strings to suit your needs or branding.
|
| 35 |
+
UI_CONFIG = {
|
| 36 |
+
"title": "🎬 Agentic WAN-VACE Video Generation",
|
| 37 |
+
"description": (
|
| 38 |
+
"Generate high-quality videos from simple concepts. "
|
| 39 |
+
"Provide a short description of what you want to see, and the agent "
|
| 40 |
+
"will craft a refined prompt and negative prompt before generating a cinematic "
|
| 41 |
+
"vertical video using the WAN‑VACE model."
|
| 42 |
+
),
|
| 43 |
+
"theme": "default"
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
# Server configuration
|
| 47 |
+
SERVER_CONFIG = {
|
| 48 |
+
"host": "0.0.0.0",
|
| 49 |
+
"port": 5000,
|
| 50 |
+
"share": False
|
| 51 |
+
}
|
model_handler.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model handler for WAN-VACE video generation
|
| 3 |
+
"""
|
| 4 |
+
import torch
|
| 5 |
+
import time
|
| 6 |
+
from typing import Optional, Tuple, Any
|
| 7 |
+
from transformers import UMT5EncoderModel
|
| 8 |
+
from diffusers import AutoencoderKLWan, WanVACEPipeline, WanVACETransformer3DModel, GGUFQuantizationConfig
|
| 9 |
+
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
| 10 |
+
from diffusers.utils import export_to_video
|
| 11 |
+
from huggingface_hub import login
|
| 12 |
+
import gradio as gr
|
| 13 |
+
|
| 14 |
+
from config import MODEL_CONFIG, DEFAULT_PARAMS, HF_TOKEN
|
| 15 |
+
import os
|
| 16 |
+
from utils import create_temp_video_path, validate_generation_params, validate_prompt, format_generation_info
|
| 17 |
+
|
| 18 |
+
class WanVACEModelHandler:
|
| 19 |
+
"""Handler for WAN-VACE model loading and video generation"""
|
| 20 |
+
|
| 21 |
+
def __init__(self):
|
| 22 |
+
self.pipe = None
|
| 23 |
+
self.is_loaded = False
|
| 24 |
+
self.loading_progress = 0
|
| 25 |
+
|
| 26 |
+
def login_hf(self) -> bool:
|
| 27 |
+
"""Login to Hugging Face"""
|
| 28 |
+
try:
|
| 29 |
+
login(token=HF_TOKEN)
|
| 30 |
+
return True
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Warning: Could not login to Hugging Face: {e}")
|
| 33 |
+
return False
|
| 34 |
+
|
| 35 |
+
def load_model(self, progress_callback=None) -> Tuple[bool, str]:
|
| 36 |
+
"""Load the WAN-VACE model components"""
|
| 37 |
+
try:
|
| 38 |
+
# Login to HF
|
| 39 |
+
self.login_hf()
|
| 40 |
+
|
| 41 |
+
if progress_callback:
|
| 42 |
+
progress_callback(0.1, "Loading transformer model...")
|
| 43 |
+
|
| 44 |
+
# Determine desired dtype for CPU/GPU execution.
|
| 45 |
+
# Hugging Face Spaces often run on CPU, where bfloat16 may not be supported.
|
| 46 |
+
# Allow the dtype to be configured via the WAN_DTYPE environment variable.
|
| 47 |
+
# Supported values: "bfloat16" (default) or "float32".
|
| 48 |
+
dtype_str = os.getenv("WAN_DTYPE", "bfloat16").lower()
|
| 49 |
+
# Select compute dtype: use bfloat16 only if requested and available.
|
| 50 |
+
# Fall back to float32 otherwise.
|
| 51 |
+
compute_dtype = torch.bfloat16 if dtype_str == "bfloat16" else torch.float32
|
| 52 |
+
# Likewise for the torch dtype used when loading weights.
|
| 53 |
+
torch_dtype = compute_dtype
|
| 54 |
+
|
| 55 |
+
# Load transformer
|
| 56 |
+
transformer = WanVACETransformer3DModel.from_single_file(
|
| 57 |
+
MODEL_CONFIG["transformer_path"],
|
| 58 |
+
quantization_config=GGUFQuantizationConfig(compute_dtype=compute_dtype),
|
| 59 |
+
torch_dtype=torch_dtype,
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
if progress_callback:
|
| 63 |
+
progress_callback(0.4, "Loading text encoder...")
|
| 64 |
+
|
| 65 |
+
# Load text encoder
|
| 66 |
+
text_encoder = UMT5EncoderModel.from_pretrained(
|
| 67 |
+
MODEL_CONFIG["text_encoder_path"],
|
| 68 |
+
gguf_file=MODEL_CONFIG["text_encoder_file"],
|
| 69 |
+
torch_dtype=torch_dtype,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
if progress_callback:
|
| 73 |
+
progress_callback(0.7, "Loading VAE...")
|
| 74 |
+
|
| 75 |
+
# Load VAE
|
| 76 |
+
vae = AutoencoderKLWan.from_pretrained(
|
| 77 |
+
MODEL_CONFIG["vae_path"],
|
| 78 |
+
subfolder="vae",
|
| 79 |
+
torch_dtype=torch.float32
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
if progress_callback:
|
| 83 |
+
progress_callback(0.9, "Assembling pipeline...")
|
| 84 |
+
|
| 85 |
+
# Create pipeline
|
| 86 |
+
self.pipe = WanVACEPipeline.from_pretrained(
|
| 87 |
+
MODEL_CONFIG["pipeline_path"],
|
| 88 |
+
transformer=transformer,
|
| 89 |
+
text_encoder=text_encoder,
|
| 90 |
+
vae=vae,
|
| 91 |
+
torch_dtype=torch_dtype
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Configure scheduler
|
| 95 |
+
flow_shift = DEFAULT_PARAMS["flow_shift"]
|
| 96 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(
|
| 97 |
+
self.pipe.scheduler.config,
|
| 98 |
+
flow_shift=flow_shift
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Enable optimizations
|
| 102 |
+
self.pipe.enable_model_cpu_offload()
|
| 103 |
+
self.pipe.vae.enable_tiling()
|
| 104 |
+
|
| 105 |
+
self.is_loaded = True
|
| 106 |
+
|
| 107 |
+
if progress_callback:
|
| 108 |
+
progress_callback(1.0, "Model loaded successfully!")
|
| 109 |
+
|
| 110 |
+
return True, "Model loaded successfully!"
|
| 111 |
+
|
| 112 |
+
except Exception as e:
|
| 113 |
+
error_msg = f"Error loading model: {str(e)}"
|
| 114 |
+
if progress_callback:
|
| 115 |
+
progress_callback(0, error_msg)
|
| 116 |
+
return False, error_msg
|
| 117 |
+
|
| 118 |
+
def generate_video(
|
| 119 |
+
self,
|
| 120 |
+
prompt: str,
|
| 121 |
+
negative_prompt: str = "",
|
| 122 |
+
width: int = DEFAULT_PARAMS["width"],
|
| 123 |
+
height: int = DEFAULT_PARAMS["height"],
|
| 124 |
+
num_frames: int = DEFAULT_PARAMS["num_frames"],
|
| 125 |
+
num_inference_steps: int = DEFAULT_PARAMS["num_inference_steps"],
|
| 126 |
+
guidance_scale: float = DEFAULT_PARAMS["guidance_scale"],
|
| 127 |
+
seed: Optional[int] = None,
|
| 128 |
+
progress_callback=None
|
| 129 |
+
) -> Tuple[bool, str, str, str]:
|
| 130 |
+
"""
|
| 131 |
+
Generate video from text prompt
|
| 132 |
+
Returns: (success, video_path, error_message, generation_info)
|
| 133 |
+
"""
|
| 134 |
+
|
| 135 |
+
if not self.is_loaded:
|
| 136 |
+
return False, "", "Model not loaded. Please load the model first.", ""
|
| 137 |
+
|
| 138 |
+
# Validate inputs
|
| 139 |
+
prompt_valid, prompt_error = validate_prompt(prompt)
|
| 140 |
+
if not prompt_valid:
|
| 141 |
+
return False, "", prompt_error or "Invalid prompt", ""
|
| 142 |
+
|
| 143 |
+
params_valid, params_error = validate_generation_params(
|
| 144 |
+
width, height, num_frames, num_inference_steps, guidance_scale
|
| 145 |
+
)
|
| 146 |
+
if not params_valid:
|
| 147 |
+
return False, "", params_error or "Invalid parameters", ""
|
| 148 |
+
|
| 149 |
+
try:
|
| 150 |
+
if progress_callback:
|
| 151 |
+
progress_callback(0.1, "Preparing generation...")
|
| 152 |
+
|
| 153 |
+
# Check if pipeline is loaded
|
| 154 |
+
if self.pipe is None:
|
| 155 |
+
return False, "", "Pipeline not initialized. Please load the model first.", ""
|
| 156 |
+
|
| 157 |
+
# Set up generator with seed
|
| 158 |
+
generator = torch.Generator()
|
| 159 |
+
if seed is not None:
|
| 160 |
+
generator.manual_seed(seed)
|
| 161 |
+
else:
|
| 162 |
+
generator.manual_seed(0) # Default seed
|
| 163 |
+
|
| 164 |
+
if progress_callback:
|
| 165 |
+
progress_callback(0.2, "Starting video generation...")
|
| 166 |
+
|
| 167 |
+
start_time = time.time()
|
| 168 |
+
|
| 169 |
+
# Generate video
|
| 170 |
+
output = self.pipe(
|
| 171 |
+
prompt=prompt,
|
| 172 |
+
negative_prompt=negative_prompt if negative_prompt else None,
|
| 173 |
+
width=width,
|
| 174 |
+
height=height,
|
| 175 |
+
num_frames=num_frames,
|
| 176 |
+
num_inference_steps=num_inference_steps,
|
| 177 |
+
guidance_scale=guidance_scale,
|
| 178 |
+
conditioning_scale=DEFAULT_PARAMS["conditioning_scale"],
|
| 179 |
+
generator=generator,
|
| 180 |
+
).frames[0]
|
| 181 |
+
|
| 182 |
+
if progress_callback:
|
| 183 |
+
progress_callback(0.8, "Exporting video...")
|
| 184 |
+
|
| 185 |
+
# Export to video file
|
| 186 |
+
output_path = create_temp_video_path()
|
| 187 |
+
export_to_video(output, output_path, fps=DEFAULT_PARAMS["fps"])
|
| 188 |
+
|
| 189 |
+
generation_time = time.time() - start_time
|
| 190 |
+
|
| 191 |
+
if progress_callback:
|
| 192 |
+
progress_callback(1.0, "Video generation complete!")
|
| 193 |
+
|
| 194 |
+
# Format generation info
|
| 195 |
+
gen_info = format_generation_info(
|
| 196 |
+
prompt, negative_prompt, width, height, num_frames,
|
| 197 |
+
num_inference_steps, guidance_scale, generation_time
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
return True, output_path, "", gen_info
|
| 201 |
+
|
| 202 |
+
except Exception as e:
|
| 203 |
+
error_msg = f"Error during video generation: {str(e)}"
|
| 204 |
+
if progress_callback:
|
| 205 |
+
progress_callback(0, error_msg)
|
| 206 |
+
return False, "", error_msg, ""
|
| 207 |
+
|
| 208 |
+
# Global model handler instance
|
| 209 |
+
model_handler = WanVACEModelHandler()
|
planning.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Planning utilities for the agentic WAN‑VACE video generator.
|
| 3 |
+
|
| 4 |
+
This module defines a simple planner that takes a high‑level concept or topic and
|
| 5 |
+
returns a refined text prompt and a recommended negative prompt. The planner
|
| 6 |
+
adds cinematic and visual descriptors to the concept to encourage more
|
| 7 |
+
engaging video outputs and recommends a default negative prompt to avoid
|
| 8 |
+
common artifacts and low‑quality renderings.
|
| 9 |
+
|
| 10 |
+
The planner can be replaced or extended with more sophisticated logic or local
|
| 11 |
+
LLMs if desired.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from typing import Tuple
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
@dataclass
|
| 19 |
+
class Plan:
|
| 20 |
+
"""A dataclass representing a planned prompt and negative prompt."""
|
| 21 |
+
prompt: str
|
| 22 |
+
negative_prompt: str
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def plan_from_topic(topic: str) -> Plan:
|
| 26 |
+
"""
|
| 27 |
+
Generate a refined prompt and a recommended negative prompt from a high‑level topic.
|
| 28 |
+
|
| 29 |
+
The refined prompt enriches the user's concept with cinematic descriptors and
|
| 30 |
+
details that tend to produce appealing vertical videos. The negative prompt
|
| 31 |
+
includes terms that discourage common undesirable artifacts.
|
| 32 |
+
|
| 33 |
+
Parameters
|
| 34 |
+
----------
|
| 35 |
+
topic: str
|
| 36 |
+
A short description of what the user wants in the video.
|
| 37 |
+
|
| 38 |
+
Returns
|
| 39 |
+
-------
|
| 40 |
+
Plan
|
| 41 |
+
An object containing a refined prompt and a negative prompt.
|
| 42 |
+
"""
|
| 43 |
+
# Base descriptors to enrich the concept. These tokens help guide the model
|
| 44 |
+
# towards vibrant, cinematic compositions. You can customise these tokens
|
| 45 |
+
# depending on your aesthetic preferences.
|
| 46 |
+
base_descriptors = (
|
| 47 |
+
"cinematic, dynamic motion, rich details, warm lighting, volumetric lighting, "
|
| 48 |
+
"bokeh, warm sun rim light, tracking shot, shallow depth of field, vertical 9:16"
|
| 49 |
+
)
|
| 50 |
+
# Compose the refined prompt
|
| 51 |
+
refined_prompt = f"{topic}, {base_descriptors}"
|
| 52 |
+
|
| 53 |
+
# Recommended negative prompt to avoid low‑quality outputs. Users can
|
| 54 |
+
# override this by supplying their own negative prompt.
|
| 55 |
+
recommended_negative = (
|
| 56 |
+
"blurry, lowres, artifacts, distorted anatomy, dull colors, washed out, "
|
| 57 |
+
"overexposed, underexposed, jitter, bad compression"
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
return Plan(prompt=refined_prompt, negative_prompt=recommended_negative)
|
requirements.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Requirements for running the WAN‑VACE Gradio application on Hugging Face Spaces
|
| 2 |
+
|
| 3 |
+
# Core inference libraries
|
| 4 |
+
torch==2.2.* # PyTorch CPU build; GPU is not available in most Spaces
|
| 5 |
+
transformers>=4.42.0
|
| 6 |
+
diffusers==0.32.*
|
| 7 |
+
accelerate>=0.31.0
|
| 8 |
+
safetensors>=0.4.0
|
| 9 |
+
huggingface_hub>=0.21.0
|
| 10 |
+
|
| 11 |
+
# Application and interface libraries
|
| 12 |
+
gradio>=4.0.0
|
| 13 |
+
opencv-python-headless>=4.8.0
|
| 14 |
+
numpy>=1.24.0
|
| 15 |
+
Pillow>=10.0.0
|
| 16 |
+
|
| 17 |
+
# The following line pins the Torch CPU wheel source for Linux systems.
|
| 18 |
+
# It is optional but recommended to avoid downloading GPU wheels on CPU-only hardware.
|
| 19 |
+
-f https://download.pytorch.org/whl/cpu
|
utils.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utility functions for video processing and file handling
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import tempfile
|
| 6 |
+
import uuid
|
| 7 |
+
from typing import Optional, Tuple
|
| 8 |
+
import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
def create_temp_video_path(extension: str = "mp4") -> str:
|
| 13 |
+
"""Create a temporary file path for video output"""
|
| 14 |
+
temp_dir = tempfile.gettempdir()
|
| 15 |
+
unique_id = str(uuid.uuid4())
|
| 16 |
+
return os.path.join(temp_dir, f"video_{unique_id}.{extension}")
|
| 17 |
+
|
| 18 |
+
def validate_generation_params(
|
| 19 |
+
width: int,
|
| 20 |
+
height: int,
|
| 21 |
+
num_frames: int,
|
| 22 |
+
num_inference_steps: int,
|
| 23 |
+
guidance_scale: float
|
| 24 |
+
) -> Tuple[bool, Optional[str]]:
|
| 25 |
+
"""Validate video generation parameters"""
|
| 26 |
+
|
| 27 |
+
# Check width and height
|
| 28 |
+
if width < 64 or width > 1920:
|
| 29 |
+
return False, "Width must be between 64 and 1920 pixels"
|
| 30 |
+
if height < 64 or height > 1080:
|
| 31 |
+
return False, "Height must be between 64 and 1080 pixels"
|
| 32 |
+
|
| 33 |
+
# Check if dimensions are divisible by 8 (common requirement for video models)
|
| 34 |
+
if width % 8 != 0:
|
| 35 |
+
return False, "Width must be divisible by 8"
|
| 36 |
+
if height % 8 != 0:
|
| 37 |
+
return False, "Height must be divisible by 8"
|
| 38 |
+
|
| 39 |
+
# Check frames
|
| 40 |
+
if num_frames < 1 or num_frames > 200:
|
| 41 |
+
return False, "Number of frames must be between 1 and 200"
|
| 42 |
+
|
| 43 |
+
# Check inference steps
|
| 44 |
+
if num_inference_steps < 1 or num_inference_steps > 100:
|
| 45 |
+
return False, "Number of inference steps must be between 1 and 100"
|
| 46 |
+
|
| 47 |
+
# Check guidance scale
|
| 48 |
+
if guidance_scale < 0 or guidance_scale > 20:
|
| 49 |
+
return False, "Guidance scale must be between 0 and 20"
|
| 50 |
+
|
| 51 |
+
return True, None
|
| 52 |
+
|
| 53 |
+
def validate_prompt(prompt: str) -> Tuple[bool, Optional[str]]:
|
| 54 |
+
"""Validate the input prompt"""
|
| 55 |
+
if not prompt or len(prompt.strip()) == 0:
|
| 56 |
+
return False, "Prompt cannot be empty"
|
| 57 |
+
|
| 58 |
+
if len(prompt) > 1000:
|
| 59 |
+
return False, "Prompt must be less than 1000 characters"
|
| 60 |
+
|
| 61 |
+
return True, None
|
| 62 |
+
|
| 63 |
+
def get_memory_usage() -> str:
|
| 64 |
+
"""Get current GPU memory usage if available"""
|
| 65 |
+
if torch.cuda.is_available():
|
| 66 |
+
allocated = torch.cuda.memory_allocated() / 1024**3 # Convert to GB
|
| 67 |
+
cached = torch.cuda.memory_reserved() / 1024**3
|
| 68 |
+
return f"GPU Memory - Allocated: {allocated:.2f}GB, Cached: {cached:.2f}GB"
|
| 69 |
+
else:
|
| 70 |
+
return "GPU not available"
|
| 71 |
+
|
| 72 |
+
def cleanup_temp_files(file_path: str) -> None:
|
| 73 |
+
"""Clean up temporary files"""
|
| 74 |
+
try:
|
| 75 |
+
if os.path.exists(file_path):
|
| 76 |
+
os.remove(file_path)
|
| 77 |
+
except Exception as e:
|
| 78 |
+
print(f"Warning: Could not remove temporary file {file_path}: {e}")
|
| 79 |
+
|
| 80 |
+
def format_generation_info(
|
| 81 |
+
prompt: str,
|
| 82 |
+
negative_prompt: str,
|
| 83 |
+
width: int,
|
| 84 |
+
height: int,
|
| 85 |
+
num_frames: int,
|
| 86 |
+
num_inference_steps: int,
|
| 87 |
+
guidance_scale: float,
|
| 88 |
+
generation_time: float
|
| 89 |
+
) -> str:
|
| 90 |
+
"""Format generation information for display"""
|
| 91 |
+
info = f"""
|
| 92 |
+
**Generation Details:**
|
| 93 |
+
- **Prompt:** {prompt}
|
| 94 |
+
- **Negative Prompt:** {negative_prompt if negative_prompt else "None"}
|
| 95 |
+
- **Dimensions:** {width}x{height}
|
| 96 |
+
- **Frames:** {num_frames}
|
| 97 |
+
- **Inference Steps:** {num_inference_steps}
|
| 98 |
+
- **Guidance Scale:** {guidance_scale}
|
| 99 |
+
- **Generation Time:** {generation_time:.2f} seconds
|
| 100 |
+
- **Memory Usage:** {get_memory_usage()}
|
| 101 |
+
"""
|
| 102 |
+
return info
|